
ATLAST
Autodesk Threaded Language Application System Toolkit

Open, programmable products are superior to and displace even the best
designed closed applications. A threaded language, implemented in a single
portable C file, allows virtually any program, existing or newly developed, to
be made programmable, extensible, and open to user enhancement.

by John Walker
Revision 1 by Duff Kurland—November 20, 1990

Y OU’D THINK WE’D HAVE LEARNED by now. It
was Autodesk’s strategy for AutoCADRdfrom incep-
tion that it should be an open, extensible system.

We waged a five-year uphill battle to bring such a hereti-
cal idea to eventual triumph. Today, virtually every in-
dustry analyst agrees that AutoCAD’s open architecture
was, more than any other single aspect of its design, re-
sponsible for its success and the success that Autodesk
has experienced.

And yet, even today, we write program after program that
is closed—that its users cannot program—that admits of
no extensions without our adding to its source code. If
we believe intellectually, from a sound understanding of
the economic incentives in the marketplace, that open
systems are better, and have confirmed this supposition
with the success of AutoCAD, then the only question that
remains is why? Why not make every program an open
program?

Well, because it’s hard ! Writing a closed program has
traditionally been much less work at every stage of the
development cycle: easier to design, less code to write,
simpler documentation, and far fewer considerations in
the test phase. In addition, closed products are believed
to be less demanding of support, although I’ll argue later
that this assumption may be incorrect.

The painful path to programmability

Most programs start out as nonprogrammable, closed ap-
plications, then painfully claw their way to programma-
bility through the introduction of a limited script or
macro facility, succeeded by an increasingly comprehen-
sive interpretive macro language which grows like topsy
and without a coherent design as user demands upon it
grow. Finally, perhaps, the program is outfitted with
bindings to existing languages such as C.

An alternative to this is adopting a standard language as
the macro language for a product. After our initial foray

into the awful menu macro language that still burdens
us, AutoCAD took this approach, integrating David Betz’
XLISP, a simple Lisp interpreter which was subsequently
extended by Autodesk to add floating point, many addi-
tional Common Lisp functions, and, eventually, access to
the AutoCAD database.

This approach has many attractions. First, choosing a
standard language allows users to avail themselves of ex-
isting books and training resources to learn its basics.
The developer of a dedicated macro language must cre-
ate all this material from scratch. Second, an interpretive
language, where all programs are represented in ASCII
code, is inherently portable across computers and oper-
ating systems. Once the interpreter is gotten to work on a
new system, all the programs it supports are pretty much
guaranteed to work. Third, most existing languages have
evolved to the point that most of the rough edges have
been taken off their design. Extending an existing lan-
guage along the lines laid down by its designers is much
less likely to result in an incomprehensible disaster than
growing an ad-hoc macro language feature by neat-o fea-
ture.

Unfortunately, interpreters are slow, slow, slow. A sim-
ple calculation of the number of instructions of overhead
per instruction that furthers the execution of the program
quickly demonstrates that no interpreter is suitable for se-
rious computation. As long as the interpreter is deployed
in the role of a macro language, this may not be a sub-
stantial consideration. Most early AutoLISPRdprograms,
for example, spent most of their time submitting com-
mands to AutoCAD with the (command) function. The
execution time of the program was overwhelmingly dom-
inated by the time AutoCAD took to perform the com-
mands, not the time AutoLISP spent constructing and
submitting them. However, as soon as applications tried
to do substantial computation, for example the paramet-
ric object calculations in AutoCAD AEC, the overhead of
AutoLISP became a crushing burden, verging on intoler-
able. The obvious alternative was to provide a compiled
language. But that, too, has its problems.

1

Introducing Atlast

AtlastTM is a toolkit that makes applications pro-
grammable. Deliberately designed to be easy to integrate
both into existing programs and newly-developed ones,
Atlast provides any program that incorporates it most
of the benefits of programmability with very little explicit
effort on the part of the developer. Indeed, once you be-
gin to “think Atlast” as part of the design cycle, you’ll
probably find that the way you design and build programs
changes substantially. I’m coming to think of Atlast as
the “monster that feeds on programs,” because including
it in a program tends to shrink the amount of special-
purpose code that would otherwise have to be written
while resulting in finished applications that are open, ex-
tensible, and more easily adapted to other operating en-
vironments such as the event driven paradigm.

The idea of a portable toolkit, integrated into a wide va-
riety of products, all of which thereby share a common
programming language seems obvious once you consider
its advantages. It’s surprising that such packages aren’t
commonplace in the industry. In fact, the only true an-
tecedent to Atlast I’ve encountered in my whole twisted
path through this industry was the universal macro pack-
age developed in the mid 1970’s by Kern Sibbald and Ben
Cranston at the University of Maryland. That package,
implemented on Univac mainframes, provided a common
macro language shared by a wide variety of University
of Maryland utilities, including a text editor, debugger,
file dumper, and typesetting language. While Atlast
is entirely different in structure and operation from the
Maryland package, which was an interpretive string lan-
guage, the concept of a cross-product macro language and
appreciation of the benefits to be had from such a package
are directly traceable to those roots.

So what is Atlast? Well. . . it’s FORTH, more or less.
Now I’m well aware that the mere mention of FORTH
stimulates a violent immune reaction in many people sec-
ond, perhaps, only to that induced by the utterance of the
dreaded word “LISP.” Indeed, more that 12 years after
my first serious encounter with FORTH, I am only now
coming to feel that I am truly beginning to “get it”—to
understand what it’s really about, what its true strengths
(and weaknesses) are, and to what problems it can offer
uniquely effective solutions. PostScript had a lot to do
with my coming to re-examine FORTH, as did my failed
attempt in early 1988 to separate AutoCAD’s user inter-
face from the geometry engine. That project, The Leto
Protocol, ended with my concluding that to succeed: to
create an interface that would not grow to unbounded
size, bewildering complexity, and glacial performance, it
would be necessary to embed programmability within the

core—to provide a set of primitives that could be com-
posed, by the user interface module, into higher-level op-
erators that could be invoked across the link between the
two components. This programmability would, of course,
have to be in a portable form and not involve linking user
code into the AutoCAD core.

In looking for parallels to the problem I faced, PostScript
seemed similarly motivated and reasonably effective in
accomplishing its goals. (One can certainly attack
PostScript on performance, although I suspect its per-
formance problems stem more from the underlying ex-
ecution speed of the graphics primitives and the ineffi-
cient ASCII representation of input than any inherent
aspect of the language.) Certainly PostScript blew away
its competitors, such as Impress and DDL, almost with-
out taking notice of them. Further, it seemed apparent
that PostScript’s success was another example in the long
list of open, programmable products that triumphed over
“more comprehensive” but non-extensible ones.

Looking at PostScript inevitably brings one back to the
language that inspired it, FORTH. Although FORTH
has a reputation for obscurity and seems to attract an
unusually high percentage of flaky adherents, it has many
attributes that recommend it as a candidate for a portable
tool to make any application programmable.

It is small. A minimal implementation of FORTH is
a tiny thing indeed, since most of the language can be
defined in itself, using only a small number of fundamen-
tal primitives. Even a rich implementation, with exten-
sions such as floating point and mathematical functions,
strings, file I/O, compiler writing facilities, user-defined
objects, arrays, debugging tools, and runtime instrumen-
tation, is still on the order of one fifth the number of
source lines of a Lisp interpreter with far fewer built-in
functions, and occupies less than of 70% the object code
size. Runtime data memory requirements are a tiny frac-
tion (often one or two percent) of those required by Lisp,
and frequently substantially less that compiled languages
such as C. It’s kind of startling to discover that an en-
tire interpretive and compiled language, including floating
point, all the math functions of C, file I/O, strings, etc.,
can be built, in large model, into a DOS executable of
50964 bytes. It can.

It is fast. Because it is a threaded language, execu-
tion of programs consists not of source level interpreta-
tion but simple memory loads and indirect jumps. Even
for compute-bound code, the speed penalty compared to
true compilers is often in the range of 5 to 8. While this

2

may seem a serious price to pay, bear in mind that to-
kenising Lisp interpreters often exhibit speed penalties of
between 60 and 70 to 1 on similar code, and source-level
interpreters, such as the macro languages found in many
application programs, are often much, much worse than
that. In most programs, the execution speed of FORTH
and compiled code will be essentially identical, particu-
larly when FORTH is used largely in the role of a macro
language, calling primitives within an application coded
in a compiled language.

It is portable. If the implementation rigidly speci-
fies the memory architecture and data types used (and
this can be done with essentially no sacrifice in speed),
FORTH programs can be made 100% compatible among
implementations. Programs can be transferred as ASCII
files, universally interchangeable across systems. Appli-
cation data types defined in FORTH, using its object cre-
ation facilities, automatically gain the portability of the
underlying data types.

It is easy to extend. Because the underlying archi-
tecture is very simple (unlike, for example, that of a Lisp
interpreter), any competent C programmer with a mini-
mum of indoctrination can begin adding C-coded primi-
tives to a C-implemented FORTH within hours. These
C primitives will run at full speed, yet be able to be
parameterised, placed in definitions, used in loops, etc.,
from any FORTH construct. This leads to a different way
of building applications. Rather than programming the
structure and primitives as a unified process, one builds
the application-unique primitives that are needed, tests
them interactively as they are built, then assembles the
application with glue code written either in FORTH or
C depending upon considerations of efficiency, security,
and the extent to which one wishes to make the underly-
ing primitives visible to and accessible by the user. Un-
like conventional program development processes, these
considerations are not yes-or-no decisions but, for the
most part, continua along which the product may be po-
sitioned at the point desired and subsequently adjusted
based upon market feedback.

It is interactive. While most portions of a FORTH
program are compiled into a form equally compact and
comparable in execution speed to machine code, direct
user interaction can always be furnished simply by pro-
viding a connection from the user’s keyboard to the in-
terpreter (or conversely, blocked by denying the user that
access). That such interactivity expedites program de-
velopment compared to the normal edit, compile, link,

debug cycle is well known. That FORTH can provide
it without sacrificing execution speed is one of its major
attractions.

It supports multiple operating paradigms. Once
the technique of encapsulating the functionality of a prod-
uct in primitives accessible from the FORTH environment
is mastered, it is possible to build programs in which the
core facilities (for example, database access, geometric
calculations, graphical display of results, calculating mass
properties) can be composed into sequences that can be
invoked from a program, called interactively from a com-
mand line, triggered by a menu selection or pick of a
button in a dialogue, or virtually any other form of in-
teraction imaginable. Further, since any stimulus that
affects the program simply executes a FORTH word, and
such words can be easily redefined with a small amount
of FORTH text, any of these operating modes can be
rendered programmable by the implementor, third party
developer, or user, at the discretion of the designer.

It is surprisingly modern. Although FORTH ap-
pears to be an artifact of the bygone days of 64K comput-
ers and teletype machines, many of its concepts, viewed
through contemporary eyes, are remarkably up to date.
For example, few languages share its ability to define new
fundamental data types, along with methods that operate
upon them. The multiple dictionary facility of FORTH
permits one to create objects that inherit, by default,
properties of their parents, and to implement such struc-
tures in an efficient manner.

Atlast and FORTH

All of these advantages do not erase some substantial
shortcomings of FORTH, particularly in the modern pro-
gramming environment. In defining Atlast, I have at-
tempted to conform to FORTH wherever possible, with-
out compromising my overall goal of creating a system
that would allow a developer to factor out the pro-
grammability from an application and hand it to a stan-
dard module to manage, precisely as C programmers dele-
gate I/O and mathematical function evaluation to library
routines provided for those purposes.

Atlast is based on the FORTH-83 standard and incorpo-
rates many of the optional extensions and supplementary
words defined in that standard. Once the basic differ-
ences between FORTH and Atlast have been mastered,
one can use a FORTH reference manual for most user-
level Atlast programming tasks. The major differences

3

between FORTH-83 and Atlast are as follows.

Integers are 32 bits. To bring forth another language
burdened with 16 bit integers in the year 1990 is, to my
mind, unthinkable. We are rapidly entering an era where
the vast majority of C language environments agree that
the int type is 32 bits, and applications may be expected
to rapidly conform to this standard. Consequently, in
Atlast, all integers are 32 bits and no short data type
is provided. Note that this does not imply incompatibil-
ity with C environments with 16 bit ints—Atlast works
perfectly with Turbo C on MS-DOS and Microsoft C on
OS/2, for example, because all integers are explicitly de-
clared as long.

Identifiers are arbitrary length. In Atlast, you
need not struggle with the tradeoff between memory ef-
ficiency and uniqueness of identifiers that plagues the
FORTH programmer. Identifiers are limited in length
only to the size of the built-in token assembly buffer,
which defaults to 128 characters, and all characters are
significant. Again, this change brings Atlast more
closely into conformance with contemporary language de-
signs. To implement this change, symbol names were
moved from the heap into dynamically allocated buffers,
taking advantage of the underlying C runtime environ-
ment. This makes the task of adjusting heap size easier
(and changes some of the arcana of programs that fiddle
with the low-level structure of the system, but everything
you could do in FORTH, you can do in Atlast, albeit in
a slightly different way).

Floating point is supported. Floating point con-
stants, variables, operators, scanning and formatting fa-
cilities, and a rich set of mathematical functions are pro-
vided as primitives (which can be turned off at compile
time, if not needed). Compatibly with C, the default
floating point type is 64 bit C double precision num-
bers. The only assumption made by Atlast about float-
ing point format is that a floating point number is twice
the size of an integer. The rational number facilities of
FORTH are not provided in Atlast.

Strings are supported. Strings are supported at a
much higher level in Atlast than in FORTH. String lit-
erals are provided in a general and explicit manner using
the C syntax for escaping special characters. A rich set of
string processing functions which closely follow those of C
are provided (STRCPY, STRCAT, STRLEN. . .). A mechanism
of cyclically allocated temporary string buffers provides

more flexible manipulation of strings in interactive input.
Strings continue to follow the pointer and buffer model
used by both C and FORTH. String-intensive programs
should run at about the same speed as their equivalents
in C or FORTH.

Debugging facilities are provided. Atlast can be
configured at compile time with as much or as little error
checking and debugging support as is appropriate for the
application in which it is being integrated and the devel-
opment status of that product. During development and
test, one can configure Atlast with an optional TRACE
that follows program execution primitive by primitive,
a WALKBACK that prints the active word stack when an
error is detected, precise overflow and underflow check-
ing of both the evaluation and return stacks, and close
to bulletproof pointer checking that catches attempts to
load or store outside the designated heap area. Although
sufficiently crafty programs can still crash Atlast, er-
rors that slip past the checking and wreak havoc are ex-
tremely rare, even in unprotected environments such as
MS-DOS. This, combined with the fundamental interac-
tivity of Atlast, makes for a friendly debugging environ-
ment. All the runtime error checking can be disabled to
reduce memory and execution time overhead, when and
where appropriate.

File I/O follows C and Unix conventions. FORTH
was developed before the age of standard operating sys-
tems; in its early days, it was the operating system of
many of the minicomputers which ran it. Now that the
Unix file system interface has become a de facto indus-
try standard, Atlast conforms to that model of file sys-
tem operation. FILE variables correspond to C language
file descriptors, and a familiar set of primitives such as
FOPEN, FCLOSE, FREAD, FSEEK, etc., are used in the same
manner as in C. Line-level I/O is provided as well, offer-
ing AutoCAD-compatible automatic recognition of ASCII
files written with any of the current end of line conven-
tions.

Extensive support for embedding is provided.
Unlike FORTH, Atlast is intended to be invisibly em-
bedded within application programs. Other than pro-
viding a common framework for programmability and ex-
tension, the application continues to “look like” itself, not
like Atlast or FORTH. Thus, Atlast is not “in con-
trol” in the sense that the main loop of a FORTH system
is; it is a slave, called by the application at appropriate
times. Accomplishing this required inverting the control
structure from that of a typical FORTH system and pro-

4

viding a comprehensive set of C callable linkages by which
the application communicates with Atlast. In addition,
primitives are provided which aid in tuning Atlast to
the precise needs of the host program. The developer can
monitor memory usage, note which primitives are used
and which are not, and configure a custom version of
Atlast ideally suited to the needs and environment of
the host program.

A note on what follows

In order to illustrate Atlast, the balance of this pa-
per employs numerous sample programs and fragments
of Atlast code. A reader with a basic understanding of
FORTH should, along with the definitions of the Atlast
primitives given at the end of the paper, be able to figure
out what is going on in the examples. If you’ve never
encountered FORTH before, the examples may seem lit-
tle more than gibberish. Don’t worry—once you get the
hang of it, or consult one of the many excellent FORTH
books available (I recommend Mastering Forth, by Ander-
son and Tracy, New York: Brady Books/Prentice-Hall,
1984), all will become clear.

Until then, don’t be put off by the examples. Just skim
over them as if you understood them. You’ll still pick up
the flavour of the package, how it integrates with appli-
cations, and what you can do with it. I’d like to be able
to leave my brain and fingers running overnight and find
a complete Atlast reference manual that could stand
by itself sitting on my machine the next day. Alas, I lack
overnight batch capability and have no opportunity to un-
dertake such a task in prime time at present. I decided to
supply the documentation in this oddly incomplete form
to get the essentials across to those who can understand
it rather than defer the entire effort until I can complete
a hundred pages or so of documentation that largely du-
plicates a FORTH reference manual.

Interactive Atlast

Although Atlast is intended to be embedded in appli-
cation programs, for learning the language, experiment-
ing with small programs, and using it as a desk calcula-
tor, it’s handy to have an interactive stand-alone version.
The Atlast source distribution includes a main program,
atlmain.c, that can be linked with Atlast to provide
such a utility. The executable, called atlast on Unix and
ATLAST.EXE on MS-DOS, is built with all error checking
enabled to aid in program development.

To experiment with Atlast, execute the interactive pro-
gram with:

atlast

You’ll be prompted with:

->

as long as Atlast is in the interpretive state. For exam-
ple, you might load Atlast and experiment with various
rational approximations of π.

% atlast
-> 22.0 7.0 f/ f.
3.14286 -> 377.0 120.0 f/ f.
3.14167 -> ^D
%

Note that Atlast does not explicitly return the carriage
after output; use the CR primitive if you wish this done.
Rather than printing each number and comparing it man-
ually against π, we can define a constant with the value
of π and a new word (or function) that compares a value
against it and prints the error residual. Here’s how we
might do that:

% atlast
-> 1.0 atan 4.0 f* 2constant pi
-> : pierr
:> pi f- fabs f. cr
:> ;
-> 3.0 pierr
.141593
-> 22.0 7.0 f/ pierr
0.00126449
-> 355.0 113.0 f/ pierr
2.66764e-07
-> ^D
%

We can also load programs from files into Interactive
Atlast. Suppose we want to investigate the behaviour
of Leibniz’ famous 1673 series that converges (achingly
slowly) to π. The series is:

π

4
= 1− 1

3
+

1
5
− 1

7
+

1
9
− · · ·

We can create a file, using the text editor of our choice,
containing the following:

5

\ Series approximations of Pi

\ Leibniz: pi/4 = 1 - 1/3 + 1/5 - 1/7 ...

: leibniz (n -- fpi)
1.0 1.0
4 pick 1 do

2.0 f+ \ denom += 2
2dup
i 1 and if

fnegate
then
1.0 2swap f/
2rot f+
2swap

loop
2drop
rot drop
4.0 f*

;

\ Reference value of Pi

1.0 atan 4.0 f* 2constant pi

\ Calculate and print error

: pierr
pi f- fabs f. cr

;

If this seems like gibberish, don’t worry! Remember the
first time you looked at a Lisp or C program. If you
want to decode some of the structure of this program
before learning the language, refer to the definitions of
Atlast primitives at the back of this manual, remember
that Atlast is a reverse Polish stack language, and note
that “\” is a comment delimiter that causes the rest of
the line to be ignored and that “(” is a comment delimiter
that ignores all text until the next “)”.

If this file is saved as leibniz.atl, we can load the pro-
gram into Interactive Atlast with the command:

atlast -ileibniz

Atlast will compile the program in the file, report any
errors, and if no errors are found enter the interactive in-
terpretation mode. The definition of leibniz performs
the number of iterations specified by the number on the
top of the stack and leaves the resulting series approxi-
mation to π on the top of the stack.

We can play with this definition as follows:

% atlast -ileibniz
10 leibniz f.
3.04184 -> 100 leibniz f.
3.13159 -> 1000 leibniz f.
3.14059 -> 10000 leibniz f.
3.14149 ->

Well, we can see it’s converging, but not very fast. Since
we can define new compiled words on the fly, let’s impro-
vise a definition that will print the value and its error for
increments of 10000 iterations, then run that program.
Continuing our session above:

-> : itest 0 do i 1+ 10000 * dup .
:> leibniz 2dup f. pierr loop ;
-> 5 itest
10000 3.14149 0.0001
20000 3.14154 5e-05
30000 3.14156 3.33333e-05
40000 3.14157 2.5e-05
50000 3.14157 2e-05
-> ^D
%

As you can see (even if you don’t understand), we’ve
mixed compiled code, interpreted code, and on-the fly
definition of new compiled functions in a seamless man-
ner.

You can also run an Atlast program in batch mode sim-
ply by specifying its name on the atlast command line.
If, for example, you added the lines:

\ Run iteration vs. error report

: itest
0 do

i 1+ 10000 * dup . leibniz
2dup f. pierr

loop
;

10 itest

to the end of the leibniz.atl file, creating a new file
called leibbat.atl, you could run the program in batch
mode as follows:

% atlast leibbat

6

10000 3.14149 0.0001
20000 3.14154 5e-05
30000 3.14156 3.33333e-05
40000 3.14157 2.5e-05
50000 3.14157 2e-05
60000 3.14158 1.66667e-05
70000 3.14158 1.42857e-05
80000 3.14158 1.25e-05
90000 3.14158 1.11111e-05
100000 3.14158 1e-05
%

(By the way, as is apparent, this is clearly no way to com-
pute π! Try this, instead, if you’re serious about pumping
π.)

\ Tamura-Kanada fast Pi algorithm

2variable a
2variable b
2variable c
2variable y

: tamura-kanada (n -- fpi)
1.0 a 2!
1.0 2.0 sqrt f/ b 2!
0.25 c 2!
1.0
rot 1 do

a 2@ 2dup y 2!
b 2@ f+ 2.0 f/ a 2!
b 2@ y 2@ f* sqrt b 2!
c 2@ 2over a 2@ y 2@ f-
2dup f* f* f- c 2! 2.0 f*

loop
2drop
a 2@ b 2@ f+ 2dup f* 4.0 c 2@ f* f/

;

Debugging

As befits an interactive language, Atlast provides de-
bugging support. You can trace through the execution of
a program word by word by enabling the TRACE facility.
To turn tracing on, enter the sequence:

1 trace

If you’ve loaded a definition of the factorial function as
follows:

: factorial
dup 0= if

drop 1
else

dup 1- factorial *
then

;

and execute it under trace, you’ll see output as follows:

% atlast -ifact
-> 1 trace
-> 3 factorial .

Trace: FACTORIAL
Trace: DUP
Trace: 0=
Trace: ?BRANCH
Trace: DUP
Trace: 1-
Trace: FACTORIAL
Trace: DUP
Trace: 0=
Trace: ?BRANCH
Trace: DUP
Trace: 1-
Trace: FACTORIAL
Trace: DUP
Trace: 0=
Trace: ?BRANCH
Trace: DUP
Trace: 1-
Trace: FACTORIAL
Trace: DUP
Trace: 0=
Trace: ?BRANCH
Trace: DROP
Trace: (LIT) 1
Trace: BRANCH
Trace: EXIT
Trace: *
Trace: EXIT
Trace: *
Trace: EXIT
Trace: *
Trace: EXIT
Trace: . 6 -> ^D
%

You can turn off tracing with “0 trace”.

When an error occurs, a walkback is normally printed
that lists the active words starting with the one in which

7

the error occurred, proceeding through levels of nesting to
the outermost, interpretive level. If the WALKBACK package
is configured (see page 18), the walkback is printed by
default. You can disable it with “0 walkback”. Here is
a sample error walkback report:

% atlast -ileibniz
-> leibniz
Stack underflow.
Walkback:

ROT
LEIBNIZ

->

Integrating Atlast

Unlike most languages, Atlast is not structured as a
main program; it is a subroutine. You can invoke it when
and where you like within your application, providing as
much or as little programmability as is appropriate. Be-
fore we get into the details of the interface between an
application and Atlast, it’s worth showing, by example,
just how simple a program can be that accesses all the fa-
cilities of Atlast mentioned so far. The following main
program, linked with the Atlast object module, consti-
tutes a fully-functional interactive Atlast interpreter. It
lacks the refinements of Interactive Atlast such as con-
sole break processing, batch mode, loading definition files,
prompting with compilation state, and the like, but any
program that Interactive Atlast will run can be run by
this program, if submitted to it by input redirection.

#include <stdio.h>
#include "atlast.h"
int main()
{

char t[132];
atl_init();
while (printf("-> "),

fgets(t, 132, stdin) != NULL)
atl_eval(t);

return 0;
}

Configuring atlast.c

The first step in integrating Atlast is building a suitable
version of atlast.c that can be linked with your applica-
tion. In order to do this, you must choose the modes with

which you wish Atlast built. These modes are normally
specified by compile-time definitions supplied on the C
compiler call line. Unless you request individual configu-
ration of Atlast subpackages, a fully functional version
of Atlast will be built. In that case, you need only be
concerned with the settings of the following compile-time
variables.

ALIGNMENT. If double precision floating point numbers
must be aligned on 8 byte boundaries in memory,
define ALIGNMENT. If not defined, Atlast assumes
that 4 byte alignment is adequate for these numbers.
(Conditional code in atldef.h attempts to define
ALIGNMENT on processors which require it, but its
tests may omit your machine.)

COPYRIGHT. If you require a statement of the the pub-
lic domain status of Atlast to be embedded into
the binary program, define this variable. Otherwise,
leave it undefined and save a few bytes.

EXPORT. If you are simply invoking Atlast as a macro
engine and do not require access to its internal
data structures, leave EXPORT undefined. If your
program adds application-specific primitives to
Atlast (as most do), define EXPORT and include
the file atldef.h in all modules that require that
access. The stack, return stack, and heap pointers
will be made external, names of internal symbols
within Atlast will be redefined to special names
beginning with atl__ to avoid conflicts with your
program, and additional interface code is enabled to
provide your primitives full access to the Atlast
runtime environment.

MEMSTAT. If you want to enable the runtime memory us-
age monitor, accessible from the MEMSTAT primitive
or the atl_memstat() function call, define MEMSTAT.

NOMEMCHECK. To disable all runtime stack, heap, and
pointer checking, define NOMEMCHECK. This will yield
a dramatic increase in execution speed, but should
be enabled only in closed applications after you’re
sure all the bugs are securely in hiding. When built
with NOMEMCHECK, an Atlast program is no more
secure than a pointer-mad C program.

READONLYSTRINGS. When the WORDSUSED package (see
page 18) is enabled, Atlast keeps track of which
primitive and user-defined words are used in a pro-
gram, allowing you to determine which packages are
required and whether your tests have invoked all of

8

the words you have defined. This is done by setting
a flag in the word definition which, for built-in prim-
itive words, involves modifying a C constant string.
If your C language implementation does not permit
this, define READONLYSTRINGS, which will copy the
predefined words to a dynamically allocated buffer
which may be modified. Note that this is done only
if the WORDSUSED package is enabled.

When building Atlast on MS-DOS or OS/2, you must
use a large data model (32 bit data addresses). Atlast
treats all integers as 32 bits and assumes that data point-
ers are at least that long. Attempting to build with 16
bit data addresses will cause compile errors that indicate
violation of design assumptions.

Initialising: atl init

Before your application makes any other calls to Atlast,
you must call atl_init to initialise its dynamic storage
and create the data structures used to evaluate Atlast
expressions.

To initialise Atlast with the default memory configura-
tion, just call:

atl_init();

The stack, return stack, heap, and initial dictionary are
created and Atlast is prepared for execution. You can
adjust the size of the memory allocated by Atlast by
setting the following variables (defined in atlast.h) be-
fore calling atl_init.

atl stklen Evaluation (data) stack length. Expressed
as a number of 4 byte stack items. Default 100.

atl rstklen Return stack length. Expressed as a num-
ber of 4 byte return stack pointer items. Default 100.

atl heaplen Heap length. Specified as a number of 4
byte stack items. Default 1000.

atl ltempstr Temporary string length. Gives the
length of the buffers used to hold temporary strings
entered in interpretive mode and created by certain
primitives. Default 256.

atl ntempstr Number of temporary strings. Specifies
the number of temporary strings. Temporary strings

are used in rotation; if more than atl_ntempstr are
used without storing out the oldest result, it will be
overwritten. Default 4.

Applications can allow Atlast programs they load to
override default memory allocation specifications with
prologue statements. See page 17 for details. Deeply
embedded applications, such as those programmed into
ROMs, may wish to assign the Atlast dynamic storage
areas to predefined areas of memory instead of requesting
them with malloc(). If the base address pointer of an
area is set nonzero before atl_init is called, the address
specified will be used for that region; no buffer will be
allocated. If you take advantage of this facility, please
read the code for atl_init() in atlast.c carefully and
make sure the storage you supply is as long as the vari-
ous length cells specify. Note in particular that the sys-
tem state word, temporary string buffers, and heap are
consolidated into one contiguous area of memory.

Evaluating: atl eval

To evaluate a string containing Atlast program text,
call:

stat = atl_eval(string);

where string is a string containing the text to be evalu-
ated and stat is an integer giving the status of the evalu-
ation. Mnemonics for evaluation status codes are defined
in atlast.h, and have the following meanings:

ATL SNORM No error
ATL STACKOVER Stack overflow
ATL STACKUNDER Stack underflow
ATL RSTACKOVER Return stack overflow
ATL RSTACKUNDER Return stack underflow
ATL HEAPOVER Heap overflow
ATL BADPOINTER Bad heap pointer
ATL UNDEFINED Undefined word
ATL FORGETPROT Attempt to FORGET protected

symbol
ATL NOTINDEF Compiler word outside definition
ATL RUNSTRING Runaway string
ATL RUNCOMM Runaway comment in file
ATL BREAK Asynchronous break signal

received
ATL DIVZERO Attempt to divide by zero

In addition to these status codes, a program that calls
atl_eval may determine the current state of Atlast by

9

examining external variables. If a multi-line comment
awaiting termination with a “)” is active, atl_comment
will be nonzero. If the definition of a word (colon defini-
tion) is currently pending, the variable state (accessible
only if EXPORT is defined and atldef.h is included) will
be nonzero.

Loading files: atl load

To load an entire file containing Atlast program text,
call:

stat = atl_load(file);

where file is a C file descriptor (type FILE *) designating
the file, currently open for input and positioned before
the first byte of the Atlast program to be loaded. The
program is read, and stat is the status resulting from load-
ing and executing the Atlast program in that file. The
status codes are the same as those given above for the
atl_eval function. The atl_load function reads text
files in any of the end of line conventions recognised by
AutoCAD; ASCII files in any of these formats may be
loaded by any implementation of Atlast. If the host sys-
tem requires binary files to be identified at open time, files
containing Atlast programs to be loaded with atl_load
should be opened in binary mode, even though they nom-
inally contain ASCII text. Binary mode permits correct
interpretation of all the end of line delimiters accepted by
AutoCAD.

The atl_load function uses atl_mark to save the run-
time status before loading the file. If an error occurs,
it attempts to restore the status quo ante by performing
an atl_unwind. If the file loaded included interpretive
mode code that modified preexisting objects on the heap,
those changes will not be reversed if an error occurs whilst
loading the file.

Marking: atl mark

Applications may wish to undertake a series of Atlast
operations which might result in a runtime evaluation er-
ror. In that event, the application will normally want
to undo definitions made by the program that errored.
To mark one’s place before embarking upon a potentially
perilous Atlast program, use:

atl_statemark mk;
atl_mark(&mk);

The current position of the stack, return stack, heap, and

dictionary are saved in the atl_statemark structure. A
subsequent atl_unwind call will roll each of those dy-
namic storage areas back to the position at the designated
atl_mark.

Reversing changes: atl unwind

To roll back all changes to the stack, return stack,
heap allocation, and dictionary to the state saved in an
atl_statemark object with atl_mark, call:

atl_statemark mk;
atl_unwind(&mk);

The allocation pointers for all the storage areas are re-
set to their positions at the time atl_mark was called,
but changes to heap variables made by storing through
pointers after the atl_mark are not reversed.

Asynchronous break: atl break

Interactive applications of Atlast must allow the user
to escape infinite loops and other accidentally initiated
lengthy computations. If the system provides a facility
for responding to user interrupt requests, Atlast allows
execution of programs under its control to be terminated
through the atl_break mechanism.

If BREAK is defined at compile time, the atl_break()
function and support for asynchronous break is enabled.
When the application receives an asynchronous break,
it should call atl_break() to notify the currently run-
ning Atlast program of the break signal. If no Atlast
program is running at the time of the signal, no harm
is done. The application break routine should always
call atl_break() rather than try to determine whether
Atlast is active. If an Atlast program was executing
at the time of the break signal, the application that in-
voked it, whether by atl_eval, atl_load, or atl_exec,
will be notified of the abnormal termination by the return
of the ATL_BREAK status.

The atl_break function simply sets a flag examined by
the inner loop of the Atlast evaluator; it does not actu-
ally terminate execution. Consequently, it may safely be
called at any time, even from hardware interrupt service
routines.

10

Showing memory status: atl memstat

In the final stage of optimising an application incorpo-
rating Atlast for shipment, one may wish to adjust the
memory allocation parameters to eliminate wasted space
while providing reasonable margins for user extensions
after shipment. To set the parameters wisely, one must
know the baseline memory usage of the application. If
atlast.c is built with MEMSTAT defined, this can be ob-
tained either by executing the MEMSTAT primitive within
the Atlast program or by calling the atl_memstat func-
tion at an opportune time within the application. In ei-
ther case, a memory usage report similar to the following
example is written to the standard output stream.

Memory Usage Summary

Current Maximum Items Percent

Memory Area usage used allocated in use

Stack 0 9 100 0

Return stack 0 4 100 0

Heap 227 227 1000 22

Note: to use any of the following functions,
you must compile atlast.c and the modules
that call them with EXPORT defined, and you
must include the header file atldef.h in files
that call them.

Looking up words: atl lookup

Your application can look up words in the Atlast dic-
tionary, using the same search order as the interpreter
would, with the call:

dictword *dw;
char *name;

dw = atl_lookup(name);

Since Atlast names are matched regardless of whether
letters in them are upper or lower case, the name may
contain any combination of upper and lower case letters.
If the word is defined, its dictionary entry is returned.
The dictword structure is defined in atldef.h. If the
word is not defined, NULL is returned. There may be
multiple nested definitions of a word; if this is the case,
only the most recent definition (the active definition) is
returned. There is no way, using atl_lookup alone, to
locate hidden definitions.

Accessing a word’s text: atl body

An Atlast word definition consists of several compo-
nents, including its name and the C-coded method that
implements it. Of most interest to applications that inter-
communicate with Atlast is the body of the word. For a
variable or constant, this is the storage that contains the
word’s value. To obtain the body address of a dictionary
item returned by atl_lookup or created by atl_vardef
(see below), use atl_body. The call:

dictword *dw;
stackitem *si;

si = atl_body(dw);

places the body address of dictionary item dw into vari-
able si. If you wish to store a data type into the body
of the Atlast word other than the default of stackitem
(defined as long), cast the pointer to the correct pointer
type. See the atl_vardef sample below for an example
of a floating point variable being created and initialised
using atl_body.

Defining variables: atl vardef

Shared variables are a convenient way of intercommuni-
cating between a host application and Atlast. By mak-
ing the application’s state visible to and changeable by
the Atlast program, the program is given the informa-
tion it needs and the power to direct the application. A
shared variable is an Atlast variable defined by the ap-
plication, the address of which is known both to Atlast
(via the dictionary), and to the application (by a pointer
returned when the shared variable is created). To create
a shared variable, call:

dictword *var;

var = atl_vardef(name, size);

where name is a character pointer giving the name of the
variable to be created and size is an integer specifying
its size in bytes. Note that to create a normal Atlast
integer variable size should be 4; for a floating point vari-
able, size should be 8 bytes. Storage for the variable is
reserved on the Atlast heap. If insufficient heap space
is available to create the variable NULL is returned. Oth-
erwise, the address of the variable’s dictionary entry is re-
turned. Beware: the dictionary entry is not the storage
address of the variable’s value. To obtain that address,
call atl_body, described above.

11

For example, we can create a floating point variable con-
taining a crummy approximation of π with the sequence:

dictword *pi;

pi = atl_vardef("Pi", sizeof(double));
if (pi == NULL) {

printf("Can’t atl_vardef PI.\n");
} else {

*((double *) atl_body(pi)) =
3.141596235;

}

We could then print the value with an Atlast program
run under that application with:

pi 2@ f.

Executing words: atl exec

If you’ve obtained the dictionary address of an Atlast
word definition, your application can execute it with the
sequence:

dictword *dw;
int stat;
stat = atl_exec(dw);

The status codes returned in stat are identical to those re-
turned by atl_eval. The distinction between atl_eval
and atl_exec is subtle, but important—it can make a
big difference in the performance of your application. If
you know the name of an Atlast word, you can exe-
cute it either by passing a string containing its name to
atl_eval or by saving its dictionary address in a variable
and executing the word directly from the dictionary ad-
dress with atl_exec. The results of these two operations
are identical, but when you pass a string to atl_eval,
Atlast is forced to scan the string, parse its contents
into the token denoting the word, look that word up in
the dictionary, and only then execute the word. You can
bypass all these nonproductive and time consuming pre-
liminaries if you know the word’s dictionary address and
use atl_exec.

Creative use of atl_lookup and atl_exec provide one
of the most powerful ways for Atlast to enrich an ap-
plication. If you create an application to perform a rela-
tively well-defined task, you can, before entering its main
processing loop, inquire with atl_lookup whether the
user has defined a series of words specified by the ap-
plication. If so, their dictionary addresses are saved in

pointers in the application code. Then, as the applica-
tion executes, at each step where the user might want
to interpose his own processing or replace the applica-
tion’s default processing with his own method, the ap-
plication merely tests whether the word associated with
that step has been defined in the Atlast program and, if
so, runs it with atl_exec. If the default processing that
would otherwise occur is made available as an Atlast
primitive with atl_primdef (see below), it is extremely
easy for the Atlast program to examine the data at the
point it has been “hooked,” perform any special process-
ing it wishes, or inherit the default processing simply by
running the primitive that does it. If the user has not
requested special processing, the cost to the application
to provide that opportunity is one pointer comparison
against NULL. Compared with the benefits of open archi-
tecture, this is a small price indeed.

You can pass arguments to the definition you’re invoking
with atl_exec either by storing them in shared variables
created with atl_vardef or, usually the best approach,
pushing them on the stack before executing the definition.
See the discussion of atl_primdef below for information
on access to the stack from C.

Defining primitives: atl primdef

Most of the power of Atlast derives from the ease with
which C coded primitives can be added to the language.
Once integrated, they may be used in conjunction with
the looping, conditional execution, and other facilities al-
ready present. Atlast has been deliberately designed to
make the addition of primitives simple and safe: noth-
ing like the peril-filled nightmare of adding a function
to AutoLISP. Still, to extend any language you need to
learn your way around its memory architecture and con-
trol structure. So, listen up, walk through the examples,
and before long you’ll be adding primitives like a pro.

An Atlast primitive is a C function. When the primitive
is executed, that function is called and may do whatever
it likes. A primitive can be as simple as one that dis-
cards the top item on the stack, or as complex as one
that prepares a ray-traced bitmap from a three dimen-
sional geometric model. Most primitives communicate
with one another via the stack. Some primitives also ac-
cess variables stored on the heap. Finally, a very few
primitives manipulate data stored on the return stack,
which Atlast uses to track the nesting of execution. A
user-defined primitive will rarely need to access the return
stack. Definitions in atldef.h simplify access to each of
these areas of memory. Let’s look at them one by one.

12

Accessing the stack

The stack pointer variable is called stk, and always points
to the next available long stack item. Primitives rarely
reference stk directly, since it is usually far more conve-
nient to use definitions that hide the complexity of index-
ing the stack. The following tools are provided for access
to the stack.

Sl(n) Before you access any items on the stack, you must
check that the stack actually contains at least as
many items as you’ll be using. If not, a stack under-
flow must be reported. At the start of your primitive,
simply use the statement “Sl(n);”, where n is the
number of stack items you’ll be referencing. If you
use the topmost two stack items, S0 and S1, you’d
use Sl(2);. It’s important that you use the defini-
tion rather than check the stack limit directly; if you
later build your application with stack checking off,
the Sl() statement will generate no code, automati-
cally configuring your primitive for maximum speed.

So(n) Before you push any new items onto the stack,
you must check that the stack will not overflow the
area allocated to it when those items are added. If
it would, a stack overflow must be reported. At
the start of your primitive, simply use the statement
“So(n);”, where n is the number of new stack items
you’ll be pushing. If you are adding one new integer
item to the stack, use “So(1);”. It’s important that
you use the definition rather than check the stack
limit directly; if you later build your application with
stack checking off, the So() statement will generate
no code, automatically configuring your primitive for
maximum speed.

S0–S5 The definitions S0, S1,. . . S5 provide direct access
to the top 6 integer stack items. S0 is the top item
on the stack, S1 is the next item, and so on. These
definitions may be used on either the left or right
side of an assignment.

Pop Used as a statement, “Pop;”, discards the topmost
item from the stack.

Pop2 Used as a statement, “Pop2;”, discards the topmost
two items from the stack.

Npop(n) Discards the top n items from the stack.

Push Used on the left side of an assignment, stores the
value on the right side into the next free stack item
and increments the stack pointer.

Realsize For primitives that use floating point num-
bers, Realsize gives the number of stack items occu-
pied by one floating point number. A primitive that
expects two floating point arguments on the stack
and will leave them there, adding one new float-
ing point result would begin “Sl(2 * Realsize);
So(Realsize);”.

REAL0–REAL2 These definitions provide read access to
the topmost three floating point numbers on the
stack. The stack cells are automatically cast to
type double. It is essential that you access floating
point values this way—some computers require that
doubles be aligned on 8 byte boundaries, and the
REALn definitions automatically align the variable if
the machine requires it.

SREAL0(f), SREAL1(f) These definitions, used as func-
tions, store their floating point arguments into the
topmost (SREAL0) and next (SREAL1) floating point
items on the stack. Because of the possible need to
compensate for machine alignment restrictions, the
REALn definitions cannot be used on the left side of
an assignment; use these functions instead.

Realpop Pops the topmost floating point value from the
stack. Equivalent to Npop(Realsize).

Realpop2 Pops the two topmost floating point values
from the stack. Equivalent to Npop(2 * Realsize).

He said this was easy! Please bear with me—all of this
is far simpler (and more compact) to use than it is to
explain. If you can’t stand it, skip ahead to the sample
primitive definitions and see for yourself. O.K., welcome
back. Probably 95% of all the primitives you’ll add to
Atlast will confine themselves to accessing the stack.
Heap and return stack access is far less frequent (and
may indicate poor design). In any case, if you need to do
it, here’s how.

Accessing the heap

The heap is a pool of memory used to allocate static ob-
jects. Most heap is allocated by Atlast defining words,
such as VARIABLE, CONSTANT, and the : used to define
new executable words, themselves stored on the heap.
The ability to create defining words for new data types
directly in Atlast is one of its most powerful features
and reduces the need to manipulate the heap from user
primitives. The heap is accessed through a set of def-
initions similar to those used for the stack. The heap
pointer itself is named hptr, but will rarely be referenced
explicitly.

13

Ho(n) Before you store any new data on the heap, you
must verify that doing so would not cause the heap to
grow past its assigned maximum size. This event is
called a heap overflow, and the Ho(n) function checks
for it and terminates execution should overflow oc-
cur. The number n is the amount of heap you pro-
pose to allocate, in terms of stack items, each of four
bytes. If you wish to allocate a number expressed
in bytes, you must round it up to the next larger
multiple of four. A portable way to do this is to use
the expression: ((x + (sizeof(stackitem) - 1))
/ sizeof(stackitem)) where x is the number of
bytes of heap you require. If you configure stack and
heap checking off for maximum performance, Ho(n)
generates no code.

Hpc(ptr) Heap storage is normally accessed via pointers
passed on the stack. Since the stack contains many
other types of data, accidentally using a non-pointer
as a heap address could be catastrophic. Before us-
ing any value as a pointer to the heap, call Hpc(ptr)
where ptr is the pointer. If the pointer is not within
the heap, a bad pointer error will be reported and ex-
ecution terminated. If you configure stack and heap
checking off, Hpc(ptr) generates no code.

Hstore Used on the left of an assignment, stores the long
value on the right side into the next available heap
cell and advances the heap allocation pointer.

Accessing the return stack

The return stack remembers the point at which one def-
inition invoked another, tracks loop control indices, and
stores other items internal to the evaluator. Messing with
the return stack is generally a very bad idea. This infor-
mation is presented not so much to encourage you to use
the return stack as for completeness and to document
the code within atlast.c that maintains it. The stack
pointer variable is called rstk, and always points to the
next available return stack item. Return stack items have
a type of **dictword (got that?), which is also typedefed
to rstackitem.

Primitives rarely reference rstk directly, since it is usu-
ally far more convenient to use definitions that hide the
complexity of indexing the return stack. The following
tools provide access to the return stack.

Rsl(n) Before you access any items on the return stack,
you must check that the return stack actually con-
tains at least as many items as you’ll be using. Oth-
erwise, a return stack underflow must be reported.

At the start of your primitive, simply use the state-
ment “Rsl(n);”, where n is the number of return
stack items you’ll be referencing. If you use the top-
most two items, R0 and R1, you’d use Rsl(2);. It’s
important that you use the definition rather than
check the return stack limit directly; if you later build
your application with stack checking off, the Rsl()
statement will generate no code, automatically con-
figuring your primitive for maximum speed.

Rso(n) Before you push any new items onto the return
stack, you must check that the return stack will not
overflow the area allocated to it when those items
are added. If it would, a return stack overflow must
be reported. At the start of your primitive, simply
use the statement “Rso(n);”, where n is the num-
ber of new return stack items you’ll be pushing. If
you are adding one new item to the return stack, use
“Rso(1);”. It’s important that you use the definition
rather than check the return stack limit directly; if
you later build your application with stack checking
off, the Rso() statement will generate no code, au-
tomatically configuring your primitive for maximum
speed.

R0–R2 The definitions R0, R1, and R2 provide direct ac-
cess to the top three return stack items. R0 is the top
item on the return stack, R1 is the next item, and R2
is the third item. These definitions may be used on
either the left or the right side of an assignment.

Rpop Used as a statement, “Rpop;”, discards the topmost
item from the return stack.

Rpush Used on the left side of an assignment, stores the
value on the right side into the next free return stack
item and increments the return stack pointer.

Coding primitive functions

Each primitive word you define is implemented by a C
function declared as “static void”. The header file
atldef.h defines “prim” as this type to more explicitly
identify primitive implementing functions.

As an example of a simple primitive, let’s add the abil-
ity to obtain the date and time in Unix format and to
extract the hours, minutes, and seconds from the Unix
date word. We’ll add two new primitive functions to
Atlast: TIME, which leaves the number of seconds since
midnight on January 1, 1970 on the top of the stack, and
HHMMSS which, given the value returned by TIME, leaves
the hours, minutes, and seconds represented by that time
in the three top stack locations, with the seconds at the
top.

14

Here is the C function that implements the TIME primitive
word:

prim ptime()
{

So(1);
Push = time(NULL);

}

Since we’re placing one new word on the stack, we call
So(1) to check for stack overflow. That accomplished, we
simply use Push on the left side of the assignment to store
the long time word returned by the Unix-compatible
time() function (which is supported by most non-Unix
C libraries, as well).

The function for our HHMMSS primitive is more com-
plicated, but not much. It uses the Unix-compatible
localtime() function which, passed a pointer to a word
containing a time in the format returned by time(), re-
turns a pointer to an internal static structure with fields
that give the day, month, year, hour, minute, second, etc.
represented by that time. The primitive definition is:

prim phhmmss()
{

struct tm *lt;

Sl(1);
So(2);
lt = localtime(&S0);
S0 = lt->tm_hour;
Push = lt->tm_min;
Push = lt->tm_sec;

}

This primitive expects one argument (the time word) on
the stack, so it begins with Sl(1) to verify that it is
present. It will replace that value with the hours and add
two new items to the stack for the minutes and seconds, so
it next uses So(2) to ensure those additions won’t cause
the stack to overflow. Now it can get down to business. It
calls localtime(), passing the address of the first stack
item (the time word), then stores the hours back into that
word and uses Push twice to add the minutes and seconds.

Once the primitive functions are coded, the primitives are
actually added to Atlast by listing them in a primitive
definition table and registering that table with Atlast
by calling the atl_primdef function. The primitive def-
inition table for our two new primitives is as follows:

static struct primfcn timep[] = {

{"0TIME", ptime},
{"0HHMMSS", phhmmss},
{NULL, (codeptr) 0}

};

The primfcn structure is declared in atldef.h. You may
list as many primitives in the table as you wish. The end
of the table is marked by an entry with NULL instead of
a primitive name. For each primitive you define, make
an entry with two components: the first a string with
the first character “0” if the primitive is a normal word
and “1” if it is a compile-time immediate word, the bal-
ance of which is the name of the primitive with all letters
upper case. The second component is the name of the
function that implements the primitive. The primitives
in the table are defined by calling atl_primdef, passing
the address of the table as follows:

atl_primdef(primt);

(Subtle note for MS-DOS users: to save memory, Atlast
uses the actual static strings you declare in the prim-
itive table as part of the dictionary entries it creates.
Since the Atlast dictionary will contain pointers to these
compiled-in strings, you must not place the data for the
primitive table in an overlay which might be swapped out
when Atlast later attempts to search the dictionary. If
your program does not overlay its data segment, you need
not worry about this.)

You can call atl_primdef any time after you’ve called
atl_init, and you can call it as many times as you like
with different primfcn tables. If a name in a primfcn ta-
ble duplicates the name of a built-in Atlast primitive or
a primitive defined by an previous call on atl_primdef,
the earlier definition will be hidden and inaccessible.

With these new primitives installed, we can now try them
out interactively from Atlast.

% atlast
-> time .
634539503 -> time .
634539505 -> time .
634539508 -> time .s
Stack: 634539512 -> hhmmss
-> .s
Stack: 20 58 32 -> clear time hhmmss .s
Stack: 20 58 44 -> clear
-> time hhmmss .s
Stack: 20 58 52 -> ^D
%

Everything seems to be behaving as we intended. Our

15

new primitives work!

Finally, let’s look at a more complicated primitive, one
involving floating point. Turning again to the Leibniz
series for π, here is the C language definition of a primitive
function to evaluate it. The function is compatible with
the one we previously implemented in Atlast: it expects
the number of terms on the top of the stack and returns
the approximation of π as a floating point value in the
two top stack items.

prim pleibniz()
{

long nterms;
double sum = 0.0,

numer = 1.0,
denom = 1.0;

Sl(1);
nterms = S0;
Pop;

So(Realsize);
Push = 0;
Push = 0;
while (nterms-- > 0) {

sum += numer / denom;
numer = -numer;
denom += 2.0;

}
SREAL0(sum * 4.0);

}

This function begins by verifying with Sl(1) that its term
count argument is present on the stack. It loads that ar-
gument, referenced as S0, and saves it in the loop count,
nterms. The iteration count is then discarded from the
stack with Pop. Next, So(Realsize) verifies that the
stack will not overflow when the real result is pushed
(recall that Realsize is the number of stack items per
floating point result—this is always two, but using the
definition makes for more readable code). We then im-
mediately count on Realsize being two as we use two
Push operations to allocate the stack space for the result
and clear it to zero. That done, the function falls into the
loop that sums the requested number of terms of the se-
ries. Finally, SREAL0() is used to store the result into the
top floating point value on the stack: the one we created
with the two Pushes.

This primitive is declared and registered with Atlast
with the sequence:

static struct primfcn pip[] = {
{"0LEIBNIZ", pleibniz},
{NULL, (codeptr) 0}

};
atl_primdef(pip);

With a C coded primitive implementation, we can explore
the outer reaches of this awful series. For example, here
it’s used to print the error after the first half million terms.

% atlast
-> 2variable pi
-> 1.0 atan 4.0 f* pi 2!
-> pi 2@ f. c
3.14159
-> 500000 leibniz pi 2@ f- f. cr
-2e-06
-> ^D
%

As you can see from the brevity and straightforwardness
of these sample primitives, there’s nothing complicated
or difficult about adding a primitive to Atlast. The
overhead in executing a primitive function from Atlast
rather than calling it from a C program is a matter of a
few instructions. If you need guidance in implementing
primitives that interact with Atlast in more intricate
ways, the best source of information is the source code of
atlast.c; find a standard primitive with arguments and
results similar to the one you’re planning to add, and
look up its implementing function. That should abate
any confusion about the fine points of stack and heap
manipulation.

Package configuration

In addition to the global configuration parameters de-
scribed on page 8, you can choose precisely which com-
ponents of Atlast are included when building a version
for your application by creating a custom configuration
file named custom.h, then compiling atlast.c with the
-DCUSTOM compiler flag. A custom configuration file has
the following format:

#define INDIVIDUALLY
#define Package1

#define Package2
...

#define Packagen

16

The Packagen definitions select which Atlast subpack-
ages you wish included in your application. The indi-
vidual subpackages are described in the following para-
graphs. The WORDSUSED and WORDSUNUSED primitives,
available as part of the WORDSUSED package, let you de-
termine which primitives are used within an Atlast pro-
gram and, consequently, which packages are required to
execute it.

The ARRAY package. Provides declaration of n dimen-
sional arrays of arbitrary data types and runtime sub-
script calculation for such arrays. Primitives: ARRAY.

The BREAK package. Enables asynchronous break pro-
cessing via the atl_break function. Disabling this pack-
age saves an insignificant amount of memory but increases
execution speed by about 10%. Primitives: none.

The COMPILERW package. Enables primitives used to
define new compiler words. Primitives: [COMPILE],
LITERAL, COMPILE, <MARK, <RESOLVE, >MARK, >RESOLVE.

The CONIO package. Enables primitives that display
interactive output. These primitives may be disabled in
applications that provide no interaction with the user.
Primitives: ., ?, CR, .S, .", .(, TYPE, WORDS.

The DEFFIELDS package. Enables low level primitives
used to manipulate dictionary items. These primitives
are rarely used except in very ambitious language ex-
tensions coded in Atlast. Primitives: FIND, >NAME,
>LINK, BODY>, NAME>, LINK>, N>LINK, L>NAME, NAME>S!,
S>NAME!.

The DOUBLE package. Enables double word operations.
These operations can be used with any stack data, but
are heavily used in floating point code, since floating point
numbers occupy pairs of stack items. Primitives: 2DUP,
2DROP, 2SWAP, 2OVER, 2ROT, 2VARIABLE, 2CONSTANT, 2!,
2@.

The FILEIO package. Enables the C language-like file
primitives. If your application does not require access
to files, this package may be disabled. Primitives: FILE,
FOPEN, FCLOSE, FDELETE, FGETS, FPUTS, FREAD, FWRITE,
FGETC, FPUTC, FTELL, FSEEK, FLOAD. In addition, FILE

variables STDIN, STDOUT, and STDERR are defined, auto-
matically bound to the Unix I/O streams with the same
names.

The MATH package. Enables the mathematical func-
tions. MATH can be enabled only if REAL is also enabled.
Primitives: ACOS, ASIN, ATAN, ATAN2, COS, EXP, LOG, POW,
SIN, SQRT, TAN.

The MEMMESSAGE package. Controls whether messages
are printed when runtime errors (such as stack overflow
and underflow, bad pointers, etc.) occur. Disabling these
messages doesn’t save time or significant memory: it’s in-
tended for deeply embedded applications where returning
the error status to the caller of atl_eval or atl_exec is
all the error notification that is appropriate. Primitives:
none.

The PROLOGUE package. The amount of memory al-
located to the stack, return stack, heap, and temporary
string buffers can be controlled by setting the external
variables governing those areas as described on page 9.
You can allow the Atlast program text to override the
default settings you make by enabling the PROLOGUE pack-
age. If this package is enabled, special statements of the
form:

\ *area size

are recognised by the evaluator when encountered be-
fore the first line containing executable Atlast text. To
permit processing of the prologue, do not explicitly call
atl_init; it will be called automatically by atl_eval
after the prologue is processed. The following area speci-
fications are recognised in the prologue:

STACK Specifies the stack size in terms of long stack
items.

RSTACK Specifies the return stack size in items.

HEAP Specifies the heap size as a number of long stack
items.

TEMPSTRL Specifies the length of each temporary string
buffer in characters.

TEMPSTRN Specifies the number of temporary string
buffers.

17

The REAL package. Enables floating point operations.
If you enable the REAL package, you should also enable
the DOUBLE package; without it you won’t be able to
accomplish much. Primitives: (FLIT), F+, F-, F*, F/,
FMIN, FMAX, FNEGATE, FABS, F=, F<>, F>, F<, F>=, F<=,
F., FLOAT, FIX.

The SHORTCUTA package. Enables shortcut integer
arithmetic operations. Primitives: 1+, 2+, 1-, 2-, 2*,
2/.

The SHORTCUTC package. Enables shortcut integer
comparison operations. Primitives: 0=, 0<>, 0<, 0>.

The STRING package. Enables string operations.
Primitives: (STRLIT), STRING, STRCPY, S!, STRCAT, S+,
STRLEN, STRCMP, STRCHAR, SUBSTR, COMPARE, STRFORM,
STRINT, STRREAL. If the REAL package is also enabled,
the FSTRFORM primitive is available, as well.

The SYSTEM package. Enables submission of com-
mands in strings to the operating system for execution.
This package may be enabled only if the implementation
of C used to build Atlast provides the system() func-
tion. Primitives: SYSTEM.

The TRACE package. Enables runtime word execution
trace. Primitives: TRACE.

The WALKBACK package. Enables the walkback through
nested invocation of words when an error is detected at
runtime. Primitives: WALKBACK.

The WORDSUSED package. Enables the collection of in-
formation on which words are used and not used by a pro-
gram, and the primitives that list words used and words
not used. This facility allows you to determine, in the de-
velopment phase of an Atlast application, which pack-
ages are needed and which can be safely dispensed with.
Primitives: WORDSUSED, WORDSUNUSED.

Benchmarks

To give a rough idea of the kind of performance you can
expect from Atlast when it is pressed into service for

compute-intensive tasks, I tested it against C and Auto-
LISP with two benchmarks, both involving the computa-
tion of square roots.

The first benchmark, CSQRT, calculates the square root
of 2 with the iterative Newton-Raphson algorithm used
by AutoCAD’s HMATH.C module, also used in the Auto-
LISP sample program SQR.LSP. This benchmark is repre-
sentative of extremely compute-bound code which repre-
sents misuse of a macro language—any such computation
should normally be moved into a primitive written in C.
Still, it’s interesting to know what the worst case is.

The second benchmark, SSQRT, is identical to CSQRT, ex-
cept that the system math library’s sqrt() function is
called instead of one coded in the language under test.
Since all three languages are calling the same underlying
system function, this test demonstrates relative perfor-
mance in an environment still more compute-bound than
a typical macro language application, but one where the
language overhead is less than 100%. All of these bench-
marks were run on a Sun 3/260 under SunOS 4.0.3, and
listings of the benchmark programs are given at the end of
this paper. The Atlast timings were made on a version
of Atlast compiled with the “-O4 -f68881” flags, and
stack and heap checking disabled in the Atlast config-
uration. The C programs were also compiled with “-O4
-f68881” flags, while the AutoLISP tests were run on
a NONPRODUCTION version of Z.0.65 in which AutoLISP
was built with “-O -f68881”. All timings in the following
table have been normalised so that the native C language
times are 1.

C ATLAST AutoLISP
CSQRT 1.00 7.41 67.08
SSQRT 1.00 1.00 1.52

Summary and Conclusions

Everything should be programmable. Everything! I have
come to the conclusion that to write almost any program
in a closed manner is a mistake that invites the expendi-
ture of uncounted hours “enhancing” it over its life cycle.
Further tweaks, “features,” and “fixes” often result in a
product so massive and incomprehensible that it becomes
unlearnable, unmaintainable, and eventually unusable.

Far better to invest the effort up front to create a prod-
uct flexible enough to be adapted at will, by its users, to
their immediate needs. If the product is programmable in
a portable, open form, user extensions can be exchanged,
compared, reviewed by the product developer, and even-

18

tually incorporated into the mainstream of the product.

It is far, far better to have thousands of creative users
expanding the scope of one’s product in ways the origi-
nal developers didn’t anticipate—in fact, working for the
vendor without pay, than it is to have thousands of frus-
trated users writing up wish list requests that the vendor
can comply with only by hiring people and paying them
to try to accommodate the perceived needs of the users.
Open architecture and programmability not only benefits
the user, not only makes a product better in the techni-
cal and marketing sense, but confers a direct economic
advantage upon the vendor of such a product—one mir-
rored in a commensurate disadvantage to the vendor of a
closed product.

The chief argument against programmability has been
the extra investment needed to create open products.
Atlast provides a way of building open products in the
same, or less, time than it takes to construct closed ones.
Just as no C programmer in his right mind would sit down
and write his own buffered file I/O package when a per-
fectly fine one was sitting in the library, why re-invent a
macro language or other parameterisation and program-
ming facility when there’s one just sitting there that’s as
fast as native C code for all but the most absurd misap-
plications, takes less than 51K with every gew-gaw and
optional feature at its command enabled all at once, is
portable to any machine that supports C by simply re-
compiling a single file, and can be integrated into a typical
application at a basic level in less than 15 minutes?

Am I proposing that every application suddenly look like
FORTH? Of course not; no more than output from
PostScript printers looks like PostScript, or applications
that run on 80386 processors resemble 80386 assembly
language. Atlast is an intermediate language, seen
only by those engaged in implementing and extending the
product. Even then, Atlast is a chameleon which, with
properly defined words, can look like almost anything you
like, even at the primitive level of the interpreter.

Again and again, I have been faced with design situations
where I knew that I really needed programmability, but
didn’t have the time, the memory, or the fortitude to face
the problem squarely and solve it the right way. Instead, I
ended up creating a kludge that continued to burden me
through time. This is just a higher level manifestation
of the nightmares perpetrated by old-time programmers
who didn’t have access to a proper dynamic memory al-
locator or linked list package. Just because programma-
bility is the magic smoke of computing doesn’t mean we
should be spooked by the ghost in the machine or hesitant
to confer its power upon our customers.

Don’t think of Atlast as FORTH. Don’t think of it as
a language at all. The best way to think of Atlast is
as a library routine that gives you programmability, in
the same sense other libraries provide file access, window
management, or graphics facilities. The whole concept
of “programmability in a can” is odd—it took me two
years from the time I first thought about it in connection
with The Leto Protocol until I really got my end effector
around it and crushed it into submission. I urge you
to think about it, play with it, and examine how it will
be applied in the Atlast-enhanced programs I will be
demonstrating in the near future.

Open is better. Atlast lets you build open programs in
less time than you used to spend writing closed ones. Pro-
grams that inherit their open architecture from Atlast
will share, across the entire product line and among all
hardware platforms that support it, a common, clean,
and efficient means of user extensibility. The potential
benefits of this are immense.

John Walker
Muir Beach, California

January 22–February 11, 1990
4072 lines of code

19

Atlast Primitives: Alphabetical Reference

+ n1 n2 → n3 n3 = n1 + n2
Adds n1 and n2 and leaves sum on stack.

- n1 n2 → n3 n3 = n1 − n2
Subtracts n2 from n1 and leaves difference on stack.

* n1 n2 → n3 n3 = n1 × n2
Multiplies n1 and n2 and leaves product on stack.

/ n1 n2 → n3 n3 = n1 ÷ n2
Divides n1 by n2 and leaves quotient on stack.

’ word → caddr Obtain compilation address
Places the compilation address of the following word
on the stack.

, n → Store in heap
Reserves four bytes of heap space, initialising it to
n.

. n → Print top of stack CONIO

Prints the number on the top of the stack.

.(str → Print constant string CONIO

Immediately prints the string that follows in the in-
put stream.

.S → Print stack CONIO

Prints entire contents of stack.

." str → Print immediate string CONIO

Prints the string literal that follows in line.

: w → Begin definition
Begins compilation of a word named w.

; → End definition
Ends compilation of word.

< n1 n2 → flag Less than
Returns −1 if n1<n2, 0 otherwise.

<= n1 n2 → flag Less than or equal
Returns −1 if n1≤n2, 0 otherwise.

<> n1 n2 → flag Not equal
Returns −1 if n1 6=n2, 0 otherwise.

= n1 n2 → flag Equal
Returns −1 if n1=n2, 0 otherwise.

> n1 n2 → flag Greater
Returns −1 if n1>n2, 0 otherwise.

>= n1 n2 → flag Greater than or equal
Returns −1 if n1≥n2, 0 otherwise.

? addr → Print indirect CONIO

Prints the value at the address at the top of the
stack.

! n addr → Store into address
Stores the value n into the address addr.

+! n addr → Add indirect
Adds n to the word at address addr.

@ addr → n Load

20

Atlast Primitives: Alphabetical Reference

Loads the value at addr and leaves it at the top of
the stack.

[→ Set interpretive state
Within a compilation, returns to the interpretive
state.

[’] word → caddr Push next word
Places the compile address of the following word in
a definition onto the stack.

] → End interpretive state
Restore compile state after temporary interpretive
state.

0< n1 → flag Less than zero SHORTCUTC

Returns −1 if n1 less than zero, 0 otherwise.

0<> n1 → flag Nonzero SHORTCUTC

Returns −1 if n1 is nonzero, 0 otherwise.

0= n1 → flag Equal to zero SHORTCUTC

Returns −1 if n1 is zero, 0 otherwise.

0> n1 → flag Greater than zero SHORTCUTC

Returns −1 if n1 greater than zero, 0 otherwise.

1+ n1 → n2 Add one SHORTCUTA

Adds one to top of stack.

1- n1 → n2 Subtract one SHORTCUTA

Subtracts one from top of stack.

2+ n1 → n2 Add two SHORTCUTA

Adds two to top of stack.

2- n1 → n2 Subtract two SHORTCUTA

Subtracts two from top of stack.

2* n1 → n2 Times two SHORTCUTA

Multiplies the top of stack by two.

2/ n1 → n2 Divide by two SHORTCUTA

Divides top of stack by two.

2! n1 n2 addr → Store two words DOUBLE

Stores the two words n1 and n2 at addresses addr
and addr+4.

2@ addr → n1 n2 Load two words DOUBLE

Places the two words starting at addr on the top of
the stack

2CONSTANT x n1 n2 → Double word constant DOUBLE

Declares a double word constant x. When x is exe-
cuted, n1 and n2 are placed on the stack.

2DROP n1 n2 → Double drop DOUBLE

Discards the two top items from the stack.

2DUP n1 n2 → n1 n2 n1 n2 Duplicate two DOUBLE

Duplicates the top two items on the stack.

2OVER n1 n2 n3 n4 → n1 n2 n3 n4 n1 n2 Double over DOUBLE

Copies the second pair of items on the stack to the
top of stack.

2ROT n1 n2 n3 n4 n5 n6 → n3 n4 n5 n6 n1 n2 Double rotate DOUBLE

21

Atlast Primitives: Alphabetical Reference

Rotates the third pair on the stack to the top, mov-
ing down the first and second pairs.

2SWAP n1 n2 n3 n4 → n3 n4 n1 n2 Double swap DOUBLE

Swaps the first and second pairs on the stack.

2VARIABLE x → Double variable DOUBLE

Creates a two cell (8 byte) variable named x. When
x is executed, the address of the 8 byte area is placed
on the stack.

ABORT → Abort
Clears the stack and performs a QUIT.

ABORT" str → Abort with message
Prints the string literal that follows in line, then
aborts, clearing all execution state to return to the
interpreter.

ABS n1 → n2 n2 = |n1|
Replaces top of stack with its absolute value.

ACOS f1 → f2 f2 = arccos f1 MATH

Replaces floating point top of stack with its arc co-
sine.

AGAIN → Indefinite loop
Marks the end of an indefinite loop opened by the
matching BEGIN.

ALLOT n → Allocate heap
Allocates n bytes of heap space. The space allocated
is rounded to the next higher multiple of 4.

AND n1 n2 → n3 Bitwise AND
Stores the bitwise AND of n1 and n2 on the stack.

ARRAY x s1 s2 . . . sn n esize → Declare array ARRAY

Declares an array x of elements of esize bytes each
with n subscripts, each ranging from 0 to sn − 1

ASIN f1 → f2 f2 = arcsin f1 MATH

Replaces floating point top of stack with its arc sine.

ATAN f1 → f2 f2 = arctan f1 MATH

Replaces floating point top of stack with its arc tan-
gent.

ATAN2 f1 f2 → f3 f3 = arctan f1/f2 MATH

Replaces the two floating point numbers on the top
of the stack with the arc tangent of their quotient,
properly handling zero denominators.

BEGIN → Begin loop
Begins an indefinite loop. The end of the loop is
marked by the matching AGAIN, REPEAT, or UNTIL.

BODY> pfa → cfa Body to word DEFFIELDS

Given body address of word, return the compile ad-
dress of the word.

>BODY cfa → pfa Body address
Given the compile address of a word, return its body
(parameter) address.

BRANCH → Branch

22

Atlast Primitives: Alphabetical Reference

Jump to the address that follows in line.

?BRANCH flag → Conditional branch
If the top of stack is zero, jump to the address which
follows in line. Otherwise skip the address and con-
tinue execution.

C! n addr → Store byte
The 8 bit value n is stored in the byte at address
addr.

C@ addr → n Load byte
The byte at address addr is placed on the top of the
stack.

C, n → Compile byte
The 8 bit value n is stored in the next free byte of the
heap and the heap pointer is incremented by one.

C= → Align heap
The heap allocation pointer is adjusted to the next
four byte boundary. This must be done following a
sequence of C, operations.

CLEAR → Clear stack
All items on the stack are discarded.

COMPARE s1 s2 → n Compare strings STRING

The two strings whose addresses are given by s1 and
s2 are compared. If s1 is less than s2, −1 is returned;
if s1 is greater than s2, 1 is returned. If s1 and s2
are equal, 0 is returned.

COMPILE w → Compile word COMPILERW

Adds the compile address of the word that follows
in line to the definition currently being compiled.

[COMPILE] word → Compile immediate word COMPILERW

Compiles the address of word, even if word is marked
IMMEDIATE.

CONSTANT x n → Declare constant
Declares a constant named x. When x is executed,
the value n will be left on the stack.

COS f1 → f2 Cosine MATH

The floating point value on the top of the stack is
replaced by its cosine.

CR → Carriage return CONIO

The standard output stream is advanced to the first
character of the next line.

CREATE → Create object
Create an object, given the name which appears
next in the input stream, with a default action of
pushing the parameter field address of the object
when executed. No storage is allocated; normally
the parameter field will be allocated and initialised
by the defining word code that follows the CREATE.

DEPTH → n Stack depth
Returns the number of items on the stack before
DEPTH was executed.

23

Atlast Primitives: Alphabetical Reference

DO limit n → Definite loop
Executes the loop from the following word to the
matching LOOP or +LOOP until n increments past the
boundary between limit−1 and limit. Note that the
loop is always executed at least once (see ?DO for an
alternative to this).

?DO limit n → Conditional loop
If n equals limit, skip immediately to the matching
LOOP or +LOOP. Otherwise, enter the loop, which is
thenceforth treated as a normal DO loop.

DOES> → Run-time action
Sets the run-time action of a word created by the last
CREATE to the code that follows. When the word is
executed, its body address is pushed on the stack,
then the code that follows the DOES> will be exe-
cuted.

DROP n → Discard top of stack
Discards the value at the top of the stack.

DUP n → n n Duplicate
Duplicates the value at the top of the stack.

?DUP n → 0 / n n Conditional duplicate
If top of stack is nonzero, duplicate it. Otherwise
leave zero on top of stack.

ELSE → Else
Used in an IF—ELSE—THEN sequence, delimits the
code to be executed if the if-condition was false.

EXECUTE addr → Execute word
Executes the word with compile address addr.

EXIT → Exit definition
Exit from the current definition immediately. Note
that EXIT cannot be used within a DO—LOOP; use
LEAVE instead.

EXP f1 → f2 f2 = ef1 MATH

The floating point value on the top of the stack is
replaced by its natural antilogarithm.

F+ f1 f2 → f3 f3 = f1 + f2 REAL

The two floating point values on the top of the stack
are added and their sum is placed on the top of the
stack.

F- f1 f2 → f3 f3 = f1− f2 REAL

The floating point value f2 is subtracted from the
floating point value f1 and the result is placed on
the top of the stack.

F* f1 f2 → f3 f3 = f1× f2 REAL

The two floating point values on the top of the stack
are multiplied and their product is placed on the top
of the stack.

F/ f1 f2 → f3 f3 = f1÷ f2 REAL

The floating point value f1 is divided by the floating
point value f2 and the quotient is placed on the top
of the stack.

24

Atlast Primitives: Alphabetical Reference

F. f → Print floating point REAL

The floating point value on the top of the stack is
printed.

F< f1 f2 → flag Floating less than REAL

The top of stack is set to −1 if f1 is less than f2 and
0 otherwise.

F<= f1 f2 → flag Floating less than or equal REAL

The top of stack is set to −1 if f1 is less than or
equal to f2 and 0 otherwise.

F<> f1 f2 → flag Floating not equal REAL

The top of stack is set to −1 if f1 is not equal to f2
and 0 otherwise.

F= f1 f2 → flag Floating equal REAL

The top of stack is set to −1 if f1 is equal to f2 and
0 otherwise.

F> f1 f2 → flag Floating greater than REAL

The top of stack is set to −1 if f1 is greater than f2
and 0 otherwise.

F>= f1 f2 → flag Floating greater than or equal REAL

The top of stack is set to −1 if f1 is greater than or
equal to f2 and 0 otherwise.

FABS f1 → f2 f2 = |f1|
Replaces floating point top of stack with its absolute
value.

FCLOSE file → Close file FILEIO

The specified file is closed.

FDELETE s1 → flag Delete file FILEIO

The file named by the string s1 is deleted. If the file
was successfully deleted, −1 is returned. Otherwise,
0 is returned.

FGETC file → char Read next character FILEIO

The next byte is read from the specified file and
placed on the top of the stack. If end of file is en-
countered, −1 is returned.

FGETS file string → flag Read string FILEIO

The next text line (limited to a maximum of 132
characters) is read from file and stored into the
buffer at string. Input lines are recognised in all
the end of line conventions accepted by AutoCAD.
The end of line delimiter is deleted from the input
line and is not stored in the string. If end of file is
encountered 0 is returned; otherwise −1 is placed on
the top of the stack.

FILE f → Declare file FILEIO

A file descriptor named f is declared. This descrip-
tor may subsequently be associated with a file with
FOPEN.

FIND s → word flag Look up word DEFFIELDS

25

Atlast Primitives: Alphabetical Reference

The word with name given by the string s is looked
up in the dictionary. If a definition if not found,
word will be left as the address of the string and
flag will be set to zero. If the word is present in
the dictionary, its compilation address is placed on
the stack, followed by a flag that is 1 if the word is
marked for immediate execution and −1 otherwise.

FIX f → n Floating to integer REAL

The floating point number on the top of the stack
is replaced by the integer obtained by truncating its
fractional part.

(FLIT) → f Push floating point literal REAL

Pushes the floating point literal that follows in line
onto the top of the stack.

FLOAD file → stat Load file FILEIO

The source program starting at the current position
in file is loaded as if its text appeared at the current
character position in the input stream. The status
resulting from the evaluation is left on the stack,
zero if normal, negative in case of error.

FLOAT n → f Integer to floating REAL

The integer value on the top of the stack is replaced
by the equivalent floating point value.

FMAX f1 f2 → f3 Floating point maximum FLOAT

The greater of the two floating point values on the
top of the stack is placed on the top of the stack.

FMIN f1 f2 → f3 Floating point minimum FLOAT

The lesser of the two floating point values on the top
of the stack is placed on the top of the stack.

FNEGATE f1 → f2 f2 = −f1 FLOAT

The negative of the floating point value on the top
of the stack replaces the floating point value there.

FOPEN fname fmodes file → flag File open FILEIO

The previously declared file is opened with the spec-
ified file name fname given by the string address on
the stack in the mode given by fmodes. The bits in
fmodes are 1 for read, 2 for write, 4 for binary, and 8
to create a new file. If the file is opened successfully,
−1 is returned; otherwise 0 is returned. The Unix
standard streams, STDIN, STDOUT, and STDERR are
predefined and automatically opened.

FORGET w → Forget word
The most recent definition of word w is deleted,
along with all words declared more recently than
the named word.

FPUTC char file → stat Write character FILEIO

The character char is written to file. If the character
is written successfully, char is returned; otherwise
−1 is returned.

FPUTS s file → flag Write string FILEIO

26

Atlast Primitives: Alphabetical Reference

The string s is written to file, followed by the end
of line delimiter used on this system. If the line is
written successfully, −1 is returned; otherwise 0 is
returned.

FREAD file len buf → length Read file FILEIO

Len bytes are read into buffer buf from file. The
number of bytes actually read is returned on the
top of the stack.

FSEEK offset base file → Set file position FILEIO

The current position of file is set to offset, relative
to the specified base: if 0, the beginning of the file;
if 1, the current file position; if 2, the end of file.

FSTRFORM f format str → Floating point edit REAL

Edits a floating point number f into string str, using
the sprintf format given by the string format.

FTELL file → pos File position FILEIO

Returns the current byte position pos for file file.

FWRITE len buf file → length File write FILEIO

Writes len bytes from the buffer at address buf to
file. The number of bytes written is returned on the
top of the stack.

HERE → addr Heap address
The current heap allocation address is placed on the
top of the stack.

I → n Inner loop index
The index of the innermost DO—LOOP is placed on
the stack.

IF flag → Conditional statement
If flag is nonzero, the following statements are ex-
ecuted. Otherwise, execution resumes after the
matching ELSE clause, if any, or after the matching
THEN.

IMMEDIATE → Mark immediate
The most recently defined word is marked for imme-
diate execution; it will be executed even if entered
in compile state.

J → n Outer loop index
The loop index of the next to innermost DO—LOOP
is placed on the stack.

L>NAME lfa → nfa Link to name field DEFFIELDS

Given the link field address of a word on the top of
the stack, its name pointer field address is returned.

LEAVE → Exit DO—LOOP
The innermost DO—LOOP is immediately exited. Ex-
ecution resumes after the LOOP statement marking
the end of the loop.

LINK> lfa → cfa Link field to compile address DEFFIELDS

Given the link field address of a word on the top
of the stack, the compile address of the word is re-
turned.

27

Atlast Primitives: Alphabetical Reference

>LINK cfa → lfa Link address DEFFIELDS

Given the compile address of a word, return its link
field address.

(LIT) → n Push literal
Pushes the integer literal that follows in line onto
the top of the stack.

LITERAL n → Compile literal COMPILERW

Compiles the value on the top of the stack into the
current definition. When the definition is executed,
that value will be pushed onto the top of the stack.

LOG f1 → f2 f2 = ln f1 MATH

The floating point value on the top of the stack is
replaced by its natural logarithm.

LOOP → Increment loop index
Adds one to the index of the active loop. If the limit
is reached, the loop is exited. Otherwise, another
iteration is begun.

+LOOP n → Add to loop index
Adds n to the index of the active loop. If the limit
is reached, the loop is exited. Otherwise, another
iteration is begun.

<MARK → addr Backward jump mark COMPILERW

Saves the current compilation address on the stack.

>MARK → addr Forward mark COMPILERW

Compiles a place-holder offset for a forward jump
and saves its address for later backpatching on the
stack.

MAX n1 n2 → n3 Maximum
The greater of n1 and n2 is left on the top of the
stack.

MEMSTAT → Print memory status MEMSTAT

The current and maximum memory usage so far are
printed on standard output. The sizes allocated for
the stack, return stack, and heap are edited, as well
as the percentage in use.

MIN n1 n2 → n3 Minimum
The lesser of n1 and n2 is left on the top of the stack.

MOD n1 n2 → n3 Modulus (remainder)
The remainder when n1 is divided by n2 is left on
the top of the stack.

/MOD n1 n2 → n3 n4 n3 = n1 mod n2, n4 = n1 ÷ n2
Divides n1 by n2 and leaves quotient on top of stack,
remainder as next on stack.

N>LINK nfa → lfa Name to link field DEFFIELDS

Given the name field pointer address of a word on
the top of the stack, leaves the link field address of
the word on the top of stack.

>NAME cfa → nfa Name address DEFFIELDS

Given the compile address of a word, return its name
pointer field address.

28

Atlast Primitives: Alphabetical Reference

NAME> nfa → cfa Name field to compile address DEFFIELDS

Given the address of the name pointer field of a word
on the top of the stack, leaves the compile address
of the word on the top of the stack.

NAME>S! nfa string → Get name field DEFFIELDS

Stores the name field of the word pointed to by nfa
into string.

NEGATE n1 → n2 n2 = −n1
Negates the value on the top of the stack.

(NEST) → Invoke word
Pushes the instruction pointer onto the return stack
and sets the instruction pointer to the next word in
line.

NOT n1 → n2 Logical not
Inverts the bits in the value on the top of the stack.
This performs logical negation for truth values of −1
(True) and 0 (False).

OR n1 n2 → n3 Bitwise OR
Stores the bitwise OR of n1 and n2 on the stack.

OVER n1 n2 → n1 n2 n1 Duplicate second item
The second item on the stack is copied to the top.

PICK . . . n2 n1 n0 index → . . . n0 nindex Pick item from stack
The indexth stack item is copied to the top of the
stack. The top of stack has index 0, the second item
index 1, and so on.

POW f1 f2 → f3 f3 = f1f2
MATH

The second floating point value on the stack is taken
to the power of the top floating point stack value and
the result is left on the top of the stack.

QUIT → Quit execution
The return stack is cleared and control is returned
to the interpreter. The stack is not disturbed.

>R n → To return stack
Removes the top item from the stack and pushes it
onto the return stack.

R> → n From return stack
The top value is removed from the return stack and
pushed onto the stack.

R@ → n Fetch return stack
The top value on the return stack is pushed onto
the stack. The value is not removed from the return
stack.

REPEAT → Close BEGIN—WHILE—REPEAT loop
Another iteration of the current BEGIN—WHILE—
REPEAT loop having been completed, execution con-
tinues after the matching BEGIN.

<RESOLVE addr → Backward jump resolve COMPILERW

Compiles the address saved by the matching <MARK.

>RESOLVE addr → Forward jump resolve COMPILERW

29

Atlast Primitives: Alphabetical Reference

Backpatches the address left by the matching >MARK
to jump to the next word to be compiled.

ROLL . . . n2 n1 n0 index → . . . n0 nindex Rotate indexth item to top
The stack item selected by index, with 0 designating
the top of stack, 1 the second item, and so on, is
moved to the top of the stack. The intervening stack
items are moved down one item.

ROT n1 n2 n3 → n2 n3 n1 Rotate 3 items
The third item on the stack is placed on the top of
the stack and the second and first items are moved
down.

-ROT n1 n2 n3 → n3 n1 n2 Reverse rotate
Moves the top of stack to the third item, moving the
third and second items up.

S! s1 s2 → Store string STRING

The string at address s1 is copied into the string at
s2.

S+ s1 s2 → String concatenate STRING

The string at address s1 is concatenated to the string
at address s2.

S>NAME! string nfa → Store name field DEFFIELDS

Stores the string into the name field of the word
given by name pointer field nfa.

SHIFT n1 n2 → n3 Shift n1 by n2 bits
The value n1 is logically shifted the number of bits
specified by n2, left if n2 is positive and right if n2
is negative. Zero bits are shifted into vacated bits.

SIN f1 → f2 Sine MATH

The floating point value on the top of the stack is
replaced by its sine.

SQRT f1 → f2 f2 =
√

f1 MATH

The floating point value on the top of the stack is
replaced by its square root.

STATE → addr System state variable
The address of the system state variable is pushed on
the stack. The state is zero if interpreting, nonzero
if compiling.

STRCAT s1 s2 → String concatenate STRING

The string at address s1 is concatenated to the string
at address s2.

STRCHAR s1 s2 → String character search STRING

The string at address s1 is searched for the first oc-
currence of the first character of string s2. If that
character appears nowhere in s1, 0 is returned. Oth-
erwise, the address of the first occurrence in s1 is left
on the top of the stack.

STRCMP s1 s2 → n String compare STRING

The string at address s1 is compared to the string
at address s2. If s1 is less than s2, −1 is returned.
If s1 and s2 are equal, 0 is returned. If s1 is greater
than s2, 1 is returned.

30

Atlast Primitives: Alphabetical Reference

STRCPY s1 s2 → Store string STRING

The string at address s1 is copied into the string at
s2.

STRFORM n format str → Integer edit STRING

Edits the number n into string str, using the
sprintf format given by the string format. Note:
the reference to the number in the format must be
as a long value, for example "%ld".

STRING x size → Declare string STRING

Declares a string named x of a maximum of size−1
characters.

STRINT s1 → s2 n String to integer STRING

Scans an integer from s1. The integer scanned is
placed on the top of the stack and the address of
the character that terminated the scan is stored as
the next item on the stack.

STRLEN s → n String length STRING

The length of string s is placed on the top of the
stack.

(STRLIT) → s String literal STRING

Pushes the address of the string literal that follows
in line onto the stack.

STRREAL s1 → s2 f String to real STRING

Scans a floating point number from s1. The float-
ing point number scanned is placed on the top of
the stack and the address of the character that ter-
minated the scan is stored as the next item on the
stack.

SUBSTR s1 start length s2 → Extract substring STRING

The substring of string s1 that begins at character
start, with the first character numbered 0, extending
for length characters, with −1 designating all char-
acters to the end of string, is stored into the string
s2.

SWAP n1 n2 → n2 n1 Swap top two items
The top two stack items are interchanged.

SYSTEM s → n Execute system command SYSTEM

The operating system command given in the string
s is passed to the system’s command interpreter
(shell). The system result status returned after the
command completes is left on the top of the stack.

TAN f1 → f2 Tangent MATH

The floating point value on the top of the stack is
replaced by its tangent.

THEN → End if
Used in an IF—ELSE—THEN sequence, marks the
end of the conditional statement.

TRACE n → Trace mode TRACE

If n is nonzero, trace mode is enabled. If n is zero,
trace mode is turned off.

TYPE s → Print string CONIO

31

Atlast Primitives: Alphabetical Reference

The string at address s is printed on standard out-
put.

UNTIL flag → End BEGIN—UNTIL loop
If flag is zero, the loop continues execution at
the word following the matching BEGIN. If flag is
nonzero, the loop is exited and the word following
the UNTIL is executed.

VARIABLE x → Declare variable
A variable named x is declared and its value is set to
zero. When x is executed, its address will be placed
on the stack. Four bytes are reserved on the heap
for the variable’s value.

WALKBACK n → Walkback mode WALKBACK

If n is nonzero, a walkback trace through active
words will be performed whenever an error occurs
during execution. If n is zero, the walkback is sup-
pressed.

WHILE flag → Decide BEGIN—WHILE—REPEAT loop
If flag is nonzero, execution continues after the
WHILE. If flag is zero, the loop is exited and ex-
ecution resumed after the REPEAT that marks the
end of the loop.

WORDS → List words defined CONIO

Defined words are listed, from the most recently de-
fined to the first defined. If the system supports
keystroke trapping, pressing any key will pause the
display of defined words; pressing carriage return
will abort the listing—any other key resumes it. On
other systems, only the 20 most recently defined
words are listed.

WORDSUSED → List words used WORDSUSED

The words used by this program are listed on stan-
dard output. If the system supports keystroke trap-
ping, the listing may be aborted by pressing a key
while the output is in progress. The words used
report is useful in configuring a custom version of
Atlast that includes just the words needed by the
program it executes.

WORDSUNUSED → List words not used WORDSUSED

The words not used by this program are listed on
standard output. If the system supports keystroke
trapping, the listing may be aborted by pressing a
key while the output is in progress. The words not
used report is useful in configuring a custom version
of Atlast that includes just the words needed by
the program it executes.

XOR n1 n2 → n3 Bitwise exclusive OR
Stores the bitwise exclusive or of n1 and n2 on the
stack.

(XDO) limit n → Execute loop
At runtime, enters a loop that will step until n in-
crements and becomes equal to limit

32

Atlast Primitives: Alphabetical Reference

(X?DO) limit n → Execute conditional loop
At runtime, tests if n equals limit. If so, skips until
the matching LOOP or +LOOP. Otherwise, enters the
loop.

(XLOOP) → Increment loop index
At runtime, adds one to the index of the active loop
and exits if equal to the limit. Otherwise returns to
the matching DO or ?DO.

(+XLOOP) incr → Add to loop index
At runtime, increments the loop index by the top
of stack. If the loop is not done, begins the next
iteration.

33

Atlast Primitives: Alphabetical Summary

+ n1 n2 → n3 n3 = n1 + n2
- n1 n2 → n3 n3 = n1 − n2
* n1 n2 → n3 n3 = n1 × n2
/ n1 n2 → n3 n3 = n1 ÷ n2
’ word → caddr Obtain compilation address
, n → Store in heap
. n → Print top of stack
.(str → Print constant string
.S → Print stack
." str → Print immediate string
: w → Begin definition
; → End definition
< n1 n2 → flag Less than
<= n1 n2 → flag Less than or equal
<> n1 n2 → flag Not equal
= n1 n2 → flag Equal
> n1 n2 → flag Greater
>= n1 n2 → flag Greater than or equal
? addr → Print indirect
! n addr → Store into address
+! n addr → Add indirect
@ addr → n Load
[→ Set interpretive state
[’] word → caddr Push next word
] → End interpretive state
0< n1 → flag Less than zero
0<> n1 → flag Nonzero
0= n1 → flag Equal to zero
0> n1 → flag Greater than zero
1+ n1 → n2 Add one
1- n1 → n2 Subtract one
2+ n1 → n2 Add two
2- n1 → n2 Subtract two
2* n1 → n2 Times two
2/ n1 → n2 Divide by two
2! n1 n2 addr → Store two words
2@ addr → n1 n2 Load two words
2CONSTANT x n1 n2 → Double word constant
2DROP n1 n2 → Double drop
2DUP n1 n2 → n1 n2 n1 n2 Duplicate two
2OVER n1 n2 n3 n4 → n1 n2 n3 n4 n1 n2 Double over
2ROT n1 n2 n3 n4 n5 n6 → n3 n4 n5 n6 n1 n2 Double rotate
2SWAP n1 n2 n3 n4 → n3 n4 n1 n2 Double swap
2VARIABLE x → Double variable
ABORT → Abort
ABORT" str → Abort with message
ABS n1 → n2 n2 = |n1|
ACOS f1 → f2 f2 = arccos f1
AGAIN → Indefinite loop
ALLOT n → Allocate heap
AND n1 n2 → n3 Bitwise AND
ARRAY x s1 s2 . . . sn n esize → Declare array

34

Atlast Primitives: Alphabetical Summary

ASIN f1 → f2 f2 = arcsin f1
ATAN f1 → f2 f2 = arctan f1
ATAN2 f1 f2 → f3 f3 = arctan f1/f2
BEGIN → Begin loop
BODY> pfa → cfa Body to word
>BODY cfa → pfa Body address
BRANCH → Branch
?BRANCH flag → Conditional branch
C! n addr → Store byte
C@ addr → n Load byte
C, n → Compile byte
C= → Align heap
CLEAR → Clear stack
COMPARE s1 s2 → n Compare strings
COMPILE w → Compile word
[COMPILE] word → Compile immediate word
CONSTANT x n → Declare constant
COS f1 → f2 Cosine
CR → Carriage return
CREATE → Create object
DEPTH → n Stack depth
DO limit n → Definite loop
?DO limit n → Conditional loop
DOES> → Run-time action
DROP n → Discard top of stack
DUP n → n n Duplicate
?DUP n → 0 / n n Conditional duplicate
ELSE → Else
EXECUTE addr → Execute word
EXIT → Exit definition
EXP f1 → f2 f2 = ef1

F+ f1 f2 → f3 f3 = f1 + f2
F- f1 f2 → f3 f3 = f1− f2
F* f1 f2 → f3 f3 = f1× f2
F/ f1 f2 → f3 f3 = f1÷ f2
F. f → Print floating point
F< f1 f2 → flag Floating less than
F<= f1 f2 → flag Floating less than or equal
F<> f1 f2 → flag Floating not equal
F= f1 f2 → flag Floating equal
F> f1 f2 → flag Floating greater than
F>= f1 f2 → flag Floating greater than or equal
FABS f1 → f2 f2 = |f1|
FCLOSE file → Close file
FDELETE s1 → flag Delete file
FGETC file → char Read next character
FGETS file string → flag Read string
FILE f → Declare file
FIND s → word flag Look up word
FIX f → n Floating to integer
(FLIT) → f Push floating point literal
FLOAD file → stat Load file

35

Atlast Primitives: Alphabetical Summary

FLOAT n → f Integer to floating
FMAX f1 f2 → f3 Floating point maximum
FMIN f1 f2 → f3 Floating point minimum
FNEGATE f1 → f2 f2 = −f1
FOPEN fname fmodes file → flag File open
FORGET w → Forget word
FPUTC char file → stat Write character
FPUTS s file → flag Write string
FREAD file len buf → length Read file
FSEEK offset base file → Set file position
FSTRFORM f format str → Floating point edit
FTELL file → pos File position
FWRITE len buf file → length File write
HERE → addr Heap address
I → n Inner loop index
IF flag → Conditional statement
IMMEDIATE → Mark immediate
J → n Outer loop index
L>NAME lfa → nfa Link to name field
LEAVE → Exit DO—LOOP
LINK> lfa → cfa Link field to compile address
>LINK cfa → lfa Link address
(LIT) → n Push literal
LITERAL n → Compile literal
LOG f1 → f2 f2 = ln f1
LOOP → Increment loop index
+LOOP n → Add to loop index
<MARK → addr Backward jump mark
>MARK → addr Forward mark
MAX n1 n2 → n3 Maximum
MEMSTAT → Print memory status
MIN n1 n2 → n3 Minimum
MOD n1 n2 → n3 Modulus (remainder)
/MOD n1 n2 → n3 n4 n3 = n1 mod n2, n4 = n1 ÷ n2
N>LINK nfa → lfa Name to link field
>NAME cfa → nfa Name address
NAME> nfa → cfa Name field to compile address
NAME>S! nfa string → Get name field
NEGATE n1 → n2 n2 = −n1
(NEST) → Invoke word
NOT n1 → n2 Logical not
OR n1 n2 → n3 Bitwise OR
OVER n1 n2 → n1 n2 n1 Duplicate second item
PICK . . . n2 n1 n0 index → . . . n0 nindex Pick item from stack
POW f1 f2 → f3 f3 = f1f2

QUIT → Quit execution
>R n → To return stack
R> → n From return stack
R@ → n Fetch return stack
REPEAT → Close BEGIN—WHILE—REPEAT loop
<RESOLVE addr → Backward jump resolve
>RESOLVE addr → Forward jump resolve

36

Atlast Primitives: Alphabetical Summary

ROLL . . . n2 n1 n0 index → . . . n0 nindex Rotate indexth item to top
ROT n1 n2 n3 → n2 n3 n1 Rotate 3 items
-ROT n1 n2 n3 → n3 n1 n2 Reverse rotate
S! s1 s2 → Store string
S+ s1 s2 → String concatenate
S>NAME! string nfa → Store name field
SHIFT n1 n2 → n3 Shift n1 by n2 bits
SIN f1 → f2 Sine
SQRT f1 → f2 f2 =

√
f1

STATE → addr System state variable
STRCAT s1 s2 → String concatenate
STRCHAR s1 s2 → String character search
STRCMP s1 s2 → n String compare
STRCPY s1 s2 → Store string
STRFORM n format str → Integer edit
STRING x size → Declare string
STRINT s1 → s2 n String to integer
STRLEN s → n String length
(STRLIT) → s String literal
STRREAL s1 → s2 f String to real
SUBSTR s1 start length s2 → Extract substring
SWAP n1 n2 → n2 n1 Swap top two items
SYSTEM s → n Execute system command
TAN f1 → f2 Tangent
THEN → End if
TRACE n → Trace mode
TYPE s → Print string
UNTIL flag → End BEGIN—UNTIL loop
VARIABLE x → Declare variable
WALKBACK n → Walkback mode
WHILE flag → Decide BEGIN—WHILE—REPEAT loop
WORDS → List words defined
WORDSUSED → List words used
WORDSUNUSED → List words not used
XOR n1 n2 → n3 Bitwise exclusive OR
(XDO) limit n → Execute loop
(X?DO) limit n → Execute conditional loop
(XLOOP) → Increment loop index
(+XLOOP) incr → Add to loop index

37

Benchmark Program Listings

SQRT.ATL

2variable x
2variable y

: csqrt
2dup 0.0 f< if

cr ." "SQRT: Negative argument!"
exit

then
2dup 0.0 f<> if

2dup 2dup x 2!
1.893872 f* 0.154116 f+
1.047988 f* 1.0 f+
f/ y 2! \ y=(0.154116+1.893872*x)/(1.0+1.047988*x)

y 2@ \ y
0.0 \ y c
begin

2swap \ c y
2dup \ c y y
x 2@ \ c y y x
2over \ c y y x y
f/ \ c y y x/y
f- \ c y y-x/y
-0.5 \ c y (y-x/y) -0.5
f* \ c y (y-x/y)*-0.5
2dup \ cl y c c
2rot \ cl c c y
f+ \ cl c c+y
2rot \ c c+y cl
2rot \ c+y cl c
2swap \ c+y c cl
2over \ c+y c cl c
f= \ c+y c =0?

until
2drop

then
;

: cbenchmark 10000 0 do 2.0 csqrt 2drop loop ." "Done\n" ;
: sbenchmark 100000 0 do 2.0 sqrt 2drop loop ." "Done\n" ;

.("Type \"cbenchmark\" to run the CSQRT benchmark (10000 iterations).\n"

.("Type \"sbenchmark\" to run the SQRT benchmark (100000 iterations).\n"

38

Benchmark Program Listings

CSQRT.C

#include <stdio.h>

double
/*FCN*/asqrt(x)
double x;

{
double c, cl, y;
int n;

if (c == 0.0)
return (0.0);

if (x < 0.0)
abort();

y = (0.154116 + 1.893872 * x) / (1.0 + 1.047988 * x);
c = 0.0;
n = 20;
do {

cl = c;
c = (y - x / y) * 0.5;
y -= c;

} while (c != cl && --n);
return y;

}

main()
{

int i;
char a[300];

fputs("Ready to test: ", stdout);
gets(a);

for (i = 0; i < 100000; i++)
asqrt(2.0);

printf("Done.\n");
}

39

Benchmark Program Listings

SSQRT.C

#include <stdio.h>
#include <math.h>

main()
{

int i;
char a[300];

fputs("Ready to test: ", stdout);
gets(a);

for (i = 0; i < 100000; i++)
sqrt(2.0);

printf("Done.\n");
}

40

Benchmark Program Listings

SQRT.LSP

(defun sqr (x / y c cl)
(if (or (= ’REAL (type x)) (= ’INT (type x)))

(progn
(cond ((minusp x) ’Negative-argument)

((zerop x) 0.0)
(t (setq y (/ (+ 0.154116 (* x 1.893872))

(+ 1.0 (* x 1.047988))
)

)
(setq c (/ (- y (/ x y)) 2.0))
(setq cl 0.0)
(while (not (equal c cl))

(setq y (- y c))
(setq cl c)
(setq c (/ (- y (/ x y)) 2.0))

)
y

)
)

)
(progn

(princ "Invalid argument.")
(princ)

)
)

)

(defun C:csqrt () (repeat 10000 (sqr 2.0)))
(defun C:ssqrt () (repeat 10000 (sqrt 2.0)))

41

