%The following command typeset the series of the second %column of the page 9 % %This command has one parameter: % 1) The width of the mathematical text \newcommand\TNineSeriesThree[1]{% %This command typeset a fact about a serie and %the math used to describe the property. % %The command has two parameters: % 1) The title of the fact % 2) The corresponding math. %This macro uses the global (to the macro) variables '\Hspace', '\CurrentLineWidth' %which should contain the space used to typeset the math. \def\SerieProperty##1##2{% \def\temp{\TNineTitle{##1} \ensuremath{##2}}% \savebox\TmpBoxA{\temp}% \settowidth\CurrentLineWidth{\usebox\TmpBoxA}% \ifdimcomp{\CurrentLineWidth}{<}{\HSpace}% {%Enough space, everything is written on one line \temp }{%The title is on one line, the math typeset as 'display math' \TNineTitle{##1}% \begin{displaymath}% ##2% \end{displaymath}% }% \par \AdjustSpace{\TNineInterTitle}% }% %This command typeset a line showing the expansion of ordinary power serie % %The command has 2 parameters % 1) The formula to be expanded % 2) The expanded version \def\LineOfOrdPowSerie##1##2{##1&=&##2\\[\TNineExpansionSkip]}% \parbox[t]{#1}{% \TNineSeriesFontSize \DisplaySpace{\TNineDisplaySpace}{\TNineDisplayShortSpace}% \setlength{\HSpace}{#1}% \SerieProperty{Ordinary power series:} {A(x) = \sum_{i=0}^\infty a_i x^i} \SerieProperty{Exponential power series:} {A(x) = \sum_{i=0}^\infty a_i \frac{x^i}{i!}} \SerieProperty{Dirichlet power series:} {A(x) = \sum_{i=1}^\infty \frac{a_i}{i^x}} \SerieProperty{Binomial theorem:} {(x + y)^n = \sum_{k=0}^n\binom{n}{k} x^{n-k} y^k} \SerieProperty{Difference of like powers:} {x^n - y^n = (x-y) \sum_{k=0}^{n-1} x^{n-1-k} y^k} \SerieProperty{For ordinary power series:} {\begin{array}{lcl} \LineOfOrdPowSerie{\alpha A(x) + \beta B(x)}% {\sum_{i=0}^\infty(\alpha a_i + \beta b_i) x^i} \LineOfOrdPowSerie{x^k A(x)}% {\sum_{i=k}^\infty a_{i-k} x^i} \LineOfOrdPowSerie{\frac{A(x) - \sum_{i=0}^{k-1} a_i x^i}{x^k}}% {\sum_{i=0}^\infty a_{i+k} x^i} \LineOfOrdPowSerie{A(cx)}% {\sum_{i=0}^\infty c^i a_i x^i} \LineOfOrdPowSerie{A'(x)}% {\sum_{i=0}^\infty (i+1) a_{i+1} x^i} \LineOfOrdPowSerie{x A'(x)}% {\sum_{i=1}^\infty i a_i x^i} \LineOfOrdPowSerie{\int A(x) \, dx}% {\sum_{i=1}^\infty \frac{a_{i-1}}{i} x^i} \LineOfOrdPowSerie{\frac{A(x) + A(-x)}{2}}% {\sum_{i=0}^\infty a_{2i} x^{2i}} \LineOfOrdPowSerie{\frac{A(x) - A(-x)}{2}}% {\sum_{i=0}^\infty a_{2i+1} x^{2i+1}} \end{array} } \SerieProperty{Summation:} {\text{If }b_i = \sum_{j=0}^i a_i\text{ then } B(x) = \frac{1}{1 -x} A(x)} \SerieProperty{Convolution:} {A(x)B(x) = \sum_{i=0}^\infty\left(\sum_{j=0}^i a_j b_{i-j}\right)x^i} } }