
Package ‘trace’
March 14, 2025

Title Tandem Repeat Analysis by Capillary Electrophoresis

Version 0.6.0

Description A pipeline for short tandem repeat instability analysis from fragment analysis data. In-
puts of fsa files or peak tables, and a user supplied metadata data-frame. The package identi-
fies ladders, calls peaks, identifies the modal peaks, calls repeats, then calculates repeat instabil-
ity metrics (e.g. expansion index from Lee et al. (2010) <doi:10.1186/1752-0509-4-29>).

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

Suggests dplyr, ggplot2, knitr, rmarkdown, shinytest2, testthat (>=
3.0.0)

Config/testthat/edition 3

Imports graphics, grDevices, lme4, methods, mgcv, plotly, pracma,
seqinr, shiny, stats, utils

VignetteBuilder knitr

Depends R (>= 2.10)

LazyData true

URL https://zachariahmclean.github.io/trace/

NeedsCompilation no

Author Zachariah McLean [aut, cre, cph]
(<https://orcid.org/0000-0002-0968-0538>),

Kevin Correia [aut],
Andrew Jiang [ctb]

Maintainer Zachariah McLean <zachariah.louis.mclean@gmail.com>

Repository CRAN

Date/Publication 2025-03-14 09:00:02 UTC

1

https://doi.org/10.1186/1752-0509-4-29
https://zachariahmclean.github.io/trace/
https://orcid.org/0000-0002-0968-0538

2 add_metadata

Contents

add_metadata . 2
assign_index_peaks . 5
calculate_instability_metrics . 7
call_repeats . 10
cell_line_fsa_list . 14
example_data . 15
example_data_repeat_table . 16
extract_alleles . 16
extract_fragments . 17
extract_ladder_summary . 18
extract_repeat_correction_summary . 19
extract_trace_table . 20
find_alleles . 21
find_fragments . 22
find_ladders . 24
fix_ladders_interactive . 26
fix_ladders_manual . 27
fragments . 29
fragments_repeats . 30
fragments_trace . 32
generate_trace_template . 34
metadata . 35
peak_table_to_fragments . 35
plot_batch_correction_samples . 37
plot_data_channels . 38
plot_fragments . 39
plot_ladders . 40
plot_repeat_correction_model . 41
plot_traces . 42
read_fsa . 44
remove_fragments . 44
repeat_table_to_repeats . 45

Index 47

add_metadata Add Metadata to Fragments List

Description

This function adds metadata information to a list of fragments.

add_metadata 3

Usage

add_metadata(
fragments_list,
metadata_data.frame,
unique_id = "unique_id",
metrics_group_id = "metrics_group_id",
metrics_baseline_control = "metrics_baseline_control",
batch_run_id = "batch_run_id",
batch_sample_id = "batch_sample_id",
batch_sample_modal_repeat = "batch_sample_modal_repeat"

)

Arguments

fragments_list A list of fragment objects to which metadata will be added.
metadata_data.frame

A data frame containing the metadata information.

unique_id (required) A character string indicating the column name for unique sample
identifiers in the metadata.

metrics_group_id

(optional) A character string indicating the column name for sample group iden-
tifiers in the metadata. This is for the logical grouping of samples for metrics
calculations (see assign_index_peaks()). To skip, provide NA.

metrics_baseline_control

(optional) A character string indicating the column name for baseline control
indicators in the metadata. This is to identify the baseline control samples for
grouping of samples for metrics calculations (see assign_index_peaks()). To
skip, provide NA.

batch_run_id (optional) A character string indicating the column name for the batch run iden-
tifiers in the metadata. This is for either batch correction or repeat correction in
call_repeats(). To skip, provide NA.

batch_sample_id

(optional) A character string indicating the column name for an id of the size
standard. For example, a sample code. This is for either batch correction or
repeat correction in call_repeats(). To skip, provide NA.

batch_sample_modal_repeat

(optional) A character string indicating column name for the validated modal
repeat length of size standard sample. This is for either repeat correction in
call_repeats(). To skip, provide NA.

Details

This function adds specified metadata attributes to each fragment in the list. It matches the unique
sample identifiers from the fragments list with those in the metadata data frame. To skip any of the
optional columns, make parameter NA.

There are two key things metadata are required for. First is the grouping of samples (metrics_group_id
& metrics_baseline_control) for the calculation of metrics and is used in assign_index_peaks().

4 add_metadata

For example, specifying a sample where the modal allele is the inherited repeat length (eg a mouse
tail sample) or sample(s) at the start of a time-course experiment. This is indicated with a TRUE
in the metrics_baseline_control column of the metadata. Samples are then grouped together with
the metrics_group_id column of the metadata. Multiple samples can be metrics_baseline_control,
which can be helpful for the average repeat gain metric to have a more accurate representation of
the average repeat at the start of the experiment.

The second key thing metadata can be used for is corrections in call_repeats(). There are two
main correction approaches in call_repeats() that are somewhat related: either ’batch’ or ’re-
peat’. Batch correction is relatively simple and just requires you to link samples across batches to
correct batch-batch variation in repeat sizes. However, even though the repeat size that is return
will be precise, it will not be accurate and underestimates the real repeat length. By contrast, re-
peat correction can be used to accurately call repeat lengths (which also corrects the batch effects).
However, the repeat correction will only be as good as your sample used to call the repeat length so
this is a challenging and advanced feature. You need to use a sample that reliably returns the same
peak as the modal peak, or you need to be willing to understand the shape of the distribution and
manually validate the repeat length of each batch_sample_id for each run.

Batch correction uses common sample(s) across fragment analysis runs to correct systematic batch
effects that occur with repeat-containing amplicons in capillary electrophoresis. There are slight
fluctuations of size across runs for amplicons containing repeats that result in systematic differences
around 1-3 base pairs. So, if samples are to be analyzed for different runs, the absolute bp size is not
comparable unless this batch effect is corrected. This is only relevant when the absolute size of a
amplicons are compared for grouping metrics as described above (otherwise instability metrics are
all relative and it doesn’t matter that there’s systematic batch effects across runs) or when plotting
traces from different runs. This correction can be achieved by running a couple of samples in every
fragment analysis run, or having a single run that takes a couple of samples from every run together,
thereby linking them. These samples are then indicated in the metadata with batch_run_id (to group
samples by fragment analysis run) and batch_sample_id (to enable linking samples across batches).

Finally, samples with known and validated repeat size can be used to accurately call the repeat
length (and therefore also correct batch effects) in call_repeats(). Similar to batch correction,
batch_run_id (to group samples by fragment analysis run) and batch_sample_id (to enable linking
samples across batches) are used, but importantly batch_sample_modal_repeat is also set. The
batch_sample_modal_repeat is the validated repeat length of the modal repeat of the sample. This
validated repeat length is then used to call the repeat length of the modal repeat for each sample
(by each batch_run_id). Importantly, this correction requires you to know with confidence the
repeat length of the modal peak of the sample. Therefore it’s important that the sample used for
repeat correction has a clear and prominent modal peak. If the repeat length is very long, it’s
common for the modal peak of a sample to change so if you use this feature you’re going to have
to understand the shape of the distribution of your sample and double check that the correct peak
has been called as the modal peak after you have used find_alleles(). If a different peak is
selected as the modal peak than usual, you need to go back to the metadata and adjust the repeat
size of the size standard (For example, your size standard sample has been validated to have 120
repeats. You run find_alleles() and look at the distribution of peaks and notice that the peak
one repeat unit higher is the modal peak this time. Therefore, you’re going to need to set the
batch_sample_modal_repeat as 121 in the metadata just for that batch_run_id. In the other runs you
would keep the batch_sample_modal_repeat as 120.).

assign_index_peaks 5

Value

This function modifies list of fragments objects in place with metadata added.

Examples

gm_raw <- trace::example_data
metadata <- trace::metadata

test_fragments <- peak_table_to_fragments(gm_raw,
data_format = "genemapper5",
dye_channel = "B",
min_size_bp = 300

)

add_metadata(
fragments_list = test_fragments,
metadata_data.frame = metadata,
unique_id = "unique_id",
metrics_group_id = "metrics_group_id",
metrics_baseline_control = "metrics_baseline_control",
batch_run_id = "batch_run_id",
batch_sample_id = "batch_sample_id",
batch_sample_modal_repeat = "batch_sample_modal_repeat"

)

skip unwanted metadata by using NA

add_metadata(
fragments_list = test_fragments,
metadata_data.frame = metadata,
unique_id = "unique_id",
metrics_group_id = "metrics_group_id",
metrics_baseline_control = "metrics_baseline_control",
batch_run_id = NA,
batch_sample_id = NA,
batch_sample_modal_repeat = NA

)

assign_index_peaks Assign index peaks

Description

Assign index peaks in preparation for calculation of instability metrics

6 assign_index_peaks

Usage

assign_index_peaks(
fragments_list,
grouped = FALSE,
index_override_dataframe = NULL

)

Arguments

fragments_list A list of "fragments_repeats" class objects representing fragment data.

grouped Logical value indicating whether samples should be grouped to share a common
index peak. FALSE will assign the sample’s own modal allele as the index peak.
TRUE will use metadata to assign the index peak based on the modal peak of
another sample (see below for more details).

index_override_dataframe

A data.frame to manually set index peaks. Column 1: unique sample IDs, Col-
umn 2: desired index peaks (the order of the columns is important since the
information is pulled by column position rather than column name). Closest
peak in each sample is selected so the number needs to just be approximate.

Details

A key part of instability metrics is the index peak. This is the repeat length used as the reference
peak for relative instability metrics calculations, like expansion index. This is usually the the inher-
ited repeat length of a mouse, or the modal repeat length for the cell line at a starting time point.

If grouped is set to TRUE, this function groups the samples by their metrics_group_id and uses
the samples set as metrics_baseline_control to set the index peak. Use add_metadata() to set
these variables. This is useful for cases like inferring repeat size of inherited alleles from mouse tail
data. If the samples that are going to be used to assign index peak are from different fragment anal-
ysis runs, use correction = "batch" in call_repeats() to make sure the systematic differences
between runs are corrected and the correct index peak is assigned. If there are multiple samples used
as baseline control, the median value will be used to assign index peak to corresponding samples.

For mice, if just a few samples have the inherited repeat signal shorter than the expanded population,
you could not worry about this and instead use the index_override_dataframe. This can be used
to manually override these assigned index repeat values (irrespective of whether grouped is TRUE
or FALSE).

As a final option, the index peak could be manually assigned directly to a fragments_repeats class
using the internal setter function fragments_repeats$set_index_peak().

Value

This function modifies list of fragments_repeats objects in place with index_repeat and index_signal
added.

Examples

calculate_instability_metrics 7

fsa_list <- lapply(cell_line_fsa_list, function(x) x$clone())

find_ladders(fsa_list, show_progress_bar = FALSE)

fragments_list <- find_fragments(fsa_list,
min_bp_size = 300

)

find_alleles(
fragments_list

)
call_repeats(

fragments_list
)

add_metadata(
fragments_list,
metadata_data.frame = trace::metadata

)

assign_index_peaks(
fragments_list,
grouped = TRUE

)

plot_traces(fragments_list[1], xlim = c(100,150))

calculate_instability_metrics

Calculate Repeat Instability Metrics

Description

This function computes instability metrics from a list of fragments_repeats data objects.

Usage

calculate_instability_metrics(
fragments_list,
peak_threshold = 0.05,
window_around_index_peak = c(NA, NA),
percentile_range = c(0.5, 0.75, 0.9, 0.95),
repeat_range = c(2, 5, 10, 20)

)

8 calculate_instability_metrics

Arguments

fragments_list A list of "fragments_repeats" objects representing fragment data.

peak_threshold The threshold for peak signals to be considered in the calculations, relative to
the modal peak signal of the expanded allele.

window_around_index_peak

A numeric vector (length = 2) defining the range around the index peak. First
number specifies repeats before the index peak, second after. For example,
c(-5, 40) around an index peak of 100 would analyze repeats 95 to 140. The
sign of the numbers does not matter (The absolute value is found).

percentile_range

A numeric vector of percentiles to compute (e.g., c(0.5, 0.75, 0.9, 0.95)).

repeat_range A numeric vector specifying ranges of repeats for the inverse quantile computa-
tion.

Details

Each of the columns in the supplied dataframe are explained below:

General Information:
• unique_id: A unique identifier for the sample (usually the fsa file name).

Quality Control:
• QC_comments: Quality control comments.
• QC_modal_peak_signal: Quality control status based on the modal peak signal (Low < 500,

very low < 100).
• QC_peak_number: Quality control status based on the number of peaks (Low < 20, very low

< 10).
• QC_off_scale: Quality control comments for off-scale peaks. Potential peaks that are off-

scale are given. However, a caveat is that this could be from any of the channels (ie it could
be from the ladder channel but is the same scan as the given repeat).

General sample metrics:
• modal_peak_repeat: The repeat size of the modal peak.
• modal_peak_signal: The signal of the modal peak.
• index_peak_repeat: The repeat size of the index peak (the repeat value closest to the modal

peak of the index sample).
• index_peak_signal: The signal of the index peak.
• index_weighted_mean_repeat: The weighted mean repeat size (weighted on the signal of

the peaks) of the index sample.
• n_peaks_total: The total number of peaks in the repeat table.
• n_peaks_analysis_subset: The number of peaks in the analysis subset.
• n_peaks_analysis_subset_expansions: The number of expansion peaks in the analysis

subset.
• min_repeat: The minimum repeat size in the analysis subset.
• max_repeat: The maximum repeat size in the analysis subset.

calculate_instability_metrics 9

• mean_repeat: The mean repeat size in the analysis subset.
• weighted_mean_repeat: The weighted mean repeat size (weight on peak signal) in the

analysis subset.
• median_repeat: The median repeat size in the analysis subset.
• max_signal: The maximum peak signal in the analysis subset.
• max_delta_neg: The maximum negative delta to the index peak.
• max_delta_pos: The maximum positive delta to the index peak.
• skewness: The skewness of the repeat size distribution.
• kurtosis: The kurtosis of the repeat size distribution.

Repeat instability metrics:
• modal_repeat_change: The difference between the modal repeat and the index repeat.
• average_repeat_change: The weighted mean of the sample (weighted by peak signal) sub-

tracted by the weighted mean repeat of the index sample(s).
• instability_index_change: The instability index of the sample subtracted by the insta-

bility index of the index sample(s). This will be very similar to the average_repeat_change,
with the key difference of instability_index_change being that it is an internally calculated
metric for each sample, and therefore the random slight fluctuations of bp size (or system-
atic if across plates for example) will be removed. However, it requires the index peak to be
correctly set for each sample, and if set incorrectly, can produce large arbitrary differences.

• instability_index: The instability index based on peak signal and distance to the index
peak. (See Lee et al., 2010, doi:10.1186/17520509429).

• instability_index_abs: The absolute instability index. The absolute value is taken for the
"Change from the main allele".

• expansion_index: The instability index for expansion peaks only.
• contraction_index: The instability index for contraction peaks only.
• expansion_ratio: The ratio of expansion peaks’ signals to the main peak signal. Also

known as "peak proportional sum" (See Genetic Modifiers of Huntington’s Disease (GeM-
HD) Consortium, 2019, doi:10.1016/j.cell.2019.06.036).

• contraction_ratio: The ratio of contraction peaks’ signals to the main peak signal.
• expansion_percentile_*: The repeat size at specified percentiles of the cumulative distri-

bution of expansion peaks.
• expansion_percentile_for_repeat_*: The percentile rank of specified repeat sizes in the

distribution of expansion peaks.

Value

A data.frame with calculated instability metrics for each sample.

Examples

gm_raw <- trace::example_data
metadata <- trace::metadata

test_fragments <- peak_table_to_fragments(gm_raw,
data_format = "genemapper5",
dye_channel = "B",

https://doi.org/10.1186/1752-0509-4-29
https://doi.org/10.1016/j.cell.2019.06.036

10 call_repeats

min_size_bp = 400
)

add_metadata(
fragments_list = test_fragments,
metadata_data.frame = metadata

)

find_alleles(
fragments_list = test_fragments,
peak_region_size_gap_threshold = 6,
peak_region_signal_threshold_multiplier = 1

)

call_repeats(
fragments_list = test_fragments,
assay_size_without_repeat = 87,
repeat_size = 3

)

assign_index_peaks(
fragments_list = test_fragments,
grouped = TRUE

)

grouped metrics
uses t=0 samples as indicated in metadata
test_metrics_grouped <- calculate_instability_metrics(

fragments_list = test_fragments,
peak_threshold = 0.05,
window_around_index_peak = c(-40, 40),
percentile_range = c(0.5, 0.75, 0.9, 0.95),
repeat_range = c(2, 5, 10, 20)

)

call_repeats Call Repeats for Fragments

Description

This function calls the repeat lengths for a list of fragments.

Usage

call_repeats(
fragments_list,
assay_size_without_repeat = 87,
repeat_size = 3,

call_repeats 11

correction = "none",
force_whole_repeat_units = FALSE,
force_repeat_pattern = FALSE,
force_repeat_pattern_size_period = repeat_size * 0.93,
force_repeat_pattern_size_window = 0.5

)

Arguments

fragments_list A list of fragments_repeats objects containing fragment data.
assay_size_without_repeat

An integer specifying the assay size without repeat for repeat calling. This is the
length of the sequence flanking the repeat in the PCR product.

repeat_size An integer specifying the repeat size for repeat calling. Default is 3.

correction A character vector of either "batch" to carry out a batch correction from common
samples across runs (known repeat length not required), or "repeat" to use sam-
ples with validated modal repeat lengths to correct the repeat length. Requires
metadata to be added (see add_metadata()) with both "batch" and "repeat"
requiring "batch_run_id", "batch" requiring ("batch_sample_id") and "re-
peat" requiring "batch_sample_modal_repeat" (but also benefits from having
"batch_sample_id").

force_whole_repeat_units

A logical value specifying if the peaks should be forced to be whole repeat
units apart. Usually the peaks are slightly under the whole repeat unit if left
unchanged.

force_repeat_pattern

A logical value specifying if the peaks should be re called to fit the specific
repeat unit pattern. This requires trace information so you must have started
with fsa files.

force_repeat_pattern_size_period

A numeric value to set the peak periodicity bp size. In fragment analysis, the
peaks are usually slightly below the actual repeat unit size, so you can use this
value to fine tune what the periodicity should be.

force_repeat_pattern_size_window

A numeric value for the size window when assigning the peak. The algorithm
jumps to the predicted scan for the next peak. This value opens a window of the
given base pair size neighboring scans to pick the tallest in.

Details

This function has a lot of different options features for determining the repeat length of your sam-
ples. This includes i) an option to force the peaks to be whole repeat units apart, ii) corrections to
correct batch effects or accurately call repeat length by comparing to samples of known length, and
iii) algorithms or re-calling the peaks to remove any contaminating peaks or shoulder-peaks.

———— correction ————

There are two main correction approaches that are somewhat related: either ’batch’ or ’repeat’.
Batch correction is relatively simple and just requires you to link samples across batches to correct

12 call_repeats

batch-batch variation in repeat sizes. However, even though the repeat size that is return will be
precise, it will not be accurate and underestimates the real repeat length. By contrast, repeat correc-
tion can be used to accurately call repeat lengths (which also corrects the batch effects). However,
the repeat correction will only be as good as your sample used to call the repeat length so this is a
challenging and advanced feature. You need to use a sample that reliably returns the same peak as
the modal peak, or you need to be willing to understand the shape of the distribution and manually
validate the repeat length of each batch_sample_id for each run.

• Batch correction uses common sample(s) across fragment analysis runs to correct systematic
batch effects that occur with repeat-containing amplicons in capillary electrophoresis. There
are slight fluctuations of size across runs for amplicons containing repeats that result in sys-
tematic differences around 1-3 base pairs. So, if samples are to be analyzed for different runs,
the absolute bp size is not comparable unless this batch effect is corrected. This is only rel-
evant when the absolute size of a amplicons are compared for grouping metrics as described
above (otherwise instability metrics are all relative and it doesn’t matter that there’s systematic
batch effects across runs) or when plotting traces from different runs. This correction can be
achieved by running a couple of samples in every fragment analysis run, or having a single run
that takes a couple of samples from every run together, thereby linking them. These samples
are then indicated in the metadata with batch_run_id (to group samples by fragment analysis
run) and batch_sample_id (to enable linking samples across batches) (see add_metadata()).
Use plot_batch_correction_samples() to plot the samples before and after correction to
make sure that is has worked as expected.

• Samples with known and validated repeat size can be used to accurately call the repeat length
(and therefore also correct batch effects). Similar to batch correction, batch_run_id (to group
samples by fragment analysis run) and batch_sample_id (to enable linking samples across
batches) are used, but importantly batch_sample_modal_repeat is also set (see add_metadata()).
The batch_sample_modal_repeat is the validated repeat length of the modal repeat of the sam-
ple. This validated repeat length is then used to call the repeat length of the modal repeat for
each sample (by each batch_run_id). Importantly, this correction requires you to know with
confidence the repeat length of the modal peak of the sample. Therefore it’s important that
the sample used for repeat correction has a clear and prominent modal peak. If the repeat
length is very long, it’s common for the modal peak of a sample to change so if you use
this feature you’re going to have to understand the shape of the distribution of your sample
and double check that the correct peak has been called as the modal peak after you have
used find_alleles(). If a different peak is selected as the modal peak than usual, you
need to go back to the metadata and adjust the repeat size of the size standard (For example,
your size standard sample has been validated to have 120 repeats. You run find_alleles()
and look at the distribution of peaks and notice that the peak one repeat unit higher is the
modal peak this time. Therefore, you’re going to need to set the batch_sample_modal_repeat
as 121 in the metadata just for that batch_run_id. In the other runs you would keep the
batch_sample_modal_repeat as 120.). For repeat correction, there are several functions to
help visualize and summarize the correction:

– Use plot_batch_correction_samples() to visualize the same sample across different
batches. This can be helpful to make sure that the correction has worked the same across
different runs.

– Use plot_repeat_correction_model() to visualize the linear model use to correct re-
peat length for each batch_run_id. This can be helpful to make sure the supplied repeat
length of different samples are lining up within each run.

call_repeats 13

– Generate a summary table of the predicted repeat length for each sample and the aver-
age residuals using extract_repeat_correction_summary(). This can be helpful to
pinpoint the sample(s) that need adjusting.

———— force_whole_repeat_units ————

The force_whole_repeat_units option aims to correct for the systematic underestimation in frag-
ment sizes that occurs in capillary electrophoresis. It is independent to the algorithms described
above and can be used in conjunction. It modifies repeat lengths in a way that helps align peaks
with the underlying repeat pattern, making the repeat lengths whole units (rather than ~0.9 repeats).
The calculated repeat lengths start from the main peak’s repeat length and increases in increments
of the specified repeat_size in either direction. This option basically enables you to get exactly
the same result as expansion_index values calculated from data from Genemapper.

———— force_repeat_pattern ————

This parameter re-calls the peaks based on specified (force_repeat_pattern_size_period) pe-
riodicity of the peaks. The main application of this algorithm is to solve the issue of contaminating
peaks in the expected regular pattern of peaks. We can use the periodicity to jump between peaks
and crack open a window (force_repeat_pattern_size_window) to then pick out the tallest scan
in the window.

Value

This function modifies list of fragments objects in place with repeats added.

See Also

find_alleles(), add_metadata(), plot_batch_correction_samples(), plot_repeat_correction_model(),
extract_repeat_correction_summary()

Examples

fsa_list <- lapply(cell_line_fsa_list[c(16:19)], function(x) x$clone())

find_ladders(fsa_list, show_progress_bar = FALSE)

fragments_list <- find_fragments(
fsa_list,
min_bp_size = 300

)

find_alleles(fragments_list)

add_metadata(fragments_list,
metadata[c(16:19),]

)

Simple conversion from bp size to repeat size
call_repeats(

fragments_list,
assay_size_without_repeat = 87,
repeat_size = 3

14 cell_line_fsa_list

)

plot_traces(fragments_list[1], xlim = c(120, 170))

Use force_whole_repeat_units algorithm to make sure called
repeats are the exact number of bp apart

call_repeats(
fragments_list,
force_whole_repeat_units = TRUE,
assay_size_without_repeat = 87,
repeat_size = 3

)

plot_traces(fragments_list[1], xlim = c(120, 170))

apply batch correction
call_repeats(

fragments_list,
correction = "batch",
assay_size_without_repeat = 87,
repeat_size = 3

)

plot_traces(fragments_list[1], xlim = c(120, 170))

apply repeat correction
call_repeats(

fragments_list,
correction = "repeat",
assay_size_without_repeat = 87,
repeat_size = 3

)

plot_traces(fragments_list[1], xlim = c(120, 170))

#ensure only periodic peaks are called
call_repeats(

fragments_list,
force_repeat_pattern = TRUE,
force_repeat_pattern_size_period = 2.75,
assay_size_without_repeat = 87,
repeat_size = 3

)

plot_traces(fragments_list[1], xlim = c(120, 170))

cell_line_fsa_list A list of fsa files

example_data 15

Description

A list of fsa files read into R using trace::read_fsa() that for example data

Usage

cell_line_fsa_list

Format

cell_line_fsa_list:
A list with 92 elements, each one being the contents of an fsa file:

Source

doi:10.1038/s41467024474850

example_data example_data

Description

example_data is genemapper output peak table

Usage

example_data

Format

example_data:
A genemapper output dataframe

Source

doi:10.1038/s41467024474850

https://doi.org/10.1038/s41467-024-47485-0
https://doi.org/10.1038/s41467-024-47485-0

16 extract_alleles

example_data_repeat_table

example_data_repeat_table

Description

example_data_repeat_table is data with repeats called

Usage

example_data_repeat_table

Format

example_data_repeat_table:
A genemapper output dataframe

Source

doi:10.1038/s41467024474850

extract_alleles Extract Modal Peaks

Description

Extracts modal peak information from each sample in a list of fragments.

Usage

extract_alleles(fragments_list)

Arguments

fragments_list A list of fragments_repeats objects containing fragment data.

Value

A dataframe containing modal peak information for each sample

https://doi.org/10.1038/s41467-024-47485-0

extract_fragments 17

Examples

gm_raw <- trace::example_data

test_fragments <- peak_table_to_fragments(gm_raw,
data_format = "genemapper5",
dye_channel = "B",
min_size_bp = 400

)

find_alleles(
fragments_list = test_fragments,
peak_region_size_gap_threshold = 6,
peak_region_signal_threshold_multiplier = 1

)

extract_alleles(test_fragments)

extract_fragments Extract All Fragments

Description

Extracts peak data from each sample in a list of fragments.

Usage

extract_fragments(fragments_list)

Arguments

fragments_list A list of fragments_repeats objects containing fragment data.

Value

A dataframe containing peak data for each sample

Examples

gm_raw <- trace::example_data
metadata <- trace::metadata

test_fragments <- peak_table_to_fragments(gm_raw,
data_format = "genemapper5",
dye_channel = "B",
min_size_bp = 400

)

add_metadata(

18 extract_ladder_summary

fragments_list = test_fragments,
metadata_data.frame = metadata

)

find_alleles(
fragments_list = test_fragments

)

call_repeats(
fragments_list = test_fragments,
assay_size_without_repeat = 87,
repeat_size = 3

)

extract_alleles(test_fragments)

extract_ladder_summary

Extract ladder summary

Description

Extract a table summarizing the ladder models

Usage

extract_ladder_summary(fragments_trace_list, sort = FALSE)

Arguments

fragments_trace_list

a list of fragments trace objects

sort A logical statement for if the samples should be ordered by average ladder R-
squared.

Details

The ladder peaks are assigned using a custom algorithm that maximizes the fit of detected ladder
peaks and given base-pair sizes. This function summarizes the R-squared values of these individual
correlations.

Value

a dataframe of ladder quality information

extract_repeat_correction_summary 19

Examples

fsa_list <- lapply(cell_line_fsa_list, function(x) x$clone())

find_ladders(fsa_list, show_progress_bar = FALSE)

extract_ladder_summary(fsa_list, sort = TRUE)

extract_repeat_correction_summary

Extract repeat correction summary

Description

Extracts a table summarizing the model used to correct repeat length

Usage

extract_repeat_correction_summary(fragments_list)

Arguments

fragments_list A list of fragments_repeats class objects obtained from the call_repeats()
function when the correction = "repeat" parameter is used.

Details

For each of the samples used for repeat correction, this table pulls out the modal repeat length called
by the model (allele_repeat), how far that sample is on average from the linear model in repeat
units by finding the average residuals (avg_residual), and the absolute value of the avg_residual
(abs_avg_residual)

Value

A data.frame

Examples

fsa_list <- lapply(cell_line_fsa_list[16:19], function(x) x$clone())

find_ladders(fsa_list, show_progress_bar = FALSE)

fragments_list <- find_fragments(fsa_list, min_bp_size = 300)

test_alleles <- find_alleles(
fragments_list

)

add_metadata(

20 extract_trace_table

fragments_list,
metadata

)

call_repeats(
fragments_list = fragments_list,
correction = "repeat"

)

finally extract repeat correction summary
extract_repeat_correction_summary(fragments_list)

extract_trace_table Extract traces

Description

Extract the raw trace from a list of fragments objects

Usage

extract_trace_table(fragments_trace_list)

Arguments

fragments_trace_list

a list of fragments objects

Value

A dataframe of the raw trace data. Each row representing a single scan.

Examples

fsa_list <- lapply(cell_line_fsa_list[1], function(x) x$clone())

find_ladders(fsa_list, show_progress_bar = FALSE)

extracted_traces <- extract_trace_table(fsa_list)

find_alleles 21

find_alleles Find Alleles

Description

This function identifies main allele within each fragment object.

Usage

find_alleles(
fragments_list,
number_of_alleles = 1,
peak_region_size_gap_threshold = 6,
peak_region_signal_threshold_multiplier = 1

)

Arguments

fragments_list A list of fragment objects containing peak data.
number_of_alleles

Number of alleles to be returned for each fragment. Must either be 1 or 2. Being
able to identify two alleles is for cases when you are analyze different human
samples with a normal and expanded alleles and you can’t do the preferred op-
tion of simply ignoring the normal allele in find_fragments() (eg setting the
min_bp_size above the normal allele bp size).

peak_region_size_gap_threshold

Gap threshold for identifying peak regions. The peak_region_size_gap_threshold
is a parameter used to determine the maximum allowed gap between peak sizes
within a peak region. Adjusting this parameter affects the size range of peaks
that can be grouped together in a region. A smaller value makes it more strin-
gent, while a larger value groups peaks with greater size differences, leading to
broader peak regions that may encompass wider size ranges.

peak_region_signal_threshold_multiplier

Multiplier for the peak signal threshold. The peak_region_signal_threshold_multiplier
parameter allows adjusting the threshold for identifying peak regions based on
peak signals. Increasing this multiplier value will result in higher thresholds,
making it more stringent to consider peaks as part of a peak region. Conversely,
reducing the multiplier value will make the criteria less strict, potentially lead-
ing to more peaks being grouped into peak regions. It’s important to note that
this parameter’s optimal value depends on the characteristics of the data and the
specific analysis goals. Choosing an appropriate value for this parameter can
help in accurately identifying meaningful peak regions in the data.

Details

This function finds the main alleles for each fragment in the list by identifying clusters of peaks
("peak regions") with the highest signal intensities. This is based on the idea that PCR amplicons

22 find_fragments

of repeats have clusters of peaks (from somatic mosaicism and PCR artifacts) that help differentiate
the main allele of interest from capillary electrophoresis noise/contamination.

If number_of_alleles = 1, the tallest of peaks will be selected as the allele. This means that if
your sample has multiple alleles, you have two options i) make sure that your data is subsetted
to only include the allele of interest (using min_bp_size in find_fragments() to make sure that
the smaller allele is excluded), or ii) setting number_of_alleles = 2, which will pick the two tallest
peaks in their respective peak regions and set the main allele as the larger repeat size, and allele_2
as the shorter repeat size. We recommend the subsetting approach since that is far simpler and less
likely to fail, and the second option only if you’re doing an experiment analysis a large number of
human samples where both the normal and expanded allele repeat lengths vary, which makes it very
difficult to find a common bp size that excludes the normal allele.

The parameters peak_region_signal_threshold_multiplier and peak_region_size_gap_threshold
will only need to be adjusted in rare cases if peaks are not being found for some reason. They
influence the criteria for identifying peak regions. peak_region_signal_threshold_multiplier is mul-
tiplied to the mean height of all the peaks to create a hight threshold for inclusion into the peak
region, so most of the time it’s already a very low value and probably only needs to be changed if
you have very few peaks. peak_region_size_gap_threshold is the distance between the peaks, either
bp size, or repeats if repeats have already been called.

Value

This function modifies list of fragments_repeats objects in place with alleles added.

Examples

fsa_list <- lapply(cell_line_fsa_list[1], function(x) x$clone())

find_ladders(fsa_list, show_progress_bar = FALSE)

fragments_list <- find_fragments(fsa_list,
min_bp_size = 300

)

find_alleles(
fragments_list,
peak_region_size_gap_threshold = 6,
peak_region_signal_threshold_multiplier = 1

)

find_fragments Find fragment peaks

Description

Find fragment peaks in continuous trace data and convert to fragments_repeats class.

find_fragments 23

Usage

find_fragments(
fragments_trace_list,
smoothing_window = 21,
minimum_peak_signal = 20,
min_bp_size = 100,
max_bp_size = 1000,
...

)

Arguments

fragments_trace_list

A list of fragments_trace objects containing fragment data.
smoothing_window

numeric: signal smoothing window size passed to pracma::savgol()
minimum_peak_signal

numeric: minimum signal of the raw trace. To have no minimum signal set as
"-Inf".

min_bp_size numeric: minimum bp size of peaks to consider

max_bp_size numeric: maximum bp size of peaks to consider

... pass additional arguments to pracma::findpeaks(), or change the default argu-
ments we set. minimum_peak_signal above is passed to pracma::findpeaks()
as minpeakheight, and peakpat has been set to ’[+]{6,}[0]*[-]{6,}’ so that peaks
with flat tops are still called, see https://stackoverflow.com/questions/47914035/identify-
sustained-peaks-using-pracmafindpeaks

Details

find_fragments() takes in a list of fragments_trace objects and returns a list of new fragments_repeats
objects.

This function is basically a wrapper around pracma::findpeaks. As mentioned above, the default
arguments arguments of pracma::findpeaks can be changed by passing them to find_fragments with
... .

If too many and inappropriate peaks are being called, this may also be solved with the different
repeat calling algorithms in call_repeats().

Value

a list of fragments_repeats objects.

Examples

fsa_list <- lapply(cell_line_fsa_list[1], function(x) x$clone())

find_ladders(fsa_list)

24 find_ladders

fragments_list <- find_fragments(fsa_list,
min_bp_size = 300

)

Manually inspect the ladders
plot_traces(fragments_list,

show_peaks = TRUE, n_facet_col = 1,
xlim = c(400, 550), ylim = c(0, 1200)

)

find_ladders Ladder and bp sizing

Description

Find the ladder peaks in and use that to call bp size

Usage

find_ladders(
fragments_trace,
ladder_channel = "DATA.105",
signal_channel = "DATA.1",
ladder_sizes = c(50, 75, 100, 139, 150, 160, 200, 250, 300, 340, 350, 400, 450, 490,

500),
ladder_start_scan = NULL,
minimum_peak_signal = NULL,
scan_subset = NULL,
ladder_selection_window = 5,
max_combinations = 2500000,
warning_rsq_threshold = 0.998,
show_progress_bar = TRUE

)

Arguments

fragments_trace

list from ’read_fsa’ function

ladder_channel string: which channel in the fsa file contains the ladder signal

signal_channel string: which channel in the fsa file contains the data signal

ladder_sizes numeric vector: bp sizes of ladder used in fragment analysis. defaults to GeneS-
can™ 500 LIZ™

ladder_start_scan

numeric: indicate the scan number to start looking for ladder peaks. Usually this
can be automatically found (when set to NULL) since there’s a big spike right
at the start. However, if your ladder peaks are taller than the big spike, you will
need to set this starting scan number manually.

find_ladders 25

minimum_peak_signal

numeric: minimum signal of peak from smoothed signal.

scan_subset numeric vector (length 2): filter the ladder and data signal between the selected
scans (eg scan_subset = c(3000, 5000)). to pracma::savgol().

ladder_selection_window

numeric: in the ladder assigning algorithm, the we iterate through the scans in
blocks and test their linear fit (We can assume that the ladder is linear over a
short distance) This value defines how large that block of peaks should be.

max_combinations

numeric: what is the maximum number of ladder combinations that should be
tested

warning_rsq_threshold

The value for which this function will warn you when parts of the ladder have
R-squared values below the specified threshold.

show_progress_bar

show progress bar

Details

This function takes a list of fragments_trace files (the output from read_fsa) and identifies the lad-
ders in the ladder channel which is used to call the bp size. The output is a list of fragments_traces.

In this package, base pair (bp) sizes are assigned using a generalized additive model (GAM) with
cubic regression splines. The model is fit to known ladder fragment sizes and their corresponding
scan positions, capturing the relationship between scan number and bp size. Once trained, the model
predicts bp sizes for all scans by interpolating between the known ladder points. This approach
provides a flexible and accurate assignment of bp sizes, accommodating the slightly non-linear
relationship.

Use plot_data_channels() to plot the raw data on the fsa file to identify which channel the ladder
and data are in.

The ladder peaks are assigned from largest to smallest. I would recommend excluding size standard
peaks less than 50 bp (eg size standard 35 bp).

Each ladder should be manually inspected to make sure that is has been correctly assigned.

Value

This function modifies list of fragments_trace objects in place with the ladder assigned and base
pair calculated.

See Also

plot_data_channels() to plot the raw data in all channels. plot_ladders() to plot the assigned
ladder peaks onto the raw ladder signal. fix_ladders_interactive() to fix ladders with incor-
rectly assigned peaks.

26 fix_ladders_interactive

Examples

fsa_list <- lapply(cell_line_fsa_list[1], function(x) x$clone())

find_ladders(fsa_list, show_progress_bar = FALSE)

Manually inspect the ladders
plot_ladders(fsa_list[1])

fix_ladders_interactive

Fix ladders interactively

Description

An app for fixing ladders

Usage

fix_ladders_interactive(fragment_trace_list)

Arguments

fragment_trace_list

A list of fragments_trace objects containing fragment data

Details

This function helps you fix ladders that are incorrectly assigned. Run fix_ladders_interactive()
and provide output from find_ladders. In the app, for each sample, click on line for the incorrect
ladder size and drag it to the correct peak.

Once you are satisfied with the ladders for all the broken samples, click the download button to
generate a file that has the ladder correction data. Read this file back into R using readRDS, then
use fix_ladders_manual() and supply the ladder correction data as ladder_df_list. This allows
the manually corrected data to be saved and used within a script so that the correct does not need to
be done every time. An example of what you would need to do:

ladder_df_list <- readRDS(’path/to/exported/data.rds’) test_ladders_fixed <- fix_ladders_manual(test_ladders_broken,
ladder_df_list)

Value

interactive shiny app for fixing ladders

See Also

fix_ladders_manual(), find_ladders()

fix_ladders_manual 27

Examples

fsa_list <- lapply(cell_line_fsa_list["20230413_A08.fsa"], function(x) x$clone())

find_ladders(fsa_list, show_progress_bar = FALSE)

to create an example, lets brake one of the ladders
brake_ladder_list <- list(

"20230413_A08.fsa" = data.frame(
size = c(35, 50, 75, 100, 139, 150, 160, 200, 250, 300, 340, 350, 400, 450, 490, 500),
scan = c(1544, 1621, 1850, 1912, 2143, 2201, 2261, 2506, 2805, 3135, 3380, 3442, 3760,

4050, 4284, 4332)
)

)

fix_ladders_manual(
fsa_list,
brake_ladder_list

)

plot_ladders(fsa_list)

if (interactive()) {
fix_ladders_interactive(fsa_list)

}

once you have corrected your ladders in the app,
export the data for incorporation into the script.
You can then re-import the data and fix ladders as described in the help details.

fix_ladders_manual Fix ladders manually

Description

Manually assign the ladder peaks for samples in a fragments_trace_list

Usage

fix_ladders_manual(
fragments_trace_list,
ladder_df_list,
warning_rsq_threshold = 0.998

)

28 fix_ladders_manual

Arguments

fragments_trace_list

list of fragments_trace objects

ladder_df_list a list of dataframes, with the names being the unique id and the value being a
dataframe. The dataframe has two columns, size (indicating the bp of the stan-
dard) and scan (the scan value of the ladder peak). It’s critical that the element
name in the list is the unique id of the sample.

warning_rsq_threshold

The value for which this function will warn you when parts of the ladder have
R-squared values below the specified threshold.

Details

This function returns a fragments_trace list the same length as was supplied. It goes through each
sample and either just returns the same fragments_trace if the unique id doesn’t match the samples
that need the ladder fixed, or if it is one to fix, it will use the supplied dataframe in the ladder_df_list
as the ladder. It then reruns the bp sizing methods on those samples.

This is best used with fix_ladders_interactive() that can generate a ladder_df_list.

Value

This function modifies list of fragments_trace objects in place with the selected ladders fixed.

Examples

fsa_list <- lapply(cell_line_fsa_list[1], function(x) x$clone())

find_ladders(fsa_list, show_progress_bar = FALSE)

first manually determine the real ladder peaks using your judgment
the raw ladder signal can be extracted
raw_ladder <- fsa_list[1]$raw_ladder

or we can look at the "trace_bp_df" to see a dataframe that includes the scan and ladder signal
raw_ladder_df <- fsa_list[[1]]$trace_bp_df[, c("unique_id", "scan", "ladder_signal")]
plot(raw_ladder_df$scan, raw_ladder_df$ladder_signal)

once you have figured what sizes align with which peak, make a dataframe. The
fix_ladders_manual() function takes a list as an input so that multiple ladders
can be fixed. Each sample would have the the list element name as it's unique id.

example_list <- list(
"20230413_A07.fsa" = data.frame(
size = c(100, 139, 150, 160, 200, 250, 300, 340, 350, 400, 450, 490, 500),
scan = c(1909, 2139, 2198, 2257, 2502, 2802, 3131, 3376, 3438, 3756, 4046, 4280, 4328)

)
)

fix_ladders_manual(
fsa_list,

fragments 29

example_list
)

fragments fragments object

Description

An R6 Class representing a fragments object.

Details

This is the parent class of both fragments_trace and fragments_repeats object. The idea is that
shared fields and methods are both inherited from this object, but it is not itself directly used.

Public fields

unique_id unique id of the sample usually the file name

metrics_group_id sample grouping for metrics calculations. Associated with add_metadata().

metrics_baseline_control logical to indicate if sample is the baseline control. Associated with
add_metadata().

batch_run_id fragment analysis run. Associated with add_metadata().

batch_sample_id An id for the sample used as size standard for repeat calculation. Associated
with add_metadata().

batch_sample_modal_repeat Validated repeat length for the modal repeat repeat in that sample.
Associated with add_metadata().

Methods

Public methods:
• fragments$new()

• fragments$print()

• fragments$plot_trace()

• fragments$clone()

Method new(): initialization function that is not used since the child classes are the main object
of this package.

Usage:
fragments$new(unique_id)

Arguments:

unique_id unique_id

Method print(): A function to print informative information to the console

30 fragments_repeats

Usage:
fragments$print()

Method plot_trace(): plot the trace data

Usage:
fragments$plot_trace(
show_peaks = TRUE,
x_axis = NULL,
ylim = NULL,
xlim = NULL,
signal_color_threshold = 0.05,
plot_title = NULL

)

Arguments:
show_peaks A logical to say if the called peaks should be plotted on top of the trace. Only

valid for fragments_repeats objects.
x_axis Either "size" or "repeats" to indicate what should be plotted on the x-axis.
ylim numeric vector length two specifying the y axis limits
xlim numeric vector length two specifying the x axis limits
signal_color_threshold A threshold value to colour the peaks relative to the tallest peak.
plot_title A character string for setting the plot title. Defaults to the unique id of the object

Returns: A base R plot

Method clone(): The objects of this class are cloneable with this method.

Usage:
fragments$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

fragments_repeats fragments_repeats object

Description

An R6 Class representing a fragments_repeats object.

Details

The idea behind this class is to store data for processing of the peak level data towards calculation
of repeat instability metrics.

It contains important setters and getters for alleles and index peaks. It’s very important that the
exactly correct size and repeat value is set for the alleles and index peak. This is used for subsetting
etc, so if it’s not exactly correct many functions would break.

It also contains methods for plotting the ladder and traces (if available).

fragments_repeats 31

Super class

trace::fragments -> fragments_repeats

Public fields

trace_bp_df A dataframe of bp size for every scan from find_ladders().

peak_table_df A dataframe containing the fragment peak level information.

repeat_table_df A dataframe containing the fragment peak level information with the repeat size
added. May or may not be the same as peak_table_df depending on what options are chosen
in call_repeats.

Methods

Public methods:
• fragments_repeats$get_allele_peak()

• fragments_repeats$set_allele_peak()

• fragments_repeats$get_index_peak()

• fragments_repeats$set_index_peak()

• fragments_repeats$plot_fragments()

• fragments_repeats$clone()

Method get_allele_peak(): This returns a list with the allele information for this object.

Usage:
fragments_repeats$get_allele_peak()

Method set_allele_peak(): This sets a single allele size/repeat. It searches through the
appropriate peak table and finds the closest peak to the value that’s provided.

Usage:
fragments_repeats$set_allele_peak(allele, unit, value)

Arguments:

allele Either 1 or 2, indicating which allele information should be set. Allele 1 is the only one
used for repeat instability metrics calculations.

unit Either "size" or "repeats" to indicate if the value you’re providing is bp size or repeat
length.

value Numeric vector (length one) of the size/repeat length to set.

Method get_index_peak(): This returns a list with the index peak information for this object.

Usage:
fragments_repeats$get_index_peak()

Method set_index_peak(): This sets the index repeat length. It searches through the repeat
table and finds the closest peak to the value that’s provided.

Usage:
fragments_repeats$set_index_peak(value)

32 fragments_trace

Arguments:
value Numeric vector (length one) of the repeat length to set as index peak.

Method plot_fragments(): This plots the peak/repeat table as a histogram
Usage:
fragments_repeats$plot_fragments(ylim = NULL, xlim = NULL, plot_title = NULL)

Arguments:
ylim numeric vector length two specifying the y axis limits
xlim numeric vector length two specifying the x axis limits
plot_title A character string for setting the plot title. Defaults to the unique id of the object

Method clone(): The objects of this class are cloneable with this method.
Usage:
fragments_repeats$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

fragments_trace fragments_trace object

Description

An R6 Class representing a fragments_trace object.

Details

The idea behind this class is to store data for processing of the continuous trace-level information
from an fsa file towards peak level data.

It also contains methods for plotting the ladder and traces

Super class

trace::fragments -> fragments_trace

Public fields

unique_id unique id of the sample usually the file name
fsa The whole fsa file, output from seqinr::read.abif()
raw_ladder The raw data from the ladder channel
raw_data The raw data from the sample channel
scan The scan number
off_scale_scans vector indicating which scales were too big and off scale. Note can be in any

channel
ladder_df A dataframe of the identified ladder from find_ladders(). Scan is the scan number

of peak and size is the associated bp size.
trace_bp_df A dataframe of bp size for every scan from find_ladders().

fragments_trace 33

Methods

Public methods:

• fragments_trace$new()

• fragments_trace$plot_ladder()

• fragments_trace$plot_data_channels()

• fragments_trace$clone()

Method new(): Create a new fragments_trace.

Usage:

fragments_trace$new(unique_id, fsa_file)

Arguments:

unique_id usually the file name
fsa_file output from seqinr::read.abif()

Returns: A new fragments_trace object.

Method plot_ladder(): plot the ladder data

Usage:

fragments_trace$plot_ladder(xlim = NULL, ylim = NULL, plot_title = NULL)

Arguments:

xlim numeric vector length two specifying the x axis limits
ylim numeric vector length two specifying the y axis limits
plot_title A character string for setting the plot title. Defaults to the unique id of the object

Returns: A base R plot

Method plot_data_channels(): plot the raw data channels in the fsa file. It identifies every
channel that has "DATA" in its name.

Usage:

fragments_trace$plot_data_channels()

Returns: A base R plot

Method clone(): The objects of this class are cloneable with this method.

Usage:

fragments_trace$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

34 generate_trace_template

generate_trace_template

Generate a Quarto file that has the instability pipeline preset

Description

Generate a Quarto file that has the instability pipeline preset

Usage

generate_trace_template(
file_name = NULL,
correction = "batch",
samples_grouped = TRUE

)

Arguments

file_name Name of file to create

correction select either "none", "batch" or "repeat" to indicate if the functionality for cor-
recting repeat size using size standards across batches be included in the pipeline.
See add_metadata() & call_repeats() for more info.

samples_grouped

Indicates if the functionality for grouping samples for metrics calculations should
be included in the pipeline. See add_metadata() & assign_index_peaks()
for more info.

Value

A Quarto template file for repeat instability analysis

Examples

if (interactive()) {
generate_trace_template("test")

}

metadata 35

metadata metadata

Description

This is a dataframe containing the metadata information for the example data

Usage

metadata

Format

metadata:
A genemapper output dataframe

Source

doi:10.1038/s41467024474850

peak_table_to_fragments

Convert Peak Table to Fragments_repeats class

Description

This function converts a peak table data frame into a list of fragments_repeats objects.

Usage

peak_table_to_fragments(
df,
data_format = NULL,
peak_size_col = NULL,
peak_signal_col = NULL,
unique_id = NULL,
dye_col = NULL,
dye_channel = NULL,
allele_col = NULL,
min_size_bp = 200,
max_size_bp = 1000

)

https://doi.org/10.1038/s41467-024-47485-0

36 peak_table_to_fragments

Arguments

df A data frame containing the peak data.

data_format The format that the data frame is in (for example, a genemapper peak table).
Choose between: genemapper5, generic.

peak_size_col A character string specifying column name giving the peak size.
peak_signal_col

A character string specifying column name giving the peak signal.

unique_id A character string specifying column name giving the unique sample id (often
the file name).

dye_col Genemapper specific. A character string specifying column name indicating the
dye channel.

dye_channel Genemapper specific. A character string indicating the channel to extract data
from. For example, 6-FAM is often "B".

allele_col Genemapper specific. A character string specifying column name indicating the
called alleles. This is often used when the peaks have been called in genemapper.

min_size_bp Numeric value indicating the minimum size of the peak table to import.

max_size_bp Numeric value indicating the maximum size of the peak table to import.

Details

This function takes a peak table data frame (eg. Genemapper output) and converts it into a list of
fragment objects. The function supports different data formats and allows specifying column names
for various attributes.

Value

A list of fragments_repeats objects.

See Also

repeat_table_to_repeats

Examples

gm_raw <- trace::example_data

test_fragments <- peak_table_to_fragments(
gm_raw,
data_format = "genemapper5",
dye_channel = "B",
min_size_bp = 400

)

plot_batch_correction_samples 37

plot_batch_correction_samples

Plot correction samples

Description

Plot the overlapping traces of the batch control samples

Usage

plot_batch_correction_samples(fragments_list, selected_sample, xlim = NULL)

Arguments

fragments_list A list of fragments_repeats objects containing fragment data. must have trace
information.

selected_sample

A character vector of batch_sample_id for a subset of samples to plot. Or al-
ternatively supply a number to select batch sample by position in alphabetical
order.

xlim the x limits of the plot. A numeric vector of length two.

Details

A plot of the raw signal by bp size or repeats for the batch correction samples.

When plotting the traces before repeat correction, we do not expect the samples to be closely over-
lapping due to run-to-run variation. After repeat correction, the traces should be basically overlap-
ping.

These plots are made using base R plotting. Sometimes these fail to render in the viewing panes
of IDEs (eg you get the error ’Error in plot.new(): figure margins too large)’. If this happens, try
saving the plot as a pdf using traditional approaches (see grDevices::pdf).

Value

plot of batch corrected samples

See Also

call_repeats() for more info on batch correction.

Examples

fsa_list <- lapply(cell_line_fsa_list[16:19], function(x) x$clone())

find_ladders(fsa_list, show_progress_bar = FALSE)

fragments_list <- find_fragments(fsa_list, min_bp_size = 300)

38 plot_data_channels

test_alleles <- find_alleles(
fragments_list

)

add_metadata(
fragments_list,
metadata

)

call_repeats(
fragments_list = fragments_list,
correction = "batch"

)

traces of bp size shows traces at different sizes
plot_batch_correction_samples(

fragments_list,
selected_sample = "S-21-212", xlim = c(100, 120)

)

plot_data_channels plot_data_channels

Description

Plot the raw data from the fsa file

Usage

plot_data_channels(fragments_list, sample_subset = NULL, n_facet_col = 1)

Arguments

fragments_list A list of fragments_trace objects.

sample_subset A character vector of unique ids for a subset of samples to plot

n_facet_col A numeric value indicating the number of columns for faceting in the plot.

Details

A plot of the raw data channels in the fsa file.

These plots are made using base R plotting. Sometimes these fail to render in the viewing panes
of IDEs (eg you get the error ’Error in plot.new(): figure margins too large)’. If this happens,
try saving the plot as a pdf using traditional approaches (see grDevices::pdf). To get it to render in
the IDE pane, trying matching n_facet_col to the number of samples you’re attempting to plot, or
using sample_subset to limit it to a single sample.

plot_fragments 39

Value

a plot of the raw data channels

Examples

plot_data_channels(cell_line_fsa_list[1])

plot_fragments Plot Peak Data

Description

Plots peak data from a list of fragments.

Usage

plot_fragments(
fragments_list,
n_facet_col = 1,
sample_subset = NULL,
xlim = NULL,
ylim = NULL

)

Arguments

fragments_list A list of fragments_repeats objects containing fragment data.

n_facet_col A numeric value indicating the number of columns for faceting in the plot.

sample_subset A character vector of unique ids for a subset of samples to plot

xlim the x limits of the plot. A numeric vector of length two.

ylim the y limits of the plot. A numeric vector of length two.

Value

A plot object displaying the peak data.

Examples

gm_raw <- trace::example_data

fragments_list <- peak_table_to_fragments(gm_raw,
data_format = "genemapper5",
dye_channel = "B",
min_size_bp = 300

)

40 plot_ladders

find_alleles(
fragments_list

)

plot_fragments(fragments_list[1])

plot_ladders Plot ladder

Description

Plot the ladder signal

Usage

plot_ladders(
fragments_trace_list,
n_facet_col = 1,
sample_subset = NULL,
xlim = NULL,
ylim = NULL

)

Arguments

fragments_trace_list

A list of fragments_trace objects containing fragment data.

n_facet_col A numeric value indicating the number of columns for faceting in the plot.

sample_subset A character vector of unique ids for a subset of samples to plot

xlim the x limits of the plot. A numeric vector of length two.

ylim the y limits of the plot. A numeric vector of length two.

Value

a plot of ladders

Examples

fsa_list <- lapply(cell_line_fsa_list[1], function(x) x$clone())

find_ladders(fsa_list, show_progress_bar = FALSE)

Manually inspect the ladders
plot_ladders(fsa_list[1])

plot_repeat_correction_model 41

plot_repeat_correction_model

Plot Repeat Correction Model

Description

Plots the results of the repeat correction model for a list of fragments.

Usage

plot_repeat_correction_model(
fragments_list,
batch_run_id_subset = NULL,
n_facet_col = 1

)

Arguments

fragments_list A list of fragments_repeats class objects obtained from the call_repeats()
function when the correction = "repeat" parameter is used.

batch_run_id_subset

A character vector for a subset of batch_sample_id to plot. Or alternatively
supply a number to select batch sample by position in alphabetical order.

n_facet_col A numeric value indicating the number of columns for faceting in the plot.

Details

This function makes plots for the model used to correct samples for each batch_run_id. The
repeat correction algorithm assigns the user supplied repeat length to the modal peak of the sample,
then pulls out a set of robust neighboring peaks to help get enough data to build an accurate linear
model for the relationship between base-pair size and repeat length. So on this plot, each dot is an
individual peak, with the colour indicating each sample, with the y-axis is the repeat length called
from the user-supplied value in the metadata and the value assigned to each peak, with the x-axis
showing the corresponding base-pair size.

Value

A base R graphic object displaying the repeat correction model results.

Examples

fsa_list <- lapply(cell_line_fsa_list[16:19], function(x) x$clone())

find_ladders(fsa_list, show_progress_bar = FALSE)

fragments_list <- find_fragments(fsa_list, min_bp_size = 300)

42 plot_traces

test_alleles <- find_alleles(
fragments_list

)

add_metadata(
fragments_list,
metadata

)

call_repeats(
fragments_list = fragments_list,
correction = "repeat"

)

traces of bp size shows traces at different sizes
plot_repeat_correction_model(

fragments_list,
batch_run_id_subset = "20230414"

)

plot_traces Plot sample traces

Description

Plot the raw trace data

Usage

plot_traces(
fragments_list,
show_peaks = TRUE,
n_facet_col = 1,
sample_subset = NULL,
xlim = NULL,
ylim = NULL,
x_axis = NULL,
signal_color_threshold = 0.05

)

Arguments

fragments_list A list of fragments_repeats or fragments_trace objects containing fragment data.

show_peaks If peak data are available, TRUE will plot the peaks on top of the trace as dots.

plot_traces 43

n_facet_col A numeric value indicating the number of columns for faceting in the plot.

sample_subset A character vector of unique ids for a subset of samples to plot

xlim the x limits of the plot. A numeric vector of length two.

ylim the y limits of the plot. A numeric vector of length two.

x_axis A character indicating what should be plotted on the x-axis, chose between size
or repeats. If neither is selected, an assumption is made based on if repeats
have been called.

signal_color_threshold

Threshold relative to tallest peak to color the dots (blue above, purple below).

Details

A plot of the raw signal by bp size. Red vertical line indicates the scan was flagged as off-scale.
This is in any channel, so use your best judgment to determine if it’s from the sample or ladder
channel.

If peaks are called, green is the tallest peak, blue is peaks above the signal threshold (default 5%),
purple is below the signal threshold. If force_whole_repeat_units is used within call_repeats(),
the called repeat will be connected to the peak in the trace with a horizontal dashed line.

The index peak will be plotted as a vertical dashed line when it has been set using assign_index_peaks().

Value

plot traces from fragments object

Examples

fsa_list <- lapply(cell_line_fsa_list[1], function(x) x$clone())

find_ladders(fsa_list, show_progress_bar = FALSE)

fragments_list <- find_fragments(fsa_list,
min_bp_size = 300

)

find_alleles(
fragments_list

)

Simple conversion from bp size to repeat size
call_repeats(

fragments_list
)

plot_traces(fragments_list, xlim = c(105, 150))

44 remove_fragments

read_fsa Read fsa file

Description

Read fsa file into memory and create fragments_trace object

Usage

read_fsa(files)

Arguments

files a chr vector of fsa file names. For example, return all the fsa files in a directory
with ’list.files("example_directory/", full.names = TRUE, pattern = ".fsa")’.

Details

read_fsa is just a wrapper around seqinr::read.abif() that reads the fsa file into memory and
stores it inside a fragments_trace object. That enables you to use the next function find_ladders().

Value

A list of fragments_trace objects

See Also

find_ladders(), plot_data_channels()

Examples

fsa_file <- read_fsa(system.file("abif/2_FAC321_0000205983_B02_004.fsa", package = "seqinr"))
plot_data_channels(fsa_file)

remove_fragments Remove Samples from List

Description

A convenient function to remove specific samples from a list of fragments.

Usage

remove_fragments(fragments_list, samples_to_remove)

repeat_table_to_repeats 45

Arguments

fragments_list A list of fragments_repeats objects containing fragment data.
samples_to_remove

A character vector containing the unique IDs of the samples to be removed.

Value

A modified list of fragments with the specified samples removed.

Examples

gm_raw <- trace::example_data
metadata <- trace::metadata

test_fragments <- peak_table_to_fragments(
gm_raw,
data_format = "genemapper5",
dye_channel = "B",
min_size_bp = 300

)

all_fragment_names <- names(test_fragments)

pull out unique ids of samples to remove
samples_to_remove <- all_fragment_names[c(1, 5, 10)]

samples_removed <- remove_fragments(test_fragments, samples_to_remove)

repeat_table_to_repeats

Convert Repeat Table to Repeats Fragments

Description

This function converts a repeat table data frame into a list of fragments_repeats. class.

Usage

repeat_table_to_repeats(df, unique_id, repeat_col, frequency_col)

Arguments

df A data frame containing the repeat data.

unique_id A character string indicating the column name for unique identifiers.

repeat_col A character string indicating the column name for the repeats.

frequency_col A character string indicating the column name for the repeat frequencies.

46 repeat_table_to_repeats

Details

This function takes a repeat table data frame and converts it into a list of repeats fragments. The
function allows specifying column names for repeats, frequencies, and unique identifiers.

Value

A list of fragments_repeats objects.

Examples

repeat_table <- trace::example_data_repeat_table
test_fragments <- repeat_table_to_repeats(

repeat_table,
repeat_col = "repeats",
frequency_col = "height",
unique_id = "unique_id"

)

Index

∗ datasets
cell_line_fsa_list, 14
example_data, 15
example_data_repeat_table, 16
metadata, 35

add_metadata, 2
add_metadata(), 6, 11–13, 34
assign_index_peaks, 5
assign_index_peaks(), 3, 34

calculate_instability_metrics, 7
call_repeats, 10
call_repeats(), 3, 4, 6, 19, 23, 34, 37, 41, 43
cell_line_fsa_list, 14

example_data, 15
example_data_repeat_table, 16
extract_alleles, 16
extract_fragments, 17
extract_ladder_summary, 18
extract_repeat_correction_summary, 19
extract_repeat_correction_summary(),

13
extract_trace_table, 20

find_alleles, 21
find_alleles(), 4, 12, 13
find_fragments, 22
find_fragments(), 21–23
find_ladders, 24
find_ladders(), 26, 44
fix_ladders_interactive, 26
fix_ladders_interactive(), 25, 28
fix_ladders_manual, 27
fix_ladders_manual(), 26
fragments, 29
fragments_repeats, 6, 30
fragments_trace, 32

generate_trace_template, 34

metadata, 35

peak_table_to_fragments, 35
plot_batch_correction_samples, 37
plot_batch_correction_samples(), 12, 13
plot_data_channels, 38
plot_data_channels(), 25, 44
plot_fragments, 39
plot_ladders, 40
plot_ladders(), 25
plot_repeat_correction_model, 41
plot_repeat_correction_model(), 12, 13
plot_traces, 42

read_fsa, 44
remove_fragments, 44
repeat_table_to_repeats, 36, 45

seqinr::read.abif(), 44

trace::fragments, 31, 32

47

	add_metadata
	assign_index_peaks
	calculate_instability_metrics
	call_repeats
	cell_line_fsa_list
	example_data
	example_data_repeat_table
	extract_alleles
	extract_fragments
	extract_ladder_summary
	extract_repeat_correction_summary
	extract_trace_table
	find_alleles
	find_fragments
	find_ladders
	fix_ladders_interactive
	fix_ladders_manual
	fragments
	fragments_repeats
	fragments_trace
	generate_trace_template
	metadata
	peak_table_to_fragments
	plot_batch_correction_samples
	plot_data_channels
	plot_fragments
	plot_ladders
	plot_repeat_correction_model
	plot_traces
	read_fsa
	remove_fragments
	repeat_table_to_repeats
	Index

