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1 Introduction

The tsissm package implements the linear innovations state space model described by De Livera et al. (2011)1

and incorporating trigonometric seasonality as used in the tbats function from the forecast package of
Hyndman et al. (2024). However, tsissm differs significantly in both implementation and features. Key
enhancements include:

1. Automatic differentiation and robust inference:
Estimation leverages automatic differentiation (autodiff), with multiple sandwich estimators available
for standard error calculation. System forecastability and ARMA constraints are handled exactly via
the nloptr solver using autodiff-based Jacobians.

2. Flexible error distributions:
In addition to Gaussian errors, the model supports heavy-tailed and skewed alternatives, including the
Student’s t distribution and the Johnson’s SU distribution.

3. Heteroscedasticity modeling:
Conditional heteroscedasticity is supported via a GARCH specification on the innovation variance.

4. Automatic model selection and ensembling:
Users may select the best model based on an information criterion (e.g., AIC or BIC) or retain the

1Originally proposed by Anderson and Moore (2012)
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top N models for ensembling. This feature is also available in the backtest method, providing a more
robust approach to evaluation and forecasting.

5. Simulated predictive distributions:
The predict method always returns a simulated forecast distribution, alongside the analytic mean,
allowing for richer uncertainty quantification.

6. Handling of missing data:
Missing values in the response variable are permitted and automatically handled via the state space
formulation.

7. Support for external regressors:
Regressors are supported in the mean.2

2 Model Formulation

Given an initial state vector of unobserved components (such as level, slope, and seasonality), the proposed
model evolves the states over time using a linear transition equation, incorporating the effect of the most
recent observation error. At each time step, the observed (Box-Cox transformed) value is modeled as a linear
combination of the previous state, lagged external regressors, and a normally3 distributed random error. This
structure allows the model to capture complex patterns in the data—such as trends, seasonal cycles, and the
influence of exogenous variables—while dynamically updating its internal state based on new information.

Consider the following Single Error Model (SEM) with trigonometric seasonality:

y
(λ)
t = w′xt−1 + c′ut−1 + εt, εt ∼ N

(

0, σ2
)

,

xt = Fxt−1 + gεt,
(1)

where λ represents the Box Cox parameter, w the observation coefficient vector, xt the unobserved state
vector, and c a vector of coefficients on the external regressor set u.4

Define the state vector5 as:

xt =
(

lt,bt, s
(1)
t , . . . , s

(T)
t ,dt,dt−1, . . . ,dt−p−1, εt, εt−1, . . . , εt−q−1

)′

, (2)

where s
(i)
t is the row vector

(

s
(i)
1,t, s

(i)
2,t, . . . , s

(i)
ki,t, s

∗(i)
1,t , s

∗(i)
2,t , . . . , s

∗(i)
ki,t

)

for the trigonometric seasonality. Also

define 1r and 0r as a vector of ones and zeros, respectively, of length r, Ou,v a u × v matrix of zeros
and Iu,v a u × v diagonal matrix of ones; let γ =

(

γ(1), . . . , γ(T )
)

be a vector of seasonal parameters with

γ(i) =
(

γ
(i)
1 1ki

, γ
(i)
2 1ki

)

(with k harmonics); θ = (θ1, θ2, . . . , θp) and ψ = (ψ1, ψ2, . . . , ψq) as the vector of

AR(p) and MA(q) parameters, respectively. The observation transition vector w = (1, φ,a, θ, ψ)
′
, where

a =
(

a(1), . . . ,a(T )
)

with a(i) = (1ki
,0ki

). The state error adjustment vector g = (α, β, γ, 1,0p−1, 1,0q−1)
′
.

Further, let B = γ′θ, C = γ′ψ and A = ⊕T
i=1Ai, with

Ai =

[

C(i) S(i)

−S(i) C(i)

]

, (3)

and with C(i) and S(i) representing the ki × ki diagonal matrices with elements cos(λ
(i)
j ) and sin(λ

(i)
j )6

respectively.7

2A future enhancement may incorporate regularization.
3In our formulation we relax this to allow for other choices as well.
4In the package, it is expected that the regression matrix is already pre-lagged.
5The following equations apply for the case when all components are present (level, slope, seasonal and ARMA).
6λ here should not be confused with the Box Cox lambda.
7For j = 1, . . . , ki and i = 1, . . . , T , representing the number of harmonics k per seasonal period i.
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Finally, the state transition matrix F is composed as follows:

F =





















1 φ 0τ αθ αψ

0 φ 0τ βθ βψ

0′
τ 0′

τ A B C

0 0 0τ θ ψ

0′
p−1 0′

p−1 Op−1,τ Ip−1,p Op−1,q

0 0 0τ 0p 0q

0′
q−1 0′

q−1 Oq−1,τ Oq−1,p Iq−1,q





















(4)

where τ = 2
T
∑

i=1

ki. The model has the feature of allowing for multiple seasonal trigonometric components.

3 State Initialization

A key innovation of the De Livera et al. (2011) paper is in providing the exact initialization of the non-
stationary component’s seed states, the exponential smoothing analogue of the De Jong (1991) method for
augmenting the Kalman filter to handle seed states with infinite variances. The proof, based on De Livera
et al. (2011) and expanded here is as follows, let:

D = F − gw′. (5)

We eliminate εt in 1 to give:

xt = Dxt−1 + gyt. (6)

Next, we proceed by backsolving the equation for the error, given a given value of λ:8

εt = yt − wx̂t−1,

εt = yt − w′ (Dx̂t−2 + gyt−1) .
(7)

Starting with t = 4 and working backwards:

ε4 = y4 − w′ (Dx̂2 + gy3)
= y4 − w′ (D (Dx̂1 + gy2) + gy3)
= y4 − w′ (D (D (Dx̂0 + gy1) + gy2) + gy3)
= y4 − w′

(

D
(

D2x0 + Dgy1 + gy2

)

+ gy3

)

= y4 − w′
(

D3x0 + D2gy1 + Dgy2 + gy3

)

= y4 − w′
3
∑

j=1

Dj−1gy4−j − w′D3x0

(8)

and generalizing to εt:

εt = yt − w′

(

t−1
∑

j=1

Dj−1gyt−j

)

− w′Dt−1x0

= yt − w′x̃t−1 − w′
t−1x0

= ỹt − w′
t−1x0,

(9)

where ỹt = yt − w′x̃t−1, x̃t = Dx̃t−1 + gyt, w′
t = Dw′

t−1, x̃0 = 0 and w′
0 = w′, so that x0 are the

coefficients from the regression of w on ε. The way this is implemented, is to calculate the seed states based

8For simplicity of exposition, yt is equivalent to y
(λ)
t

.
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on the initial parameter vector and λ parameter and then use those same seed states without re-calculating
during the optimization. However, when λ is also part of the parameter estimation set, we have chosen
instead to re-calculate the seed state during the optimization as part of the autodiff tape. This differs from
the approach adopted in the forecast package of Hyndman et al. (2024) which simply re-transforms the
initial seed states based on the value of λ during estimation.

4 Constraints

A number of constraints are implemented during estimation, including a system forecastability constraint
and a constraint on the ARMA parameters when present.

4.1 System Forecastability Constraint

The forecastability constraint necessitates that the characteristic roots of the matrix D (see (5)) lie within
the unit circle, which means that the maximum of the modulus of the eigenvalues of D are less than 1. In the
forecast package this constraint is directly checked and returns Inf when the condition is violated which is
a type of infinite penalty method. It is known that this type of approach can lead to numerical instabilities
and discontinuities as well as difficulties in convergence, though it often “works” in practice to some degree.
Instead, in the tsissm package, we model the constraint using RTMB9 to obtain the autodiff based Jacobian
of the constraint and pass the output to the nloptr solver using the eval_g_ineq and eval_jac_g_ineq

arguments. Specifically, in order to avoid the use of the non-differentiable max operator, we impose that
the modulus of all the eigenvalues is less than 1 and the Jacobian is then a C ×N matrix where C are the
constraints and N the number of parameters.10

4.2 ARMA Constraint

It is typical to check for stationarity in the AR component and invertibility in the MA component when those
are present, by solving for the characteristic roots of the system polynomials. In R, one way to solve for this
is to use the polyroot function such that Mod(polyroot(c(1, -ar))) and Mod(polyroot(c(1, ma))) are
greater than 1. In the forecast package this is how they are checked and an infinite penalty applied, similar
to the system forecastability constraint. As in our previous approach, we instead code this up to make use of
automatic differentiation in order to obtain a reasonable set of constraints and their Jacobians.

Consider an autoregressive (AR) model specified by the polynomial

1 − a1z − a2z
2 − · · · − anz

n = 0. (10)

The stationarity condition requires that the roots z of this polynomial satisfy |z| > 1.

That is, the roots must lie outside the unit circle.

Step 1: Rewriting in Monic Form

Multiply the equation by −1 to obtain:

−1 + a1z + a2z
2 + · · · + anz

n = 0. (11)

Rearrange this as:

anz
n + an−1z

n−1 + · · · + a1z − 1 = 0. (12)

9RTMB instead of TMB was used for the constraint due to issues discussed here.
10In practice we could have just imposed the constraint on the first eigenvalue, but since D is non-symmetric, we have no

guarantees, from what I have read, that the LAPACK routine (dgeev) will always return the eigenvalues in decreasing order by
modulus.
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Dividing through by an (assuming an ̸= 0) yields the monic polynomial:

zn +
an−1

an

zn−1 + · · · +
a1

an

z −
1

an

= 0. (13)

Step 2: Constructing the Companion Matrix

For a monic polynomial

zn + cn−1z
n−1 + · · · + c1z + c0 = 0, (14)

the standard companion matrix is defined as:

C =















−cn−1 −cn−2 · · · −c1 −c0

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0















. (15)

In our case, by comparing coefficients, we have:

cn−1 =
an−1

an

, cn−2 =
an−2

an

, . . . , c1 =
a1

an

, c0 = −
1

an

. (16)

Thus, the companion matrix becomes:

C =

















−
an−1

an

−
an−2

an

· · · −
a1

an

1

an

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

















. (17)

Step 3: Stationarity Constraint via the Companion Matrix

Since the eigenvalues of the companion matrix C are precisely the roots z of the polynomial

1 − a1z − a2z
2 − · · · − anz

n = 0, (18)

the stationarity condition |z| > 1 can be reformulated in terms of the companion matrix as

|λi(C)| > 1 for i = 1, . . . , n. (19)

That is, the moduli of the eigenvalues of the companion matrix must be greater than 1. A detailed exposition
can be found in Lütkepohl (2005) (see Chapter 3).

A similar constraint is imposed in the presence of an MA component, by flipping the sign of the coefficients.
It should be noted that these constraints are only applied when the order of either the AR or MA components
is greater than 1, else the normal parameter bounds ({-1, 1}) are sufficient.
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5 Estimation

The estimation is carried out by minimizing the negative of the log-likelihood, subject to various constraints
discussed in 4, and parameter bounds. The log-likelihood (to be maximized), jointly with the Box-Cox
transformation (parameter λ) is derived as follows:

p(yt | x0, ϑ, σ
2) = p

(

y
(λ)
t | x0, ϑ, σ

2
)

det

(

∂y
(λ)
t

∂y

)

= p
(

y
(λ)
t | x0, ϑ, σ

2
)

n
∏

t=1

yλ−1
t

= ln p
(

y
(λ)
t | x0, ϑ, σ

2
)

+ (λ− 1)

n
∑

t=1

ln yt.

(20)

where p(·) represents the probability density function, given the initial state observations x0, the parameter
vector θ and the variance σ2.

The Box-Cox transformation, represented by parameter λ is a power transformation applied to the dependent
variable to stabilize its variance and to make its distribution closer to normal. This adjustment often leads
to improved model estimation and inference. Since we are jointly estimating lambda, it is necessary to
adjust the likelihood by the Jacobian of the transformation, which in the likelihood expression appears as the
determinant term

det

(

∂y
(λ)
t

∂y

)

,

which is equivalently expressed as
n
∏

t=1

yλ−1
t .

This term scales the probability density correctly back to the original data scale, ensuring that the transforma-
tion is properly accounted for during estimation. Including the parameter λ in the estimation process allows
the model to choose the optimal transformation that best normalizes the data and stabilizes its variance.

Beyond the Gaussian distribution, the package also implements the Student’s t and Johnson’s SU, details of
which can be found in the tsdistributions package. Additionally, the variance can follow GARCH dynamics
such that:

σ2
t = σ̂2 (1 − P ) +

q
∑

j=1

αjε
2
t−j +

p
∑

j=1

βjσ
2
t−j (21)

where we impose a variance targeting intercept instead of estimating ω, with P being the persistence and
σ̂2 the unconditional variance. Initialization of the recursion can either use the full information set or a
subsample (for more details see the online documentation of tsgarch).

The optimization is undertaken using the nloptr solver, making use of an autodiff based gradient for the
parameters and autodiff based Jacobian for the constraints. The solver defaults to the use of the SQP variant,
but other options are available via the issm_control function.

In order to calculate sandwich estimators11 for the standard errors, the scores (Jacobian) of the log-likelihood
function need to be calculated. Due to the expense of this operation on large datasets, we have implemented
asynchronous evaluation which requires the use of a parallel worker set up using a future plan. The user can
also turn off the evaluation of scores, in which case the autodiff based Hessian is used for the calculation of
the standard errors.

11We make use of the sandwich package by exporting estfun and bread methods.
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6 Prediction

The h-step ahead analytic mean and variance of the model, in the Box-Cox transformed space, are given by:

E
(

y
(λ)
n+h|n

)

= µt+h = w′Fh−1xn (22)

V
(

y
(λ)
n+h|n

)

= σ2
t+h =



















σ̂2, if h = 1,

σ̂2



1 +

h−1
∑

j=1

c2
j



 , if h ≥ 2.
(23)

where cj = w′F j−1g. For the mean, a reasonable approximation in back-transformed space, using a second-
order Taylor expansion, is given by:

yt+h =











exp(µt+h)
(

1 +
σ2

t+h

2

)

, if λ = 0,

(λµt+h + 1)
1
λ

(

1 +
σ2

t+h
(1−λ)

2(λµt+h+1)2

)

, if λ ̸= 0.
(24)

For the variance in the back transformed space, one should use the simulated distribution to approximate
this as it was not possible to find a reasonable approximation, even using higher order Taylor expansions,
which would be good enough, particularly with increasing h.

7 Automatic Selection and Ensembling

The forecast package of Hyndman et al. (2024) takes a smart, automated approach to identifying the best
model from a set of candidate specifications—such as whether to include a slope, the number of harmonics,
and the number of AR or MA terms.

In contrast, the tsissm package supports complete enumeration of all model configurations, including
multiple seasonalities and multiple harmonics per seasonal frequency. It also allows testing for constant versus
dynamic variance, though only one distributional assumption can be tested at a time. Users can return either
the best model based on an information criterion (AIC or BIC), or the top N models ranked by the selected
criterion. This flexibility enables model ensembling for filtering, prediction, and simulation.

The backtesting function (tsbacktest) supports this functionality directly, allowing automatic selection of
the top N models. Three weighting schemes are available:

• User-supplied fixed weights.

• AIC-based weights:

Models are weighted by the Akaike Information Criterion, favoring those with lower AIC:

wi =
exp(−0.5 ∆i)

∑

j exp(−0.5 ∆j)
, where ∆i = AICi − min

j
AICj .

• BIC-based weights:

Similar to AIC-based weights, but using the Bayesian Information Criterion, which penalizes complexity
more heavily.

The final ensemble prediction is computed as a weighted average:

ŷensemble =
∑

i

wi ŷi,

where ŷi are individual model predictions and wi are the corresponding model weights. AIC-based weighting
is typically preferred when models vary in complexity but are fit on the same dataset, whereas BIC-based
weighting may be more appropriate for large sample sizes due to its stronger complexity penalty.
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Beyond point forecasts, we also ensemble simulated forecasts, accounting for error dependencies across
models. Rather than assuming independence, we explicitly model the dependence structure of model residuals
using a Gaussian copula. This provides more accurate risk quantification, especially when the top N

models are highly correlated.

First, the correlation of transformed residuals across retained models is computed using Kendall’s tau12.
This is then converted into a correlation matrix R suitable for a Gaussian copula:

Rkℓ = sin
(π

2
τ (k,ℓ)

)

.

From this, correlated quantile samples are drawn from a multivariate normal distribution and passed into the
prediction function via the innov argument with innov_type = "q" (quantiles). These quantiles are then
transformed back into residuals using each model’s error distribution, allowing for simulated forecasts with
cross-model error dependence.

Formally, for each model k = 1, . . . ,K, simulation j, and forecast horizon i, we define the simulation equations:

y
(k)
j,i =

(

x
(k)
i−1

)⊤

w(k) +
(

X
(k)
i

)⊤

κ(k) + E
(k)
j,i

x
(k)
i = F (k)x

(k)
i−1 + g(k)E

(k)
j,i

The simulated error term E
(k)
j,i is generated as:

E
(k)
j,i = F−1

k

(

Φ
(

z
(k)
j,i

))

, where zj,i ∼ N (0,R).

Here:

• Φ(·) is the standard normal cumulative distribution function (CDF),
• F−1

k (·) is the quantile function (inverse CDF) of the error distribution for model k,

• z
(k)
j,i is the k-th element of the multivariate Gaussian sample,

• R is the copula correlation matrix derived from Kendall’s tau between model residuals.

This approach preserves both marginal error distributions and cross-model error dependence in simulation-
based forecasting.

12Because the transformed residuals may be in different scales (different Box-Cox λ), include outliers, etc, we adopt the
approach of first calculating the dependence using Kendall’s tau and then transform to Pearson’s correlation.
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8 Methods and Functions

Table 1 provides a summary of the methods and functions implemented in the package by input specification.

Table 1: Workflow of ISSM Package Methods by Specification Type
Step Specification Type Operation Resulting Ob-

ject/Class
Manual Specification (auto = FALSE)
Model Specification Manual (auto =

FALSE)
issm_modelspec(auto = FALSE) tsissm.spec

Estimation Manual (auto =
FALSE)

estimate() tsissm.estimate

Backtesting Manual (auto =
FALSE)

tsbacktest() Backtest output

Automatic Specification (top_n = 1)
Model Specification Auto (top_n = 1) issm_modelspec(auto = TRUE, top_n

= 1)

tsissm.autospec

Estimation Auto (top_n = 1) estimate() tsissm.estimate

Diagnostics & Sum-
mary

Auto (top_n = 1) summary(), AIC(), BIC(),

estfun(), bread(), residuals(),

Diagnostic outputs

fitted(), tsdecompose(),

tsmetrics(), vcov(), sigma(),

logLik(),

coef(), hresiduals(),

tsequation(), tsdiagnose(),

plot(), tsmoments(),

tsprofile()

Filtering Auto (top_n = 1) tsfilter() Updated
tsissm.estimate

Prediction & Simula-
tion

Auto (top_n = 1) predict() & simulate() tsissm.predict and
tsissm.simulate

Prediction Diagnostics Auto (top_n = 1) tsmetrics(), plot(),

tsdecompose()

Prediction diagnostic
outputs

Automatic Specification (top_n > 1)
Model Specification Auto (top_n > 1) issm_modelspec(auto = TRUE, top_n

= 2)

tsissm.autospec

Estimation Auto (top_n > 1) estimate() tsissm.selection

Filtering Auto (top_n > 1) tsfilter() Updated
tsissm.selection

Prediction & Simula-
tion

Auto (top_n > 1) predict() & simulate() tsissm.selection_predict

and
tsissm.selection_simulate

Backtesting Auto (top_n > 1) tsbacktest() Backtest output
Selection Diagnostics Auto (top_n > 1) AIC(), BIC(), logLik(),

tsensemble()

Diagnostic and ensem-
ble outputs

9 Conclusion

The tsissm package makes use of the methods implemented in tsmethods and shared across all packages in
the tsmodels framework. It provides an enhanced version of the tbats implementation in (Hyndman et al.,
2024), based on suggestions in (Hyndman et al., 2008). A number of demo vignettes are provided showcasing
the functionality of the package, and longer demos are available at nopredict.com.

Future work may look at regularization of regressors, automatic anomaly handing and revision of the still
experimental vector ETS (tsvets) package.
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