
Package ‘teal.slice’
February 4, 2025

Type Package

Title Filter Module for 'teal' Applications

Version 0.6.0

Date 2025-01-31

Description Data filtering module for 'teal' applications. Allows for
interactive filtering of data stored in 'data.frame' and
'MultiAssayExperiment' objects. Also displays filtered and unfiltered
observation counts.

License Apache License 2.0

URL https://insightsengineering.github.io/teal.slice/,

https://github.com/insightsengineering/teal.slice/

BugReports https://github.com/insightsengineering/teal.slice/issues

Depends R (>= 4.0)

Imports bslib (>= 0.4.0), checkmate (>= 2.1.0), dplyr (>= 1.0.5),
grDevices, htmltools (>= 0.5.4), jsonlite, lifecycle (>=
0.2.0), logger (>= 0.3.0), methods, plotly (>= 4.9.2.2), R6 (>=
2.2.0), rlang (>= 1.0.0), shiny (>= 1.6.0), shinycssloaders (>=
1.0.0), shinyjs, shinyWidgets (>= 0.6.2), teal.data (>= 0.7.0),
teal.logger (>= 0.3.1), teal.widgets (>= 0.4.3), utils

Suggests knitr (>= 1.42), MultiAssayExperiment, rmarkdown (>= 2.23),
SummarizedExperiment, testthat (>= 3.2.2), withr (>= 3.0.2)

VignetteBuilder knitr, rmarkdown

RdMacros lifecycle

Config/Needs/verdepcheck rstudio/shiny, rstudio/bslib, mllg/checkmate,
tidyverse/dplyr, rstudio/htmltools, jeroen/jsonlite,
r-lib/lifecycle, daroczig/logger, plotly/plotly, r-lib/R6,
daattali/shinycssloaders, daattali/shinyjs,
dreamRs/shinyWidgets, insightsengineering/teal.data,
insightsengineering/teal.logger,
insightsengineering/teal.widgets, yihui/knitr,
bioc::MultiAssayExperiment, bioc::SummarizedExperiment,

1

https://insightsengineering.github.io/teal.slice/
https://github.com/insightsengineering/teal.slice/
https://github.com/insightsengineering/teal.slice/issues

2 FilterPanelAPI

rstudio/rmarkdown, r-lib/testthat, r-lib/withr,
bioc::matrixStats

Config/Needs/website insightsengineering/nesttemplate

Encoding UTF-8

Language en-US

RoxygenNote 7.3.2

NeedsCompilation no

Author Dawid Kaledkowski [aut, cre] (<https://orcid.org/0000-0001-9533-457X>),
Pawel Rucki [aut],
Aleksander Chlebowski [aut] (<https://orcid.org/0000-0001-5018-6294>),
Andre Verissimo [aut] (<https://orcid.org/0000-0002-2212-339X>),
Kartikeya Kirar [aut],
Marcin Kosinski [aut],
Chendi Liao [rev],
Dony Unardi [rev],
Andrew Bates [aut],
Mahmoud Hallal [aut],
Nikolas Burkoff [aut],
Maciej Nasinski [aut],
Konrad Pagacz [aut],
Junlue Zhao [aut],
F. Hoffmann-La Roche AG [cph, fnd]

Maintainer Dawid Kaledkowski <dawid.kaledkowski@roche.com>

Repository CRAN

Date/Publication 2025-02-03 23:40:02 UTC

Contents
FilterPanelAPI . 2
filter_state_api . 5
get_filter_expr . 7
init_filtered_data . 8
teal_slice . 8
teal_slices . 11

Index 14

FilterPanelAPI Class to encapsulate the API of the filter panel of a teal app

Description

An API class for managing filter states in a teal application’s filter panel.

https://orcid.org/0000-0001-9533-457X
https://orcid.org/0000-0001-5018-6294
https://orcid.org/0000-0002-2212-339X

FilterPanelAPI 3

Details

The purpose of this class is to encapsulate the API of the filter panel in a new class FilterPanelAPI
so that it can be passed and used in the server call of any module instead of passing the whole
FilteredData object.

This class is supported by methods to set, get, remove filter states in the filter panel API.

Methods

Public methods:

• FilterPanelAPI$new()

• FilterPanelAPI$get_filter_state()

• FilterPanelAPI$set_filter_state()

• FilterPanelAPI$remove_filter_state()

• FilterPanelAPI$clear_filter_states()

• FilterPanelAPI$clone()

Method new(): Initialize a FilterPanelAPI object.

Usage:
FilterPanelAPI$new(datasets)

Arguments:

datasets (FilteredData)

Method get_filter_state(): Gets the reactive values from the active FilterState objects
of the FilteredData object.
Gets all active filters in the form of a nested list. The output list is a compatible input to set_filter_state.

Usage:
FilterPanelAPI$get_filter_state()

Returns: list with named elements corresponding to FilteredDataset objects with active
filters.

Method set_filter_state(): Sets active filter states.

Usage:
FilterPanelAPI$set_filter_state(filter)

Arguments:

filter (teal_slices)

Returns: NULL, invisibly.

Method remove_filter_state(): Remove one or more FilterState of a FilteredDataset
in the FilteredData object.

Usage:
FilterPanelAPI$remove_filter_state(filter)

Arguments:

4 FilterPanelAPI

filter (teal_slices) specifying FilterState objects to remove; teal_slices may contain
only dataname and varname, other elements are ignored

Returns: NULL, invisibly.

Method clear_filter_states(): Remove all FilterStates of the FilteredData object.

Usage:
FilterPanelAPI$clear_filter_states(datanames)

Arguments:

datanames (character) datanames to remove their FilterStates; omit to remove all FilterStates
in the FilteredData object

Returns: NULL, invisibly.

Method clone(): The objects of this class are cloneable with this method.

Usage:
FilterPanelAPI$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

library(shiny)

fd <- init_filtered_data(list(iris = iris))
fpa <- FilterPanelAPI$new(fd)

get the actual filter state --> empty named list
isolate(fpa$get_filter_state())

set a filter state
set_filter_state(
fpa,
teal_slices(
teal_slice(dataname = "iris", varname = "Species", selected = "setosa", keep_na = TRUE)

)
)

get the actual filter state --> named list with filters
isolate(fpa$get_filter_state())

remove all_filter_states
fpa$clear_filter_states()

get the actual filter state --> empty named list
isolate(fpa$get_filter_state())

filter_state_api 5

filter_state_api Managing FilteredData states

Description

[Experimental]
Set, get and remove filter states of FilteredData object.

Usage

set_filter_state(datasets, filter)

get_filter_state(datasets)

remove_filter_state(datasets, filter)

clear_filter_states(datasets, force = FALSE)

Arguments

datasets (FilteredData) object to store filter state and filtered datasets, shared across
modules
see FilteredData for details

filter (teal_slices) specify filters in place on app start-up

force (logical(1)) flag specifying whether to include anchored filter states.

Value

• set_*, remove_* and clear_filter_state return NULL invisibly

• get_filter_state returns a named teal_slices object containing a teal_slice for every
existing FilterState

See Also

teal_slice

Examples

datasets <- init_filtered_data(list(iris = iris, mtcars = mtcars))
fs <- teal_slices(
teal_slice(dataname = "iris", varname = "Species", selected = c("setosa", "versicolor")),
teal_slice(dataname = "iris", varname = "Sepal.Length", selected = c(5.1, 6.4)),
teal_slice(dataname = "mtcars", varname = "gear", selected = c(4, 5)),
teal_slice(dataname = "mtcars", varname = "carb", selected = c(4, 10))

)

set initial filter state

6 filter_state_api

set_filter_state(datasets, filter = fs)

get filter state
get_filter_state(datasets)

modify filter state
set_filter_state(

datasets,
teal_slices(
teal_slice(dataname = "iris", varname = "Species", selected = "setosa", keep_na = TRUE)

)
)

remove specific filters
remove_filter_state(

datasets,
teal_slices(

teal_slice(dataname = "iris", varname = "Species"),
teal_slice(dataname = "mtcars", varname = "gear"),
teal_slice(dataname = "mtcars", varname = "carb")

)
)

remove all states
clear_filter_states(datasets)

if (requireNamespace("MultiAssayExperiment", quietly = TRUE)) {
Requires MultiAssayExperiment from Bioconductor
data(miniACC, package = "MultiAssayExperiment")

datasets <- init_filtered_data(list(mae = miniACC))
fs <- teal_slices(

teal_slice(
dataname = "mae", varname = "years_to_birth", selected = c(30, 50),
keep_na = TRUE, keep_inf = FALSE

),
teal_slice(

dataname = "mae", varname = "vital_status", selected = "1",
keep_na = FALSE

),
teal_slice(

dataname = "mae", varname = "gender", selected = "female",
keep_na = TRUE

),
teal_slice(

dataname = "mae", varname = "ARRAY_TYPE", selected = "",
keep_na = TRUE, experiment = "RPPAArray", arg = "subset"

)
)

set initial filter state
set_filter_state(datasets, filter = fs)

get_filter_expr 7

get filter state
get_filter_state(datasets)

modify filter state
set_filter_state(

datasets,
teal_slices(

teal_slice(dataname = "mae", varname = "years_to_birth", selected = c(40, 60))
)

)

remove specific filters
remove_filter_state(

datasets,
teal_slices(

teal_slice(dataname = "mae", varname = "years_to_birth"),
teal_slice(dataname = "mae", varname = "vital_status")

)
)

remove all states
clear_filter_states(datasets)

}

get_filter_expr Gets filter expression for multiple datanames taking into account its
order.

Description

[Stable]
To be used in Show R Code button.

Usage

get_filter_expr(datasets, datanames = datasets$datanames())

Arguments

datasets (FilteredData)

datanames (character) vector of dataset names

Value

A character string containing all subset expressions.

8 teal_slice

init_filtered_data Initialize FilteredData

Description

Function creates a FilteredData object.

Usage

init_filtered_data(x, join_keys = teal.data::join_keys())

Arguments

x (named list) of datasets.

join_keys (join_keys) see teal.data::join_keys().

Value

Object of class FilteredData.

Examples

datasets <- init_filtered_data(list(iris = iris, mtcars = mtcars))
datasets

teal_slice Specify single filter

Description

Create a teal_slice object that holds complete information on filtering one variable. Check out
teal_slice-utilities functions for working with teal_slice object.

Usage

teal_slice(
dataname,
varname,
id,
expr,
choices = NULL,
selected = NULL,
keep_na = NULL,
keep_inf = NULL,
fixed = FALSE,

teal_slice 9

anchored = FALSE,
multiple = TRUE,
title = NULL,
...

)

Arguments

dataname (character(1)) name of data set

varname (character(1)) name of variable

id (character(1)) identifier of the filter. Must be specified when expr is set.
When varname is specified then id is set to "{dataname} {varname}" by de-
fault.

expr (character(1)) string providing a logical expression. Must be a valid R expres-
sion which can be evaluated in the context of the data set. For a data.frame var
== "x" is sufficient, but MultiAssayExperiment::subsetByColData requires
dataname prefix, e.g. data$var == "x".

choices (vector) optional, specifies allowed choices; When specified it should be a sub-
set of values in variable denoted by varname; Type and size depends on variable
type. Factors are coerced to character.

selected (vector) optional, specifies selected values from choices; Type and size de-
pends on variable type. Factors are coerced to character.

keep_na (logical(1)) optional flag specifying whether to keep missing values

keep_inf (logical(1)) optional flag specifying whether to keep infinite values

fixed (logical(1)) flag specifying whether to fix this filter state (forbid setting state)

anchored (logical(1)) flag specifying whether to lock this filter state (forbid removing
and inactivating)

multiple (logical(1)) optional flag specifying whether more than one value can be se-
lected; only applicable to ChoicesFilterState and LogicalFilterState

title (character(1)) optional title of the filter. Ignored when varname is set.

... additional arguments which can be handled by extensions of teal.slice classes.

Details

teal_slice object fully describes filter state and can be used to create, modify, and delete a filter
state. A teal_slice contains a number of common fields (all named arguments of teal_slice),
some of which are mandatory, but only dataname and either varname or expr must be specified,
while the others have default values.

Setting any of the other values to NULL means that those properties will not be modified (when
setting an existing state) or that they will be determined by data (when creating new a new one).
Entire object is FilterState class member and can be accessed with FilterState$get_state().

A teal_slice can come in two flavors:

10 teal_slice

1. teal_slice_var - this describes a typical interactive filter that refers to a single variable,
managed by the FilterState class. This class is created when varname is specified. The
object retains all fields specified in the call. id can be created by default and need not be
specified.

2. teal_slice_expr - this describes a filter state that refers to an expression, which can po-
tentially include multiple variables, managed by the FilterStateExpr class. This class is
created when expr is specified. dataname and anchored are retained, fixed is set to TRUE,
id becomes mandatory, title remains optional, while other arguments are disregarded.

A teal_slice can be passed FilterState/FilterStateExpr constructors to instantiate an object. It
can also be passed to FilterState$set_state to modify the state. However, once a FilterState
is created, only the mutable features can be set with a teal_slice: selected, keep_na and keep_inf.

Special consideration is given to two fields: fixed and anchored. These are always immutable
logical flags that default to FALSE. In a FilterState instantiated with fixed = TRUE the features
selected, keep_na, keep_inf cannot be changed. Note that a FilterStateExpr is always consid-
ered to have fixed = TRUE. A FilterState instantiated with anchored = TRUE cannot be removed.

Value

A teal.slice object. Depending on whether varname or expr was specified, the resulting teal_slice
also receives class teal_slice_var or teal_slice_expr, respectively.

Filters in SumarizedExperiment and MultiAssayExperiment objects

To establish a filter on a column in a data.frame, dataname and varname are sufficient. MultiAssayExperiment
objects can be filtered either on their colData slot (which contains subject information) or on their
experiments, which are stored in the experimentList slot. For filters referring to colData no ex-
tra arguments are needed. If a filter state is created for an experiment, that experiment name must be
specified in the experiment argument. Furthermore, to specify filter for an SummarizedExperiment
one must also set arg ("subset" or "select", arguments in the subset() function for SummarizedExperiment)
in order to determine whether the filter refers to the SE’s rowData or colData.

Note

Date time objects of POSIX*t classes are printed as strings after converting to UTC timezone.

See Also

teal_slices, is.teal_slice, as.teal_slice, as.list.teal_slice, print.teal_slice, format.teal_slice

Examples

x1 <- teal_slice(
dataname = "data",
id = "Female adults",
expr = "SEX == 'F' & AGE >= 18",
title = "Female adults"

)
x2 <- teal_slice(

dataname = "data",

teal_slices 11

varname = "var",
choices = c("F", "M", "U"),
selected = "F",
keep_na = TRUE,
keep_inf = TRUE,
fixed = FALSE,
anchored = FALSE,
multiple = TRUE,
id = "Gender",
extra_arg = "extra"

)

is.teal_slice(x1)
as.list(x1)
as.teal_slice(list(dataname = "a", varname = "var"))
format(x1)
format(x1, show_all = TRUE, trim_lines = FALSE)
print(x1)
print(x1, show_all = TRUE, trim_lines = FALSE)

teal_slices Complete filter specification

Description

Create teal_slices object to package multiple filters and additional settings. Check out teal_slices-utilities
functions for working with teal_slices object.

Usage

teal_slices(
...,
exclude_varnames = NULL,
include_varnames = NULL,
count_type = NULL,
allow_add = TRUE

)

Arguments

... any number of teal_slice objects.

include_varnames, exclude_varnames
(named lists of character) where list names match names of data sets and
vector elements match variable names in respective data sets; specify which
variables are allowed to be filtered; see Details.

12 teal_slices

count_type [Experimental] This is a new feature. Do kindly share your opinions on teal.slice’s
GitHub repository.
(character(1)) string specifying how observations are tallied by these filter
states. Possible options:

• "none" (default) to have counts of single FilterState to show unfiltered
number only.

• "all" to have counts of single FilterState to show number of obser-
vation in filtered and unfiltered dataset. Note, that issues were reported
when using this option with MultiAssayExperiment. Please make sure
that adding new filters doesn’t fail on target platform before deploying for
production.

allow_add (logical(1)) logical flag specifying whether the user will be able to add new
filters

Details

teal_slices() collates multiple teal_slice objects into a teal_slices object, a complete filter
specification. This is used by all classes above FilterState as well as filter_panel_api wrap-
per functions. teal_slices has attributes that modify the behavior of the filter panel, which are
resolved by different classes.

include_varnames and exclude_varnames determine which variables can have filters assigned.
The former enumerates allowed variables, the latter enumerates forbidden values. Since these could
be mutually exclusive, it is impossible to set both allowed and forbidden variables for one data set
in one teal_slices.

Value

teal_slices, which is an unnamed list of teal_slice objects.

See Also

• teal_slice for creating constituent elements of teal_slices

• teal::slices_store for robust utilities for saving and loading teal_slices in JSON format

• is.teal_slices, as.teal_slices, as.list.teal_slices, [[.teal_slices], c.teal_slices
print.teal_slices, format.teal_slices

Examples

filter_1 <- teal_slice(
dataname = "dataname1",
varname = "varname1",
choices = letters,
selected = "b",
keep_na = TRUE,
fixed = FALSE,
extra1 = "extraone"

)
filter_2 <- teal_slice(

https://github.com/insightsengineering/teal.slice/
https://github.com/insightsengineering/teal.slice/

teal_slices 13

dataname = "dataname1",
varname = "varname2",
choices = 1:10,
keep_na = TRUE,
selected = 2,
fixed = TRUE,
anchored = FALSE,
extra2 = "extratwo"

)
filter_3 <- teal_slice(

dataname = "dataname2",
varname = "varname3",
choices = 1:10 / 10,
keep_na = TRUE,
selected = 0.2,
fixed = TRUE,
anchored = FALSE,
extra1 = "extraone",
extra2 = "extratwo"

)

all_filters <- teal_slices(
filter_1,
filter_2,
filter_3,
exclude_varnames = list(

"dataname1" = "varname2"
)

)

is.teal_slices(all_filters)
all_filters[1:2]
c(all_filters[1], all_filters[2])
print(all_filters)
print(all_filters, trim_lines = FALSE)

Index

as.list.teal_slice, 10
as.list.teal_slices, 12
as.teal_slice, 10
as.teal_slices, 12

c.teal_slices, 12
clear_filter_states (filter_state_api),

5

filter_state_api, 5
FilteredData, 5
FilterPanelAPI, 2
format.teal_slice, 10
format.teal_slices, 12

get_filter_expr, 7
get_filter_state (filter_state_api), 5

init_filtered_data, 8
is.teal_slice, 10
is.teal_slices, 12

print.teal_slice, 10
print.teal_slices, 12

remove_filter_state (filter_state_api),
5

set_filter_state (filter_state_api), 5
subset(), 10

teal.data::join_keys(), 8
teal_slice, 5, 8, 12
teal_slices, 10, 11

14

	FilterPanelAPI
	filter_state_api
	get_filter_expr
	init_filtered_data
	teal_slice
	teal_slices
	Index

