svars: Data-Driven Identification of SVAR Models
Implements data-driven identification methods for structural vector autoregressive (SVAR) models as described in Lange et al. (2021) <doi:10.18637/jss.v097.i05>. 
             Based on an existing VAR model object (provided by e.g. VAR() from the 'vars' package), the structural 
             impact matrix is obtained via data-driven identification techniques (i.e. changes in volatility (Rigobon, R. (2003) <doi:10.1162/003465303772815727>),  patterns of GARCH (Normadin, M., Phaneuf, L. (2004) <doi:10.1016/j.jmoneco.2003.11.002>),
             independent component analysis (Matteson, D. S, Tsay, R. S., (2013) <doi:10.1080/01621459.2016.1150851>), least dependent innovations (Herwartz, H., Ploedt, M., (2016) <doi:10.1016/j.jimonfin.2015.11.001>), 
             smooth transition in variances (Luetkepohl, H., Netsunajev, A. (2017) <doi:10.1016/j.jedc.2017.09.001>) or non-Gaussian maximum likelihood (Lanne, M., Meitz, M., Saikkonen, P. (2017) <doi:10.1016/j.jeconom.2016.06.002>)).
| Version: | 1.3.12 | 
| Depends: | R (≥ 2.10), vars (≥ 1.5.3) | 
| Imports: | expm, reshape2, ggplot2, copula, clue, pbapply, steadyICA, DEoptim, zoo, strucchange, Rcpp, methods | 
| LinkingTo: | Rcpp, RcppArmadillo | 
| Suggests: | testthat (≥ 2.1.0), tsDyn | 
| Published: | 2025-08-24 | 
| DOI: | 10.32614/CRAN.package.svars | 
| Author: | Alexander Lange [aut, cre],
  Bernhard Dalheimer [aut],
  Helmut Herwartz [aut],
  Simone Maxand [aut],
  Hannes Riebl [ctb] | 
| Maintainer: | Alexander Lange  <alexander.lange at uni-goettingen.de> | 
| License: | MIT + file LICENSE | 
| NeedsCompilation: | yes | 
| SystemRequirements: | C++17 | 
| Citation: | svars citation info | 
| In views: | TimeSeries | 
| CRAN checks: | svars results | 
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=svars
to link to this page.