Design decisions and implementation details in vegan

Jari Oksanen

processed with vegan 2.7-1 in R version 4.5.0 Patched (2025-04-21 r88173) on June 5, 2025

Abstract

This document describes design decisions, and dis-
cusses implementation and algorithmic details in
some vegan functions. The proper FAQ is another
document.

Contents

[L Parallel processing] 1

—

[1.1.1 Using parallel processing as

[defaultf.
[1.1.2 Setting up socket clusters| . .

[1.1.3 Random number generation| .

(1.1.4 Does i1t pay oft?].

(1.2 Internals for developers|

N NN N

2 Nestedness and Null models|

2.1 Matrix temperature|

w

w

|3 Scaling in redundancy analysis|

[4 Weighted average and linear combina-

[tion scores]

© © o W

1 Parallel processing

Several vegan functions can perform parallel pro-
cessing using the standard R package parallel.
The parallel package in R implements the func-
tionality of earlier contributed packages multicore
and snow. The multicore functionality forks the
analysis to multiple cores, and snow functionality
sets up a socket cluster of workers. The multi-
core functionality only works in unix-like systems

(such as MacOS and Linux), but snow functional-
ity works in all operating systems. Vegan can use
either method, but defaults to multicore function-
ality when this is available, because its forked clus-
ters are usually faster. This chapter describes both
the user interface and internal implementation for
the developers.

1.1 User interface

The functions that are capable of parallel process-
ing have argument parallel. The normal default
is parallel = 1 which means that no parallel pro-
cessing is performed. It is possible to set parallel
processing as the default in vegan (see §.

For parallel processing, the parallel argument
can be either

1. An integer in which case the given number
of parallel processes will be launched (value
1 launches non-parallel processing). In unix-
like systems (e.g., MacOS, Linux) these will
be forked multicore processes. In Windows
socket clusters will be set up, initialized and
closed.

2. A previously created socket cluster. This saves
time as the cluster is not set up and closed
in the function. If the argument is a socket
cluster, it will also be used in unix-like sys-
tems. Setting up a socket cluster is discussed

in §[LT3

1.1.1 Using parallel processing as default

If the user sets option mc.cores, its value will be
used as the default value of the parallel argument
in vegan functions. The following command will
set up parallel processing to all subsequent vegan
commands:

> options(mc.cores = 2)

The mc.cores option is defined in the parallel
package, but it is usually unset in which case ve-
gan will default to non-parallel computation. The
mc.cores option can be set by the environmen-
tal variable MC_CORES when the parallel package
is loaded.

R allows setting up a default socket cluster
(setDefaultCluster), but this will not be used in
vegan.

1.1.2 Setting up socket clusters

If socket clusters are used (and they are the only
alternative in Windows), it is often wise to set up a
cluster before calling parallelized code and give the
pre-defined cluster as the value of the parallel
argument in vegan. If you want to use socket clus-
ters in unix-like systems (MacOS, Linux), this can
be only done with pre-defined clusters.

If socket cluster is not set up in Windows, vegan
will create and close the cluster within the function
body. This involves following commands:
clus <- makeCluster(4)

perform parallel processing
stopCluster(clus)

The first command sets up the cluster, in this case
with four cores, and the second command stops the
cluster.

Most parallelized vegan functions work similarly
in socket and fork clusters, but in oecosimu the
parallel processing is used to evaluate user-defined
functions, and their arguments and data must be
made known to the socket cluster. For example, if
you want to run in parallel the meandist function
of the oecosimu example with a pre-defined socket
cluster, you must use:

start up and define meandist ()
library(vegan)
data(sipoo)
meandist <-
function(x) mean(vegdist(x, "bray"))
> library(parallel)
> clus <- makeCluster(4)
> clusterEvalQ(clus, library(vegan))
> mbcl <- oecosimu(dune, meandist, "r2dtable",
parallel =
> stopCluster(clus)

clus)

Socket clusters are used for parallel processing
in Windows, but you do not need to pre-define
the socket cluster in oecosimu if you only need
vegan commands. However, if you need some

other contributed packages, you must pre-define the
socket cluster also in Windows with appropriate
clusterEvalQ calls.

If you pre-set the cluster, you can also use snow
style socket clusters in unix-like systems.

1.1.3 Random number generation

Vegan does not use parallel processing in random
number generation, and you can set the seed for
the standard random number generator. Setting
the seed for the parallelized generator (L’Ecuyer)
has no effect in vegan.

1.1.4 Does it pay off?

Parallelized processing has a considerable over-
head, and the analysis is faster only if the non-
parallel code is really slow (takes several seconds
in wall clock time). The overhead is particularly
large in socket clusters (in Windows). Creating a
socket cluster and evaluating 1ibrary(vegan) with
clusterEvalQ can take two seconds or longer, and
only pays off if the non-parallel analysis takes ten
seconds or longer. Using pre-defined clusters will
reduce the overhead. Fork clusters (in unix-likes
operating systems) have a smaller overhead and can
be faster, but they also have an overhead.

Each parallel process needs memory, and for a
large number of processes you need much memory.
If the memory is exhausted, the parallel processes
can stall and take much longer than non-parallel
processes (minutes instead of seconds).

If the analysis is fast, and function runs in, say,
less than five seconds, parallel processing is rarely
useful. Parallel processing is useful only in slow
analyses: large number of replications or simula-
tions, slow evaluation of each simulation. The dan-
ger of memory exhaustion must always be remem-
bered.

The benefits and potential problems of parallel
processing depend on your particular system: it is
best to rely on your own experience.

1.2 Internals for developers

The implementation of the parallel processing
should accord with the description of the user in-
terface above (§[I.I). Function oecosimu can be
used as a reference implementation, and similar

interpretation and order of interpretation of argu-
ments should be followed. All future implementa-
tions should be consistent and all must be changed
if the call heuristic changes.

The value of the parallel argument can be
NULL, a positive integer or a socket cluster. Integer
1 means that no parallel processing is performed.
The “normal” default is NULL which in the “nor-
mal” case is interpreted as 1. Here “normal” means
that R is run with default settings without setting
mc . cores or environmental variable MC_CORES.

Function oecosimu interprets the parallel ar-
guments in the following way:

1. NULL: The function is called with argument
parallel = getOption("mc.cores"). The
option mc.cores is normally unset and then
the default is parallel = NULL.

2. Integer: An integer value is taken as the num-
ber of created parallel processes. In unix-like
systems this is the number of forked multicore
processes, and in Windows this is the num-
ber of workers in socket clusters. In Windows,
the socket cluster is created, and if needed
library(vegan) is evaluated in the cluster
(this is not necessary if the function only uses
internal functions), and the cluster is stopped
after parallel processing.

3. Socket cluster: If a socket cluster is given, it
will be used in all operating systems, and the
cluster is not stopped within the function.

This gives the following precedence order for par-
allel processing (highest to lowest):

1. Explicitly given argument value of parallel
will always be used.

2. If mc.cores is set, it will be used. In Windows
this means creating and stopping socket clus-
ters. Please note that the mc.cores is only
set from the environmental variable MC_CORES
when you load the parallel package, and it is
always unset before first require(parallel).

3. The fall back behaviour is no parallel process-
ing.

Figure 1: Matrix temperature for Falco subbuteo on
Sibbo Svartholmen (dot). The curve is the fill line,
and in a cold matrix, all presences (red squares)
should be in the upper left corner behind the fill
line. Dashed diagonal line of length D goes through
the point, and an arrow of length d connects the
point to the fill line. The “surprise” for this point
is u = (d/D)? and the matrix temperature is based
on the sum of surprises: presences outside the fill
line or absences within the fill line.

2 Nestedness and Null models

Some published indices of nestedness and null mod-
els of communities are only described in general
terms, and they could be implemented in various
ways. Here I discuss the implementation in vegan.

2.1 Matrix temperature

The matrix temperature is intuitively simple (Fig.
, but the the exact calculations were not ex-
plained in the original publication (Atmar and
[Patterson) |[1993). The function can be imple-
mented in many ways following the general prin-
ciples. [Rodriguez-Gironés and Santamarial (2006)
have seen the original code and reveal more details
of calculations, and their explanation is the basis of
the implementation in vegan. However, there are
still some open issues, and probably vegan func-

tion nestedtemp will never exactly reproduce re-
sults from other programs, although it is based on
the same general principlesﬂ I try to give main
computation details in this document — all details
can be seen in the source code of nestedtemp.

e Species and sites are put into unit square
(Rodriguez-Gironés and Santamarial, {2006)).
The row and column coordinates will be (k —
0.5)/n for k = 1...n, so that there are no
points in the corners or the margins of the
unit square, and a diagonal line can be drawn
through any point. I do not know how the rows
and columns are converted to the unit square
in other software, and this may be a consider-
able source of differences among implementa-
tions.

e Species and sites are ordered alternately using
indices (Rodriguez-Gironés and Santamarial,
20006)):

S5 = Z i2
ilz;j=1
o M
t; = Z (n—i+1)
i\a;,ijzo

Here x is the data matrix, where 1 is pres-
ence, and 0 is absence, ¢ and j are row and
column indices, and n is the number of rows.
The equations give the indices for columns, but
the indices can be reversed for corresponding
row indexing. Ordering by s packs presences
to the top left corner, and ordering by t pack
zeros away from the top left corner. The final
sorting should be “a compromise” (Rodriguez-
Gironés and Santamarial 2006|) between these
scores, and vegan uses s+t. The result should
be cool, but the packing does not try to mini-
mize the temperature (Rodriguez-Gironés and
Santamarial, [2006). I do not know how the
“compromise”’ is defined, and this can cause
some differences to other implementations.

e The following function is used to define the fill
line:
y=(1—-(1—-z))"/ (2)

lfunction nestedness in the bipartite package is a direct
port of the original BINMATNEST program of [Rodriguez-
Gironés and Santamarial (2006)).

This is similar to the equation suggested by
Rodriguez-Gironés and Santamarial (2006, eq.
4), but omits all terms dependent on the num-
bers of species or sites, because I could not
understand why they were needed. The dif-
ferences are visible only in small data sets.
The y and z are the coordinates in the unit
square, and the parameter p is selected so
that the curve covers the same area as is the
proportion of presences (Fig. [l). The pa-
rameter p is found numerically using R func-
tions integrate and uniroot. The fill line
used in the original matrix temperature soft-
ware (Atmar and Pattersonl [1993)) is supposed
to be similar (Rodriguez-Gironés and Santa-
maria, [2006]). Small details in the fill line com-
bined with differences in scores used in the unit
square (especially in the corners) can cause
large differences in the results.

e A line with slope= —1 is drawn through the
point and the x coordinate of the intersection
of this line and the fill line is found using func-
tion uniroot. The difference of this intersec-
tion and the row coordinate gives the argument
d of matrix temperature (Fig. [1).

e In other software, “duplicated” species occur-
ring on every site are removed, as well as empty
sites and species after reordering (Rodriguez-
Gironés and Santamaria, [2006). This is not
done in vegan.

3 Scaling in redundancy anal-
ysis

This chapter discusses the scaling of scores (results)
in redundancy analysis and principal component
analysis performed by function rda in the vegan
library.

Principal component analysis decomposes a cen-
tred data matrix X = {;;} into K orthogonal com-
ponents so that z;; = vn— 12sz1 Uik VARV
where u;, and vj), are orthonormal coeflicient ma-
trices and Ay are eigenvalues. In vegan the eigen-
values sum up to variance of the data, and therefore
we need to multiply with the square root of de-
grees of freedom n— 1. Orthonormality means that
sums of squared columns is one and their cross-

product is zero, or Y, u% = > v} = 1, and
Do Uikl = Zj vjrvj; = 0 for k # 1. This is a
decomposition, and the original matrix is found ex-
actly from the singular vectors and corresponding
singular values, and first two singular components
give the rank = 2 least squares estimate of the orig-
inal matrix.

The coeflicients u;; and v;;, are scaled to unit
length for all axes k. Eigenvalues)\, give the in-
formation of the importance of axes, or the ‘axis
lengths.” Instead of the orthonormal coefficients, or
equal length axes, it is customary to scale species
(column) or site (row) scores or both by eigenval-
ues to display the importance of axes and to de-
scribe the true configuration of points. Table
shows some alternative scalings. These alterna-
tives apply to principal components analysis in all
cases, and in redundancy analysis, they apply to
species scores and constraints or linear combina-
tion scores; weighted averaging scores have some-
what wider dispersion.

In community ecology, it is common to plot both
species and sites in the same graph. If this graph
is a graphical display of PCA, or a graphical, low-
dimensional approximation of the data, the graph
is called a biplot. The graph is a biplot if the trans-
formed scores satisfy z;; = ¢}, uj;v};, where cis a
scaling constant. In functions princomp, prcomp
and rda with scaling = "sites", the plotted
scores define a biplot so that the eigenvalues are
expressed for sites, and species are left unscaled.

There is no natural way of scaling species and
site scores to each other. The eigenvalues in redun-
dancy and principal components analysis are scale-
dependent and change when the data are multiplied
by a constant. If we have percent cover data, the
eigenvalues are typically very high, and the scores
scaled by eigenvalues will have much wider disper-
sion than the orthonormal set. If we express the
percentages as proportions, and divide the matrix
by 100, the eigenvalues will be reduced by factor
1002, and the scores scaled by eigenvalues will have
a narrower dispersion. For graphical biplots we
should be able to fix the relations of row and col-
umn scores to be invariant against scaling of data.
The solution in R standard function biplot is to
scale site and species scores independently, and typ-
ically very differently (Table , but plot each in-
dependently to fill the graph area. The solution
in Canoco and rda is to use proportional eigenval-

ues A,/ > \g instead of original eigenvalues. These
proportions are invariant with scale changes, and
typically they have a nice range for plotting two
data sets in the same graph.

The vegan package uses a scaling constant ¢ =
v/ (n—1)>" Mg in order to be able to use scaling by
proportional eigenvalues (like in Canoco) and still
be able to have a biplot scaling. Because of this,
the scaling of rda scores is non-standard. However,
the scores function lets you to set the scaling con-
stant to any desired values. It is also possible to
have two separate scaling constants: the first for
the species, and the second for sites and friends,
and this allows getting scores of other software or
R functions (Table [2).

The scaling is controlled by three arguments in
the scores function in vegan:

1. scaling with options "sites", "species"
and "symmetric" defines the set of scores
which is scaled by eigenvalues (Table .

2. const can be used to set the numeric scaling
constant to non-default values (Table .

3. correlation can be used to modify species
scores so that they show the relative change
of species abundance, or their correlation with
the ordination (Table . This is no longer a
biplot scaling.

4 Weighted average and linear
combination scores

Constrained ordination methods such as Con-
strained Correspondence Analysis (CCA) and Re-
dundancy Analysis (RDA) produce two kind of site
scores (ter Braak, 1986; Palmer], [1993]):

e L.C or Linear Combination Scores which are
linear combinations of constraining variables.

e WA or Weighted Averages Scores which are
such weighted averages of species scores that
are as similar to LC scores as possible.

Many computer programs for constrained ordina-
tions give only or primarily LC scores following
recommendation of |Palmer| (1993)). However, func-
tions cca and rda in the vegan package use primar-
ily WA scores. This chapter explains the reasons for
this choice.

Table 1:

Alternative scalings for RDA used in the functions prcomp and princomp, and the one used

in the vegan function rda and the proprietary software Canoco scores in terms of orthonormal species
(vir) and site scores (u;x), eigenvalues (A), number of sites (n) and species standard deviations (s;). In
rda, const = ¢/(n — 1) > Ax. Corresponding negative scaling in vegan is derived dividing each species
by its standard deviation s; (possibly with some additional constant multiplier).

Site scores u},

. *
Species scores Ul

prcomp, princomp
stats::biplot

stats::biplot, pc.biplot=TRUE
rda, scaling="sites"

rda, scaling="species"

rda, scaling="symmetric"

rda, correlation=TRUE

Uik \V/ TV — 1\/)\k

Uigkvn — 1
Wik\/ A/ D Ak X const

U; X const

Uik Y/ AK/ Y Ak X const

’Ujk
Ujk\/ﬁm
Ujkm
Vj X const
Viky/ Ak/ D Ak X const
Vjk Ak S Ak X const
VE N (0= D)s; o,

Uik

*
Ui,

Table 2:

Values of the const argument in vegan to get the scores that are equal to those from other

functions and software. Number of sites (rows) is n, the number of species (columns) is m, and the sum
of all eigenvalues is), A (this is saved as the item tot.chi in the rda result)

Scaling Species constant Site constant
vegan any V(=13 A YVin=1)3 N
prcomp, princomp 1 1 (n—1)>; A
Canocov3 -1, -2, -3 vn—1 vn
Canocov4 -1, -2, -3 N vn

Briefly, the main reasons are that

e LC scores are linear combinations, so they
give us only the (scaled) environmental vari-
ables. This means that they are independent
of vegetation and cannot be found from the
species composition. Moreover, identical com-
binations of environmental variables give iden-
tical LC scores irrespective of vegetation.

e McCune| (1997) has demonstrated that noisy
environmental variables result in deteriorated
LC scores whereas WA scores tolerate some
errors in environmental variables. All environ-
mental measurements contain some errors, and
therefore it is safer to use WA scores.

This article studies mainly the first point. The
users of vegan have a choice of either LC or WA
(default) scores, but after reading this article, I be-
lieve that most of them do not want to use LC

scores, because they are not what they were look-
ing for in ordination.

4.1 LC Scores are Linear Combina-
tions

Let us perform a simple CCA analysis using only
two environmental variables so that we can see the
constrained solution completely in two dimensions:
> library(vegan)

> data(varespec)

> data(varechem)

> orig <- cca(varespec ~ Al + K, varechem)
Function cca in vegan uses WA scores as default.
So we must specifically ask for LC scores (Fig. .

> plot(orig, dis=c("lc","bp"))
What would happen to linear combinations of LC
scores if we shuffle the ordering of sites in species

data? Function sample() below shuffles the in-
dices.

21

25 16 12 73

22
23

27 20

CCA2

Al

-2

T T T T T
-2 -1 0 1 2

CCA1

Figure 2: LC scores in CCA of the original data.

> i <- sample(nrow(varespec))
> shuff <- cca(varespec[i,] ~ Al + K, varechem)

It seems that site scores are fairly similar, but ori-
ented differently (Fig. [3)). We can use Procrustes
rotation to see how similar the site scores indeed
are (Fig. [4).

> plot(procrustes(scores(orig, dis="lc"),
scores (shuff, dis="1c")))

There is a small difference, but this will disappear
if we use Redundancy Analysis (RDA) instead of
CCA (Fig. . Here we use a new shuffling as well.
> tmpl <- rda(varespec ~ Al + K, varechem)

> i <- sample(nrow(varespec)) # Different shuffling
> tmp2 <- rda(varespec[i,] ~ Al + K, varechem)

LC scores indeed are linear combinations of con-
straints (environmental variables) and independent
of species data: You can shuffle your species data,
or change the data completely, but the LC scores
will be unchanged in RDA. In CCA the LC scores
are weighted linear combinations with site totals
of species data as weights. Shuffling species data
in CCA changes the weights, and this can cause
changes in LC scores. The magnitude of changes
depends on the variability of site totals.

The original data and shuffled data differ in their
goodness of fit:

> orig

S 21
18
— 2 278
19
14 g
5 15
25
2
o -
~ 12 4
<<
Q 13
© 23
11 Al
3 10 16
‘T —
9
22
C\Il —
K
7
T T T T I
-2 -1 0 1 2

CCA1

Figure 3: LC scores of shuffled species data.

Procrustes errors

Dimension 2

Dimension 1

Figure 4: Procrustes rotation of LC scores from
CCA of original and shuffled data.

Procrustes errors

Dimension 2

o

-6

I
6 -4 -2 0 2 4 6

Dimension 1

Figure 5: Procrustes rotation of LC scores in RDA
of the original and shuffled data.

Call: cca(formula = varespec ~ Al + K, data =
varechem)

Inertia Proportion Rank

Total 2.0832 1.0000
Constrained 0.4760 0.2285 2
Unconstrained 1.6072 0.7715 21

Inertia is scaled Chi-square

Eigenvalues for constrained axes:
CCA1 CCA2
0.3608 0.1152

Eigenvalues for unconstrained axes:
CA1 CA2 CA3 CA4 CA5 CA6 CA7
0.3748 0.2404 0.1970 0.1782 0.1521 0.1184 0.0836
CA8
0.0757
(Showing 8 of 21 unconstrained eigenvalues)

> shuff
Call: cca(formula = varespec[i,] ~ Al + K, data =

varechem)

Inertia Proportion Rank

Total 2.0832 1.0000
Constrained 0.2852 0.1369 2
Unconstrained 1.7980 0.8631 21

Inertia is scaled Chi-square

Eigenvalues for constrained axes:
CCA1 CCA2

Procrustes errors

Dimension 2
0
|

I
-3 -2 -1 0 1 2

Dimension 1

Figure 6: Procrustes rotation of WA scores of CCA
with the original and shuffled data.

0.16192 0.12327

Eigenvalues for unconstrained axes:
CA1 CA2 CA3 CA4 CA5 CA6 CA7
0.4540 0.3089 0.2035 0.1717 0.1526 0.1142 0.0953
CA8
0.0843
(Showing 8 of 21 unconstrained eigenvalues)

Similarly their WA scores will be (probably) very
different (Fig. [6).

The example used only two environmental vari-
ables so that we can easily plot all constrained
axes. With a larger number of environmental vari-
ables the full configuration remains similarly un-
changed, but its orientation may change, so that
two-dimensional projections look different. In the
full space, the differences should remain within nu-
merical accuracy:
> tmpl <- rda(varespec ~ ., varechem)
> tmp2 <- rda(varespec[i,] ~ ., varechem)
> proc <- procrustes(scores(tmpl, dis="lc", choi=1:14),

scores (tmp2, dis="lc", choi=1:14))
> max(residuals(proc))

[1] 2.186654e-14

In cca the difference would be somewhat larger
than now observed 2.1867e-14 because site weights
used for environmental variables are shuffled with
the species data.

0.5
[]

0.0
|

CCA2
-1.0

-15

-25
|

T T T T T T T
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

CCA1

Figure 7: LC scores of the dune meadow data using
only one factor as a constraint.

4.2 Factor constraints

It seems that users often get confused when they
perform constrained analysis using only one factor
(class variable) as constraint. The following exam-
ple uses the classical dune meadow data (Jongman
et al.l [1987)):
> data(dune)

> data(dune.env)
> orig <- cca(dune ~ Moisture, dune.env)

When the results are plotted using LC scores, sam-
ple plots fall only in four alternative positions (Fig.
[7). In the previous chapter we saw that this hap-
pens because LC scores are the environmental vari-
ables, and they can be distinct only if the environ-
mental variables are distinct. However, normally
the user would like to see how well the environmen-
tal variables separate the vegetation, or inversely,
how we could use the vegetation to discriminate
the environmental conditions. For this purpose we
should plot WA scores, or LC scores and WA scores
together: The LC scores show where the site should
be, the WA scores shows where the site is.
Function ordispider adds line segments to con-
nect each WA score with the corresponding LC

(Fig. .

> plot(orig, display="wa", type="points")

re5

"Moisture

CCA2

Moisture4
@

-3 -2 -1 0 1 2

CCA1

Figure 8: A “spider plot” connecting WA scores
to corresponding LC scores. The shorter the web
segments, the better the ordination.

> ordispider(orig, col="red")
> text(orig, dis="cn", col="blue")

This is the standard way of displaying results of
discriminant analysis, too. Moisture classes 1 and 2
seem to be overlapping, and cannot be completely
separated by their vegetation. Other classes are
more distinct, but there seems to be a clear arc
effect or a “horseshoe” despite using CCA.

4.3 Conclusion

LC scores are only the (weighted and scaled) con-
straints and independent of vegetation. If you plot
them, you plot only your environmental variables.
WA scores are based on vegetation data but are
constrained to be as similar to the LC scores as
only possible. Therefore vegan calls LC scores as
constraints and WA scores as site scores, and
uses primarily WA scores in plotting. However, the
user makes the ultimate choice, since both scores
are available.

References

Atmar W, Patterson BD (1993). “The measure of
order and disorder in the distribution of species
in fragmented habitat.” Oecologia, 96, 373—-382.

Jongman RH, ter Braak CJF, van Tongeren OFR
(1987). Data analysis in community and land-
scape ecology. Pudoc, Wageningen.

McCune B (1997). “Influence of noisy environmen-
tal data on canonical correspondence analysis.”
FEcology, 78, 2617-2623.

Palmer MW (1993). “Putting things in even better
order: The advantages of canonical correspon-
dence analysis.” FEcology, 74, 2215-2230.

Rodriguez-Gironés MA, Santamaria L (2006). “A
new algorithm to calculate the nestedness tem-
perature of presence—absence matrices.” Journal
of Biogeography, 33, 921-935.

ter Braak CJF (1986). “Canonical correspondence
analysis: a new eigenvector technique for mul-
tivariate direct gradient analysis.” FEcology, 67,
1167-1179.

10

	Parallel processing
	User interface
	Using parallel processing as default
	Setting up socket clusters
	Random number generation
	Does it pay off?

	Internals for developers

	Nestedness and Null models
	Matrix temperature

	Scaling in redundancy analysis
	Weighted average and linear combination scores
	LC Scores are Linear Combinations
	Factor constraints
	Conclusion

