The BiTEX preprocessor

(Version 0.99d—March 14, 2024)

Section Page

Introduction e 1
The main Program e e 10
The character Set 21
Input and outputo 36
String handling 48
The hash table 64
Scanning an input line 80
Getting the top-level auxiliary file name 97
Reading the auxiliary file(S)ooe 109
Reading the style file 146
Style-file commandsttt 163
Reading the database file(S)t 218
Executing the style file o 290
The built-in functions 331
ClEaning UD . oottt ettt e e e e e e e 455
System-dependent changes 467
ndeX .o 468

MaARcH 14, 2024 AT 18:52

1

4

8
14
18
23
29
34
38
48
95
72
98
113
162
167
168

§1 BBIRX INTRODUCTION 1

1. Introduction. BIBTEX is a preprocessor (with elements of postprocessing as explained below) for
the I4TRpX document-preparation system. It handles most of the formatting decisions required to produce a
reference list, outputting a .bbl file that a user can edit to add any finishing touches BIBTX isn’t designed to
handle (in practice, such editing almost never is needed); with this file INTX actually produces the reference
list.

Here’s how BIBTEX works. It takes as input (a) an .aux file produced by IATX on an earlier run;
(b) a .bst file (the style file), which specifies the general reference-list style and specifies how to format
individual entries, and which is written by a style designer (called a wizard throughout this program) in a
special-purpose language described in the BIBTEX documentation—see the file btxdoc.tex; and (c) .bib
file(s) constituting a database of all reference-list entries the user might ever hope to use. BIBTEX chooses
from the .bib file(s) only those entries specified by the .aux file (that is, those given by IATpX’s \cite or
\nocite commands), and creates as output a .bbl file containing these entries together with the formatting
commands specified by the .bst file (BIBTEX also creates a .blg log file, which includes any error or warning
messages, but this file isn’t used by any program). I#TX will use the .bbl file, perhaps edited by the user,
to produce the reference list.

Many modules of BIBIEX were taken from Knuth’s TEX and TgXware, with his permission. All known
system-dependent modules are marked in the index entry “system dependencies”; Dave Fuchs helped exorcise
unwanted ones. In addition, a few modules that can be changed to make BIBIEX smaller are marked in the
index entry “space savings”.

Megathanks to Howard Trickey, for whose suggestions future users and style writers would be eternally
grateful, if only they knew.

The banner string defined here should be changed whenever BIBTEX gets modified.

define banner = "This_ is BibTeX, Version;,0.99d" {printed when the program starts }

2. Terminal output goes to the file term_out, while terminal input comes from term_in. On our system,
these (system-dependent) files are already opened at the beginning of the program, and have the same real
name.

define term_out = ity
define term_in = tty

2 INTRODUCTION BIBTRX 83

3. This program uses the term print instead of write when writing on both the log_file and (system-
dependent) term_out file, and it uses trace_pr when in trace mode, for which it writes on just the log_file.
If you want to change where either set of macros writes to, you should also change the other macros in this
program for that set; each such macro begins with print_ or trace_pr..
define print(#) =
begin write (log_file, #); write(term_out, #);
end
define print_in(#) =
begin write_ln(log_file, #); write_ln(term_out, #);
end
define print_newline = print_a_newline { making this a procedure saves a little space }

define trace_pr(#) =
begin write (log_file, #);
end
define trace_pr_in(#) =
begin write_ln(log_file, #);
end
define trace_pr_newline =
begin write_ln (log_file);
end
{ Procedures and functions for all file I/O, error messages, and such 3) =
procedure print_a_newline;
begin write_ln (log_file); write_In(term_out);
end;
See also sections 18, 44, 45, 46, 47, 51, 53, 59, 82, 95, 96, 98, 99, 108, 111, 112, 113, 114, 115, 121, 128, 137, 138, 144, 148, 149,
150, 153, 157, 158, 159, 165, 166, 167, 168, 169, 188, 220, 221, 222, 226, 229, 230, 231, 232, 233, 234, 235, 240, 271, 280,
281, 284, 293, 294, 295, 310, 311, 313, 321, 356, 368, 373, and 456.

This code is used in section 12.

4. Some of the code below is intended to be used only when diagnosing the strange behavior that sometimes
occurs when BIBTX is being installed or when system wizards are fooling around with BIBTpX without quite
knowing what they are doing. Such code will not normally be compiled; it is delimited by the codewords
‘debug ...gubed’, with apologies to people who wish to preserve the purity of English. Similarly, there
is some conditional code delimited by ‘stat ...tats’ that is intended only for use when statistics are to be
kept about BIBTEX’s memory/cpu usage, and there is conditional code delimited by ‘trace...ecart’ that
is intended to be a trace facility for use mainly when debugging .bst files.

define debug = @{ { remove the ‘@{’ when debugging }
define gubed =@} { remove the ‘@}’ when debugging }
format debug = begin

format gubed = end

define stat = @{ { remove the ‘@{’ when keeping statistics }
define tats = @} { remove the ‘@}’ when keeping statistics }
format stat = begin

format tats = end

define trace = @{ { remove the ‘@{’ when in trace mode }
define ecart = @} { remove the ‘@}’ when in trace mode }
format trace = begin

format ecart = end

§6 BIBIRX INTRODUCTION 3

5. We assume that case statements may include a default case that applies if no matching label is found,
since most PASCAL compilers have plugged this hole in the language by incorporating some sort of default
mechanism. For example, the PASCAL-H compiler allows ‘others:’ as a default label, and other PASCALs
allow syntaxes like ‘else’ or ‘otherwise’ or ‘otherwise:’, etc. The definitions of othercases and endcases
should be changed to agree with local conventions. Note that no semicolon appears before endcases in this
program, so the definition of endcases should include a semicolon if the compiler wants one. (Of course, if
no default mechanism is available, the case statements of BIBTpX will have to be laboriously extended by
listing all remaining cases. People who are stuck with such PASCALSs have in fact done this, successfully but
not happily!)

define othercases = others: { default for cases not listed explicitly }

define endcases = end {follows the default case in an extended case statement }

format othercases = else

format endcases = end

6. Labels are given symbolic names by the following definitions, so that occasional goto statements will
be meaningful. We insert the label ‘exit:’ just before the ‘end’ of a procedure in which we have used
the ‘return’ statement defined below (and this is the only place ‘exit:’ appears). This label is sometimes
used for exiting loops that are set up with the loop construction defined below. Another generic label is
‘loop_exit:’; it appears immediately after a loop.

Incidentally, this program never declares a label that isn’t actually used, because some fussy PASCAL
compilers will complain about redundant labels.

define exit =10 {go here to leave a procedure }

define loop_exit =15 {go here to leave a loop within a procedure }
define loopi_exit =16 {the first generic label for a procedure with two }
define loop2_exit = 17 {the second }

7. And while we’re discussing loops: This program makes into while loops many that would otherwise
be for loops because of Standard PASCAL limitations (it’s a bit complicated—standard PASCAL doesn’t
allow a global variable as the index of a for loop inside a procedure; furthermore, many compilers have fairly
severe limitations on the size of a block, including the main block of the program; so most of the code in
this program occurs inside procedures, and since for other reasons this program must use primarily global
variables, it doesn’t use many for loops).

8. This program uses this convention: If there are several quantities in a boolean expression, they are
ordered by expected frequency (except perhaps when an error message results) so that execution will be
fastest; this is more an attempt to understand the program than to make it faster.

9. Here are some macros for common programming idioms.

define incr(#) =# <« #+ 1 {increase a variable by unity }

define decr(#) =#+ #—1 {decrease a variable by unity }

define loop = while true do {repeat over and over until a goto happens }
format loop = zclause {WEB’s xclause acts like ‘while true do’}

define do_nothing = {empty statement }

define return = goto exit {terminate a procedure call }

format return = nil

define empty =0 {symbolic name for a null constant }

define any_value =0 {this appeases PASCAL’s boolean-evaluation scheme }

4 THE MAIN PROGRAM BIBTRX §10

10. The main program. This program first reads the .aux file that INTX produces, (i) determining
which .bib file(s) and .bst file to read and (ii) constructing a list of cite keys in order of occurrence. The
.aux file may have other .aux files nested within. Second, it reads and executes the .bst file, (i) determining
how and in which order to process the database entries in the .bib file(s) corresponding to those cite keys
in the list (or in some cases, to all the entries in the .bib file(s)), (ii) determining what text to be output
for each entry and determining any additional text to be output, and (iii) actually outputting this text to
the .bbl file. In addition, the program sends error messages and other remarks to the log_file and terminal.

define close_up_shop = 9998 {jump here after fatal errors }
define exit_program = 9999 {jump here if we couldn’t even get started }

(Compiler directives 11)
program BibTEX; {all files are opened dynamically }
label close_up_shop, exit_program (Labels in the outer block 109);
const (Constants in the outer block 14)
type (Types in the outer block 22)
var (Globals in the outer block 16)
(Procedures and functions for about everything 12)
(The procedure initialize 13)
begin initialize; print_In(banner);
(Read the .aux file 110);
(Read and execute the .bst file 151);
close_up_shop: (Clean up and leave 455);
exit_program: end.

11. If the first character of a PASCAL comment is a dollar sign, PASCAL-H treats the comment as a list of
“compiler directives” that will affect the translation of this program into machine language. The directives
shown below specify full checking and inclusion of the PASCAL debugger when BIBTRX is being debugged,
but they cause range checking and other redundant code to be eliminated when the production system is
being generated. Arithmetic overflow will be detected in all cases.
(Compiler directives 11) =

0{e&$C'—, A+, D—@} {no range check, catch arithmetic overflow, no debug overhead }

debug 0{e&$C+, D+0} gubed {but turn everything on when debugging }

This code is used in section 10.

12. All procedures in this program (except for initialize) are grouped into one of the seven classes below,
and these classes are dispersed throughout the program. However: Much of this program is written top
down, yet PASCAL wants its procedures bottom up. Since mooning is neither a technically nor a socially
acceptable solution to the bottom-up problem, this section instead performs the topological gymnastics that
WEB allows, ordering these classes to satisfy PASCAL compilers. There are a few procedures still out of place
after this ordering, though, and the other modules that complete the task have “gymnastics” as an index
entry.

(Procedures and functions for about everything 12) =
(Procedures and functions for all file I/O, error messages, and such 3)
(Procedures and functions for file-system interacting 38)
(Procedures and functions for handling numbers, characters, and strings 54)
(Procedures and functions for input scanning 83)
(Procedures and functions for name-string processing 367)
(Procedures and functions for style-file function execution 307)
(Procedures and functions for the reading and processing of input files 100)

This code is used in section 10.

§13 BBIRX THE MAIN PROGRAM 5

13. This procedure gets things started properly.

(The procedure initialize 13) =

procedure initialize;

var (Local variables for initialization 23)

begin (Check the “constant” values for consistency 17);

if (bad > 0) then
begin write_In(term_out, bad : 0, " is a bad bad”); goto exil_program;
end;

(Set initial values of key variables 20);

pre_def_certain_strings;

get_the_top_level_auz_file_name;

end;

3

This code is used in section 10.

14. These parameters can be changed at compile time to extend or reduce BIBTpX’s capacity. They are

set to accommodate about 750 cites when used with the standard styles, although pool_size is usually the
first limitation to be a problem, often when there are 500 cites.

(Constants in the outer block 14) =

buf-size = 1000; { maximum number of characters in an input line (or string) }

min_print_line = 3; {minimum .bbl line length: must be > 3}

maz_print_line = 79; {the maximum: must be > min_print_line and < buf_size }

auz_stack_size = 20; { maximum number of simultaneous open .aux files }

maz_bib_files = 20; {maximum number of .bib files allowed }

pool_size = 65000; { maximum number of characters in strings }

maz_strings = 4000; { maximum number of strings, including pre-defined; must be < hash_size }
maz_cites = 750; { maximum number of distinct cite keys; must be < maz_strings }
min_crossrefs = 2; { minimum number of cross-refs required for automatic cite_list inclusion }
wiz_fn_space = 3000; { maximum amount of wiz_defined-function space }

single_fn_space = 100; { maximum amount for a single wiz_defined-function }

maz_ent_ints = 3000; { maximum number of int_entry_vars (entries X int_entry_vars) }
maz_ent_strs = 3000; {maximum number of str_entry_vars (entries x str_entry_vars) }
ent_str_size = 100; { maximum size of a str_entry_var; must be < buf_size }

glob_str_size = 1000; { maximum size of a str_global_var; must be < buf size }

maz_fields = 17250; { maximum number of fields (entries x fields, about 23 * max_cites for consistency) }
lit_stk_size = 100; { maximum number of literal functions on the stack }

See also section 333.

This code is used in section 10.

15. These parameters can also be changed at compile time, but they’re needed to define some WEB numeric

macros so they must be so defined themselves.

define hash_size = 5000 {must be > maz_strings and > hash_prime }

define hash_prime = 4253 {a prime number about 85% of hash_size and > 128 and < 24 — 26}
define file_name_size = 40 {file names shouldn’t be longer than this }

define maz_glob_strs =10 { maximum number of str_global_var names }

define maz_glb_str_minus_1 = maz_glob_strs —1 {to avoid wasting a str_global_var }

6 THE MAIN PROGRAM BIBTRX §16

16. In case somebody has inadvertently made bad settings of the “constants,” BIBTEX checks them using
a global variable called bad.
This is the first of many sections of BIBTpX where global variables are defined.

(Globals in the outer block 16) =

bad: integer; {is some “constant” wrong? }

See also sections 19, 24, 30, 34, 37, 41, 43, 48, 65, 74, 76, 78, 80, 89, 91, 97, 104, 117, 124, 129, 147, 161, 163, 195, 219, 247,
290, 331, 337, 344, and 365.

This code is used in section 10.

17. Each digit-value of bad has a specific meaning.

{ Check the “constant” values for consistency 17) =

bad + 0;

if (min_print_line < 3) then bad + 1;

if (maz_print_line < min_print_line) then bad + 10 * bad + 2;

f (maz_print_line > buf_size) then bad < 10 * bad + 3;

if (hash_prime < 128) then bad < 10 x bad + 4;

if (hash_prime > hash_size) then bad < 10 * bad + 5;

if (hash_prime > (16384 — 64)) then bad < 10 * bad + 6;

if (maz_strings > hash_size) then bad < 10 * bad + 7;

if (maz_cites > maz_strings) then bad < 10 * bad + 8;

if (ent_str_size > buf_size) then bad < 10 * bad + 9;

if (glob_str_size > buf_size) then bad < 100 x bad + 11; { well, almost each }
See also section 302.

This code is used in section 13.

§18 BIBIRX THE MAIN PROGRAM 7

18. A global variable called history will contain one of four values at the end of every run: spotless
means that no unusual messages were printed; warning_message means that a message of possible interest
was printed but no serious errors were detected; error_message means that at least one error was found;
fatal_message means that the program terminated abnormally. The value of history does not influence the
behavior of the program; it is simply computed for the convenience of systems that might want to use such
information.

define spotless =0 { history value for normal jobs }

define warning-message =1 { history value when non-serious info was printed }
define error_message =2 { history value when an error was noted }

define fatal_message =3 { history value when we had to stop prematurely }

{Procedures and functions for all file I/O, error messages, and such 3) +=
procedure mark_warning;
begin if (history = warning_message) then incr(err_count)
else if (history = spotless) then
begin history < warning-message; err_count < 1;
end;
end;

procedure mark_error;
begin if (history < error_message) then
begin history < error_message; err_count < 1;
end
else { history = error_message }
incr (err_count);
end;
procedure mark_fatal;
begin history + fatal_message;
end;

19. For the two states warning_message and error_message we keep track of the number of messages given;
but since warning_messages aren’t so serious, we ignore them once we’ve seen an error_message. Hence we
need just the single variable err_count to keep track.

{ Globals in the outer block 16) +=

history: spotless .. fatal-message; {how bad was this run? }
err_count: integer;

20. The err_count gets set or reset when history first changes to warning_message or error_message, so
we don’t need to initialize it.
(Set initial values of key variables 20) =
history < spotless;
See also sections 25, 27, 28, 32, 33, 35, 67, 72, 119, 125, 131, 162, 164, 196, and 292.

This code is used in section 13.

8 THE CHARACTER SET BIBTRX §21

21. The character set. (The following material is copied (almost) verbatim from TEX. Thus, the same
system-dependent changes should be made to both programs.)

In order to make TEX readily portable between a wide variety of computers, all of its input text is
converted to an internal seven-bit code that is essentially standard ASCII, the “American Standard Code for
Information Interchange.” This conversion is done immediately when each character is read in. Conversely,
characters are converted from ASCII to the user’s external representation just before they are output to a
text file.

Such an internal code is relevant to users of TEX primarily because it governs the positions of characters
in the fonts. For example, the character ‘A’ has ASCII code 65 = ‘101, and when TEX typesets this letter
it specifies character number 65 in the current font. If that font actually has ‘A’ in a different position,
TEX doesn’t know what the real position is; the program that does the actual printing from TEX’s device-
independent files is responsible for converting from ASCII to a particular font encoding.

TEX’s internal code is relevant also with respect to constants that begin with a reverse apostrophe.

22. Characters of text that have been converted to TEX’s internal form are said to be of type ASCII_code,
which is a subrange of the integers.

(Types in the outer block 22) =
ASCII_code =0 ..127; {seven-bit numbers }
See also sections 31, 36, 42, 49, 64, 73, 105, 118, 130, 160, 291, and 332.

This code is used in section 10.

23. The original PASCAL compiler was designed in the late 60s, when six-bit character sets were common,
so it did not make provision for lower-case letters. Nowadays, of course, we need to deal with both capital
and small letters in a convenient way, especially in a program for typesetting; so the present specification
of TEX has been written under the assumption that the PASCAL compiler and run-time system permit the
use of text files with more than 64 distinguishable characters. More precisely, we assume that the character
set contains at least the letters and symbols associated with ASCII codes 40 through “176; all of these
characters are now available on most computer terminals.

Since we are dealing with more characters than were present in the first PASCAL compilers, we have to
decide what to call the associated data type. Some PASCALSs use the original name char for the characters
in text files, even though there now are more than 64 such characters, while other PASCALs consider char
to be a 64-element subrange of a larger data type that has some other name.

In order to accommodate this difference, we shall use the name tezt_char to stand for the data type of
the characters that are converted to and from ASCII_code when they are input and output. We shall also
assume that text_char consists of the elements chr(first_text_char) through chr(last_text_char), inclusive.
The following definitions should be adjusted if necessary.

define text_char = char {the data type of characters in text files }

define first_text_char =0 {ordinal number of the smallest element of text_char }

define last_text_char =127 {ordinal number of the largest element of text_char }

(Local variables for initialization 23) =
i: 0.. last_text_char; {this is the first one declared }
See also section 66.

This code is used in section 13.

24. The TEX processor converts between ASCII code and the user’s external character set by means of
arrays zord and zchr that are analogous to PASCAL’s ord and chr functions.

(Globals in the outer block 16) +=

zord: array [text_char] of ASCII code; {specifies conversion of input characters }

xzchr: array [ASCIL code] of text_char; {specifies conversion of output characters }

§25 BIBIRX

25.

THE CHARACTER SET 9

Since we are assuming that our PASCAL system is able to read and write the visible characters of

standard ASCII (although not necessarily using the ASCII codes to represent them), the following assignment
statements initialize most of the zchr array properly, without needing any system-dependent changes. On
the other hand, it is possible to implement TEX with less complete character sets, and in such cases it will
be necessary to change something here.

(Set initial values of key variables 20) +=

xchr

TTTTTTT

xchr
xchr
xchr
xchr

[4
["
["
[
[
[7
[7
[1
[1
[1
[
[
xchr|
[
[”
[
[
[
[
["
[
[
[
[

]
]
|
115]
'120]
'125]
xzchr|’150]
xchr]
xchr|’140]
xchr[145]
150]
155]

]

|

]

]

xchr
xchr
xchr
xchr
xchr
xchr

‘165
‘170
‘175

zchr(0] < U7 :cchr[177 +

26.

TTTTTTTTTTTTTTTT

e’
h7;
‘m”
P
u”
x”
3

‘@ xzchr

i

)

Y

[
[
xchr|”
X
X
[7

; xchr
; xchr

xchr[fﬂ]e T
; xchr 46’ — &’;

I
xchr(’
xchr|’
xchr|
xchr|
xchr|
xchr|
xchr|’
[
[
[
[
I
[
[

]

]

]
‘116]
]

]

]

]
xzchr|141]
]

]

]

]

]

]

]

‘121
‘126
131

xchr|’146
‘151
‘156

xchr
xchr
xchr
‘166
‘171
xchr| 176

xchr|42] < "‘; xchr[48] < “#7;
zehr[47]) < =777
i xchr[52] + “*7; mchr[’55’] — T+
5 achr[57) «— /7
5 xchr['62] < "27; xchr[63] <+ "37;
5 xchr[67] < 77
5 oxchr[72] < T 75 wehr[18]) < 757
Y oaxchr[77] + 77
A" xchr[102] < “B"; zchr['103] +
; xchr[’107] + "G7;
I’; xchr[112]) <= ~J7; xchr['113] «
N zchr['117] + 07
; xchr['122] < "R7; xchr['123] +
% xehr[127] + W
Y’; xchr[’182) < “Z7; xchr['133] «+
Tty xchr[187) + _
“a’; wchr['142] < "b”; wchr['143]
“£7; xehr['147]) + g7
17y mehr['152] < "7 wchr['153] +
‘n7; xzchr[’157] < o7
“q7; xchr[’162] < “r”; zchr['163] «+
v xchr[167] < w7
y 5 xchr[172] <= “z7; xchr['178] +

)

; { ASCII codes 0 and

xchr[44] + °$°

xchr|'54] + ~

)

s)

xzchr[64] < "47;

xchr[14] « <7

“C”; achr[104] + D7
K75 zchr[114] + L7
STy wehr[124]) + T
[wehr[134] < "\ 7
“c”y xehr[144] + 47
k7 achr[154]) + 17
STy wehr[164] < "t

{75 xehr[174] +

‘177 do not appear in text }

Some of the ASCII codes without visible characters have been given symbolic names in this program

because they are used with a special meaning. The tab character may be system dependent.
define null_code = 0 { ASCII code that might disappear }

define tab =

‘11

{ ASCII code treated as white_space }

define space = 40 { ASCII code treated as white_space }
define invalid_code = 177 { ASCII code that should not appear }

10 THE CHARACTER SET BIBTRX §27

27. The ASCII code is “standard” only to a certain extent, since many computer installations have found it
advantageous to have ready access to more than 94 printing characters. Appendix C of The TEXbook gives a
complete specification of the intended correspondence between characters and TEX’s internal representation.

If TEX is being used on a garden-variety PASCAL for which only standard ASCII codes will appear in
the input and output files, it doesn’t really matter what codes are specified in xzchr[l .. “37], but the safest
policy is to blank everything out by using the code shown below.

However, other settings of xzchr will make TEX more friendly on computers that have an extended character
set, so that users can type things like ‘¢’ instead of ‘\ne’. At MIT, for example, it would be more appropriate
to substitute the code

for i < 1to 37 do zchrli] < chr(i);

TEX’s character set is essentially the same as MIT’s, even with respect to characters less than 40. People
with extended character sets can assign codes arbitrarily, giving an zchr equivalent to whatever characters
the users of TEX are allowed to have in their input files. It is best to make the codes correspond to the
intended interpretations as shown in Appendix C whenever possible; but this is not necessary. For example,
in countries with an alphabet of more than 26 letters, it is usually best to map the additional letters into
codes less than 0.

(Set initial values of key variables 20) +=
for i < 1to 37 do xchrli] + "u;
xchr[tab] < chr(tab);

28. This system-independent code makes the zord array contain a suitable inverse to the information in
xzchr. Note that if xchr[i] = zchr[j] where i < j < “177, the value of zord[zchr[i]] will turn out to be j
or more; hence, standard ASCII code numbers will be used instead of codes below /0 in case there is a
coincidence.

(Set initial values of key variables 20) +=
for i «+ first_text_char to last_text_char do zord|[chr(i)] + invalid_code;
for i < 1to 176 do zord[zchr[i]] < i

§29 BIBIRX THE CHARACTER SET 11

29. Also, various characters are given symbolic names; all the ones this program uses are collected here.
We use the sharp sign as the concat_char, rather than something more natural (like an ampersand), for
uniformity of database syntax (ampersand is a valid character in identifiers).

define double_quote = """" { delimits strings }

define number_sign = "#" {marks an int_literal }

define comment = "%" {ignore the rest of a .bst or TEX line }
define single_quote = """ {marks a quoted function }

define left_paren = "(" {optional database entry left delimiter }
define right_paren = ")" { corresponding right delimiter }

define comma ="," {separates various things }
define minus_sign = "-" {for a negative number }
define equals_sign = "=" {separates a field name from a field value }

define at_sign = "@" {the beginning of a database entry }
define left_brace = "{" {left delimiter of many things }
define right_brace = "}" { corresponding right delimiter }

define period = "." {these are three }

define question_mark = "?" {string-ending characters }

define exzclamation-mark = "1" {of interest in add.period$ }
define tie = """ {the default space char, in format.name$ }
define hyphen = "-" {like white_space, in format.name$ }
define star = "x" {for including entire database }

define concat_char = "#" {for concatenating field tokens }
define colon =":" {for lower-casing (usually title) strings }
define backslash = "\" {used to recognize accented characters }

30. These arrays give a lexical classification for the ASCII codes; lex_class is used for general scanning
and id_class is used for scanning identifiers.

(Globals in the outer block 16) +=
lez_class: array [ASCII_code] of lex_type;
id_class: array [ASCII code] of id_type;

31. Every character has two types of the lexical classifications. The first type is general, and the second
type tells whether the character is legal in identifiers.

define illegal =0 {the unrecognized ASCII_codes }

define white_space =1 {things like spaces that you can’t see }
define alpha =2 {the upper- and lower-case letters }

define numeric =3 {the ten digits }

define sep_char =4 {things sometimes treated like white_space }
define other_-lex =5 { when none of the above applies }

define last_lex =5 {the same number as on the line above }

define illegal_id_char =0 {a few forbidden ones }
define legal_id_char =1 {most printing characters }

(Types in the outer block 22) +=
lez_type = 0 .. last_lex;
id-type =0 .. 1;

12 THE CHARACTER SET BIBTRX §32

32. Now we initialize the system-dependent lex_class array. The tab character may be system dependent.
Note that the order of these assignments is important here.

(Set initial values of key variables 20) +=
for i < 0to 177 do lex_class|i] « other_lex;
for i < 0 to 37 do lex_class[i] « illegal;
lex_class[invalid_code] < illegal; lex_class[tab] + white_space; lex_class[space] < white_space;
lex_class|tie] < sep_char; lex_class[hyphen] < sep_char;
for i < 60 to 71 do lex_class[i] + numeric;
for i + “101 to 132 do lex_class[i] < alpha;
for i < 141 to '172 do lex_class|i] < alpha;

33. And now the id_class array.

(Set initial values of key variables 20) +=

for i < 0 to 177 do id_class[i] < legal_id_char;

for i <— 0 to 37 do id_class|i] < illegal_id_char;

id_class|space] + illegal_id_char; id_class[tab] < illegal_id_char; id_class|[double_quote| <+ illegal_id_char;

id_class[number_sign] < illegal_id_char; id_class[comment] < illegal_id_char;
id_class[single_quote] + illegal_id_char; id_class|left_paren] «+ illegal_id_char;
id_class[right_paren] < illegal_id_char; id_class|comma] < illegal_id_char;
id_class[equals_sign] < illegal_id_char; id_class|left_brace] < illegal_id_char;
id_class[right_brace] + illegal_id_char;

34. The array char_width gives relative printing widths of each ASCII_code, and string_width will be used
later to sum up char_widths in a string.

(Globals in the outer block 16) +=

char_width: array [ASCII code] of integer;

string_width: integer;

635 BIBIRX THE CHARACTER SET 13

35. Now we initialize the system-dependent char_width array, for which space is the only white_space
character given a nonzero printing width. The widths here are taken from Stanford’s June ’87 ¢mr10 font
and represent hundredths of a point (rounded), but since they’re used only for relative comparisons, the
units have no meaning.

define ss_width = 500 { character "31’s width in the ¢mr10 font }
define ae_width = 722 {character "32’s width in the c¢mr10 font }
define oe_width = 778 {character "33’s width in the ¢mr10 font }
define upper_ae_width = 903 { character "35’s width in the ¢mr10 font }
define upper_oe_width = 1014 { character “86’s width in the ¢mr10 font }

(Set initial values of key variables 20) —|—E
for i + 0 to 177 do char_width[i] +

char_width
char_width
char_width
char_width
char_width
char_width
char_width
char_width

144 + 556; char_width|'145] + 444; char_width|'146] < 306; char_width|'147] + 500;
152
‘156

‘151
‘155

'150] < 556; char_width ‘158
‘154 < 278; char_width

‘160] < 556; char_width

+ 278; char_width
<+ 833; char_width
‘161] < 528; char-width|’162] < 392; char_-width
‘164] < 389; char_width|’165] < 556; char_width|’166] < 528; char_width
170] + 528; char-width['171] + 528; char_width[172] + 444; char_width
“174] + 1000; char_width[175] < 500; char_-width|’176] < 500;

« 306; char_width
< 556; char_width

[
[
[
[
|

« 750; char-width|[’131
[
[
[
[| + 528;
[“157] + 500;
[163] « 394;
[167 + 722;

]

['102] [
] ['106] [
] ['112] [
] ['116] [
] ['122] [
EEmmm
“185] < 278; char_width[’186] < 500; char-width[187] < 278;
] [142] [
] ['146] [
] [152] [
] [156] [
] ['162] [
] ['166] [
[(173

]
J
J
J
J
}
140] + 278; char_width['141] + 500; char-width|'142] + 556; char_width|'143] + 444;
J
]
]
]
]
J
J

+— 500;

char_width|40] < 278; char_-width|’} } % 278; char_width[’42] + 500; char-width|’43] + 833;
char_width[’44] < 500; char_-width[45] < 833; char_-width[46] < 778; char_width[’47] < 278,;
char_width[50] < 389; char_width['51] < 389; char_width['52] < 500; char_width[’53] < 778,
char_width| 54] < 278; char_width['55] < 333; char_width['56] < 278; char_width[’57] < 500;
char_width[60] < 500; char-width[61] < 500; char-width|62] < 500; char_-width|63] < 500;
char_width[64] < 500; char_-width[65] < 500; char_-width|[66] < 500; char_width[67] < 500;
char_width[70] < 500; char_width[71] < 500; char_-width[72] < 278; char_width[73] + 278,;
char_width[74] < 278; char_width[75] < 778; char_width|76] < 472; char_width|77] < 472;
char_width["100] < 778; char_width[’101] < 750; char_width[102] < 708; char_width[103] < 722;
char_width[’104] < 764; char_width[’105] + 681; char_width[106] < 653; char_width[107] + 785;
char_width['110] < 750; char_width[’111] + 361; char_width[112] + 514; char_width[118] + 778;
char_width['114] + 625; char_width[115] < 917; char_width[116] < 750; char_width[117] < 778;
char_width[120] < 681; char_width[’121] < 778; char_width[122] < 736; char_width[123] < 556;
char_width[124] < 722; char_width['125] < 750; char_width['126] < 750; char_width[127] + 1028;
char_width[130 « 750; char-width[’132] < 611; char-width[133] < 278;
char_width[’184] < 500; char_width

[

[

[

[

[

[

[

[

14 INPUT AND OUTPUT BIBTRX §36

36. Input and output. The basic operations we need to do are (1) inputting and outputting of text
characters to or from a file; (2) instructing the operating system to initiate (“open”) or to terminate (“close”)
input or output to or from a specified file; and (3) testing whether the end of an input file has been reached.

(Types in the outer block 22) 4+=
alpha_file = packed file of text_char; {files that contain textual data }

37. Most of what we need to do with respect to input and output can be handled by the I/O facilities
that are standard in PASCAL, i.e., the routines called get, put, eof, and so on. But standard PASCAL
does not allow file variables to be associated with file names that are determined at run time, so it cannot
be used to implement BIBTRX; some sort of extension to PASCAL’s ordinary reset and rewrite is crucial
for our purposes. We shall assume that name_of_file is a variable of an appropriate type such that the
PASCAL run-time system being used to implement BIBTX can open a file whose external name is specified
by name_of_file. BIBIRX does no case conversion for file names.

{ Globals in the outer block 16) +=

name-of-file: packed array [1 .. file_name_size] of char; {on some systems this is a record variable }
name_length: 0 .. file_name_size; {this many characters are relevant in name_of-file (the rest are blank) }
name_ptr: 0 .. file_name_size + 1; {index variable into name_of_file }

38. The PASCAL-H compiler with which the present version of TEX was prepared has extended the rules
of PASCAL in a very convenient way. To open file f, we can write

reset(f,name, "/07) for input;
rewrite (f, name, ~/07) for output.

The ‘name’ parameter, which is of type ‘packed array [(any)] of text_char’, stands for the name of the
external file that is being opened for input or output. Blank spaces that might appear in name are ignored.
The /0’ parameter tells the operating system not to issue its own error messages if something goes wrong.
If a file of the specified name cannot be found, or if such a file cannot be opened for some other reason (e.g.,
someone may already be trying to write the same file), we will have erstat(f) # 0 after an unsuccessful reset
or rewrite. This allows TEX to undertake appropriate corrective action.
TEX’s file-opening procedures return false if no file identified by name_of_file could be opened.

define reset_OK (#) = erstat(#) =0
define rewrite_OK (#) = erstat(#) =0

(Procedures and functions for file-system interacting 38) =
function erstat (var f : file) : integer; extern; {in the runtime library }

function a_open_in(var f : alpha_file): boolean; {open a text file for input }
begin reset(f, name_of-file, “/07); a_open_in + reset_OK (f);
end;

function a_open_out(var f : alpha_file): boolean; {open a text file for output }
begin rewrite(f, name_of_file, */07); a-open_out + rewrite_OK (f);
end;

See also sections 39, 58, 60, and 61.

This code is used in section 12.

§39 BIBIRX INPUT AND OUTPUT 15

39. Files can be closed with the PASCAL-H routine ‘close(f)’, which should be used when all input or
output with respect to f has been completed. This makes f available to be opened again, if desired; and if
f was