
1SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

User's Guide
SLAU320AI–July 2010–Revised March 2020

MSP430™ Programming With the JTAG Interface

This document describes the functions that are required to erase, program, and verify the memory module
of the MSP430™ flash-based and FRAM-based microcontroller families using the JTAG communication
port.

Contents
1 Introduction ................................................................................................................... 3

1.1 About This Document .............................................................................................. 3
1.2 Organization of This Document ................................................................................... 3

2 Programming Using the JTAG Interface.................................................................................. 4
2.1 Introduction .......................................................................................................... 4
2.2 Interface and Instructions .......................................................................................... 4
2.3 Memory Programming Control Sequences .................................................................... 20
2.4 JTAG Access Protection ......................................................................................... 49
2.5 JTAG Function Prototypes ....................................................................................... 57
2.6 JTAG Features Across Device Families ....................................................................... 64
2.7 References ......................................................................................................... 74

3 JTAG Programming Hardware and Software Implementation ....................................................... 75
3.1 Implementation History ........................................................................................... 75
3.2 Implementation Overview ........................................................................................ 75
3.3 Software Operation ............................................................................................... 75
3.4 Software Structure ................................................................................................ 76
3.5 Hardware Setup ................................................................................................... 78

4 Errata and Revision Information.......................................................................................... 82
4.1 Known Issues ...................................................................................................... 82
4.2 Revisions and Errata From Previous Documents............................................................. 82

List of Figures

1 TAP Controller State Machine ............................................................................................. 4
2 Spy-Bi-Wire Basic Concept................................................................................................. 6
3 Timing Example for IR_SHIFT (0x83) Instruction ....................................................................... 7
4 Data Register I/O: DR_SHIFT16 (0x158B) (TDO Output Is 0x55AA) ................................................ 8
5 Address Register I/O: DR_SHIFT20 (0x12568) (TDO Output Is 0xA55AA) ......................................... 8
6 SetTCLK ...................................................................................................................... 9
7 ClrTCLK ....................................................................................................................... 9
8 Spy-Bi-Wire Timing Diagram ............................................................................................. 10
9 Detailed SBW Timing Diagram ........................................................................................... 12
10 Synchronization of TDI and TCLK During Run-Test/Idle.............................................................. 13
11 Clocking TCLK Using TCLK Strobes .................................................................................... 14
12 JTAG Access Entry Sequences (for Devices That Support SBW) .................................................. 21
13 Fuse Check and TAP Controller Reset ................................................................................. 22
14 Taking the CPU Under JTAG Control ................................................................................... 27
15 JTAG Entry Sequence for 430Xv2 Devices ............................................................................ 29
16 Accessing Flash Memory ................................................................................................. 40
17 Flash Access Code Binary Image Map ................................................................................. 41

http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


www.ti.com

2 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

18 Fuse Blow Timing .......................................................................................................... 53
19 Replicator Application Schematic ........................................................................................ 80

List of Tables

1 Pros and Cons of 2-Wire Spy-Bi-Wire .................................................................................... 5
2 Pros and Cons of 4-Wire JTAG............................................................................................ 5
3 Standard 4-Wire JTAG Signals ............................................................................................ 5
4 JTAG Communication Macros ............................................................................................. 7
5 Memory Access Instructions .............................................................................................. 14
6 JTAG Control Signal Register for 1xx, 2xx, 4xx Families............................................................. 17
7 JTAG Control Signal Register for 5xx and 6xx Families .............................................................. 18
8 Shared JTAG Device Pin Functions ..................................................................................... 20
9 Erase and Program Minimum TCLK Clock Cycles .................................................................... 37
10 Flash Memory Parameters (fFTG = 450 kHz) ............................................................................ 43
11 Overview Of Memory Protection Mechanisms ......................................................................... 49
12 MSP430 Device JTAG Interface (Shared Pins) ........................................................................ 51
13 MSP430 Device Dedicated JTAG Interface ............................................................................ 51
14 MSP430F1xx, MSP430F2xx, MSP430F4xx, MSP430Gxx JTAG Features ....................................... 64
15 MSP430F5xx, MSP430F6xx, CC430 JTAG Features ................................................................ 66
16 MSP430FRxx JTAG Features ........................................................................................... 71
17 MSP430ixx JTAG Features .............................................................................................. 74
18 Programmer Firmware..................................................................................................... 76

Trademarks
MSP430, Code Composer Studio are trademarks of Texas Instruments.
IAR Embedded Workbench is a registered trademark of IAR Systems.
All other trademarks are the property of their respective owners.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


www.ti.com Introduction

3SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

1 Introduction

1.1 About This Document
This document describes the functions that are required to erase, program, and verify the memory module
of the MSP430 flash-based and FRAM-based microcontroller families using the JTAG communication port.
In addition, it describes how to program the JTAG access security fuse that is available on all MSP430
devices. This document describes device access using both the standard 4-wire JTAG interface and the
2-wire JTAG interface, which is also referred to as Spy-Bi-Wire (SBW).

An example programmer system, which includes software (source code is provided) and the
corresponding hardware, is described in Section 3. This example is intended as a reference for
understanding the concepts presented in this report and to aid in development of similar MSP430
programmer solutions. In that sense, it is not meant to be a fully featured programming tool but, rather, is
intended as a construction manual for such a tool. Those users who are looking for a ready-to-use tool
should see the complete programming tool solution from TI called MSP-GANG Production Programmer.

1.2 Organization of This Document
Four main topics are presented in this document:

Section 2.2, Interface and Instructions, describes the required JTAG signals and associated pin
functionality for programming the MSP430 family. In addition, this section includes the descriptions of the
provided software macro routines and JTAG instructions used to communicate with and control a target
MSP430 through the JTAG interface.

Section 2.3, Memory Programming Control Sequences, describes how to use the provided macros and
function prototypes in a software-flow format to control a target MSP430 device and program or erase the
memory.

Section 2.4, JTAG Access Protection, describes the mechanism that can disable memory access through
JTAG to the memory of the target device, which can eliminate undesired memory access for security
purposes.

Section 3, JTAG Programming Hardware and Software Implementation, describes how to develop an
example MSP430 flash programmer using an MSP430F5437 as the host controller. This chapter includes
a schematic and the required software and project files. A thorough description of how to use the given
implementation is also included, to provide an example system that can be referenced for custom
MSP430 programmer solutions.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI
http://www.ti.com/tool/msp-gang


Select DR-ScanRun-Test/IDLE

Test-Logic-Reset

0

1

0

1

1

Fuse Check
Power

On

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select IR-Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

0

0

0

0

1 1

1

1

11

1

1

1

1

1

11

0

0

0

0

0

0

0

0

0

0

0

Programming Using the JTAG Interface www.ti.com

4 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

2 Programming Using the JTAG Interface

2.1 Introduction
This document provides an overview of how to program the memory module of an MSP430 flash-based or
FRAM-based device using the on-chip JTAG interface [4-wire or 2-wire Spy-Bi-Wire (SBW) interface]. A
focus is maintained on the high-level JTAG functions used to access and program the memory and the
required timing.

2.1.1 MSP430 JTAG Restrictions (Noncompliance With IEEE Std 1149.1)

• The JTAG pins are shared with port functions on all devices with a TEST pin. This includes the 5xx,
6xx, and FRxx families as well as certain device groups from the 2xx and 4xx families (see Table 14).
On these devices, a special entry sequence must be sent to enable 4-wire JTAG connection. This
sequence is described in Section 2.3.1.1.

• The MSP430 device must be the first device in the JTAG chain (because of clocking on TDI and JTAG
fuse check sequence).

• Only the BYPASS instruction is supported. There is no support for SAMPLE, PRELOAD, or EXTEST
instructions.

2.1.2 TAP Controller State Machine
The MSP430 JTAG interface implements the test access port state machine (TAP controller) as specified
by IEEE Std 1149.1. References to the TAP controller and specific JTAG states identified in IEEE Std
1149.1 are made throughout this document. Figure 1 shows the TAP state machine.

Figure 1. TAP Controller State Machine

2.2 Interface and Instructions
This section describes the hardware connections to the JTAG interface of the MSP430 devices and the
associated pin functions that are used during programming. This section also describes the software
macro routines that are used to program a MSP430 target and the JTAG instructions that are used to
communicate with and control the target through the JTAG interface.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


www.ti.com Programming Using the JTAG Interface

5SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

The Replicator example project detailed in Section 3 implements the following high-level flow to clarify the
minimum requirements for programming an MSP430 target memory.
• Enable JTAG Access (see Section 2.3.1.1)
• Erase Target Memory (see Section 2.3.5 and Section 2.3.8.2)
• Verify Target Memory (special case: Erase Check) (see Section 2.3.7)
• Write Target Memory (see Section 2.3.4 and Section 2.3.8.1)
• Verify Target Memory (see Section 2.3.7)
• Release Target from JTAG Control (see Section 2.3.2.1.6)

2.2.1 JTAG Interface Signals
The MSP430 family supports in-circuit programming of flash and FRAM memory through the JTAG port,
which is available on all MSP430 devices. All devices support the JTAG 4-wire interface. Some devices
also support the next-generation optimized 2-wire JTAG (Spy-Bi-Wire) interface. Using these protocols, an
interface connection that can access the MSP430 JTAG port using a PC or other controller can be
established. See the section Signal Connections for In-System Programming and Debugging, MSP-
FET430PIF, MSP-FET430UIF, GANG430, PRGS430 in the MSP430 Hardware Tools User's Guide.

2.2.1.1 Pros and Cons of 2-Wire Spy-Bi-Wire and 4-Wire JTAG

Table 1. Pros and Cons of 2-Wire Spy-Bi-Wire

Pros Cons
Only two pins are used (TEST and RST) Slower than 4-wire JTAG
No overlap between JTAG and IO pins

Table 2. Pros and Cons of 4-Wire JTAG

Pros Cons
Faster than 2-wire Spy-Bi-Wire Four GPIO pins are used

When using JTAG, other pin functions not usable

2.2.1.2 4-Wire JTAG Interface
The standard JTAG interface requires four signals for sending and receiving data. On larger MSP430
devices, these pins are dedicated for JTAG. Smaller devices with fewer total pins multiplex these JTAG
lines with general-purpose functions. On these smaller devices, one additional signal is required that is
used to define the state of the shared pins. This signal is applied to the TEST pin. The remaining
connections required are ground and VCC when powered by the programmer. These signals are described
in Table 3.

Table 3. Standard 4-Wire JTAG Signals

Pin Direction Description
TMS IN Signal to control the JTAG state machine
TCK IN JTAG clock input
TDI IN JTAG data input and TCLK input
TDO OUT JTAG data output
TEST IN Enable JTAG pins (shared JTAG devices only)

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI
http://www.ti.com/lit/pdf/SLAU278


SBWTDIO

SBWTCK

Spy-Bi-Wire
Logic

JTAG
TAP Controller

RAM, Flash, or
FRAM

Core Logic
and

Emulation Logic

T
D

O

T
D

I

T
M

S

T
C

K

Programming Using the JTAG Interface www.ti.com

6 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

The TEST input exists only on MSP430 devices with shared JTAG function, usually assigned to port 1.
For normal operation (non-JTAG mode), this pin is internally pulled down to ground, which enables the
shared pins as standard port I/O. To enable these pins for JTAG communication, refer to Section 2.3.1.1.

The TCLK signal is an input clock that must be provided to the target device from an external source. This
clock is used internally as the system clock of the target device, MCLK, to load data into memory locations
and to clock the CPU. There is no dedicated pin for TCLK; instead, the TDI pin is used as the TCLK input.
This occurs while the MSP430 TAP controller is in the Run-Test/Idle state.

NOTE: TCLK input support on the MSP430 XOUT pin exists but has been superseded by the TDI
pin on all current MSP430 flash-based and FRAM-based devices. Existing FET tools, as well
as the software provided with this document, implement TCLK on the TDI input pin.

2.2.1.3 2-Wire Spy-Bi-Wire (SBW) JTAG Interface
The core JTAG logic integrated into devices that support 2-wire mode is identical to 4-wire-only devices.
The fundamental difference is that 2-wire devices implement additional logic that is used to convert the 2-
wire communication into the standard 4-wire communication internally. In this way, the existing JTAG
emulation methodology of the MSP430 can be fully used.

Figure 2. Spy-Bi-Wire Basic Concept

The 2-wire interface is made up of the SBWTCK (Spy-Bi-Wire test clock) and SBWTDIO (Spy-Bi-Wire test
data input/output) pins. The SBWTCK signal is the clock signal and is a dedicated pin. In normal
operation, this pin is internally pulled to ground. The SBWTDIO signal represents the data and is a
bidirectional connection. To reduce the overhead of the 2-wire interface, the SBWTDIO line is shared with
the RST/NMI pin of the device.

Section 2.6 describes the MSP430 devices and their respective JTAG interface implementation.

2.2.2 JTAG Access Macros
To keep descriptions of the JTAG functions in the following sections simple, high-level macros have been
used to describe the JTAG access. This document does not detail the basic JTAG functionality; rather, it
focuses on the MSP430-specific implementation used for memory access and programming. For the
purpose of this document, it is important to show the instructions that must be loaded into the JTAG
instruction register, as well as when these instructions are required. Section 2.2.2.1 summarizes the
macros used throughout this document and their associated functionality. See the accompanying software
for more information.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


TCK

TMS

TDI

TDO

TCLK

1 1 10 0 0 0 0

Data to TDI LSB MSB

Save TDI value (= TCLK) Restore saved TDI valueInstruction input through TDI

www.ti.com Programming Using the JTAG Interface

7SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

Table 4. JTAG Communication Macros

Macro Name Function
IR_SHIFT
(8-bit instruction)

Shifts an 8-bit JTAG instruction into the JTAG instruction register. At the same time, the 8-bit value is shifted out
through TDO.

DR_SHIFT16
(16-bit data) Shifts a 16-bit data word into a JTAG data register. At the same time, the 16-bit value is shifted out through TDO.

DR_SHIFT20
(20-bit address)

Shifts a 20-bit address word into the JTAG Memory Address Bus register. At the same time, the 20-bit value is
shifted out through TDO. Only applicable to MSP430X architecture devices.

MsDelay (time) Waits for the specified time in milliseconds
SetTCLK Sets TCLK to 1
ClrTCLK Sets TCLK to 0
TDOvalue Variable containing the last value shifted out on TDO

2.2.2.1 Macros for 4-Wire JTAG Interface

2.2.2.1.1 IR_SHIFT (8-Bit Instruction)
This macro loads a JTAG instruction into the JTAG instruction register (IR) of the target device. In the
MSP430, this register is eight bits wide with the least significant bit (LSB) shifted in first. The data output
from TDO during a write to the JTAG instruction register contains the version identifier of the JTAG
interface (or JTAG ID) that is implemented on the target device. The JTAG ID is shifted out with MSB first.

Regardless of the 8-bit instruction sent out on TDI, the return value on TDO is always the JTAG ID. Each
instruction bit is captured from TDI by the target MSP430 on the rising edge of TCK. TCLK should not
change state while this macro is executed (TCLK = TDI while the TAP controller is in the Run-Test/Idle
state). Figure 3 shows how to load the ADDR_16BIT instruction into the JTAG IR. See Section 2.2.4 for a
complete list of the JTAG interface communication instructions that are used to access the flash memory
module of the target device.

Figure 3. Timing Example for IR_SHIFT (0x83) Instruction

2.2.2.1.2 DR_SHIFT16 (16-Bit Data)
This macro loads a 16-bit word into the JTAG data register (DR) (in the MSP430 devices, a data register
is 16 bits wide). The data word is shifted, most significant bit (MSB) first, into the TDI input of the target
MSP430 device. Each bit is captured from TDI on a rising edge of TCK. At the same time, TDO shifts out
the last captured and stored value in the addressed data register. A new bit is present at TDO with a
falling edge of TCK. TCLK should not change state while this macro is executing. Figure 4 shows how to
load a 16-bit word into the JTAG DR and read out a stored value through TDO.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


TCK

TMS

TDI

TDO

TCLK

1 000 0 0 1 0 1 00 1 0 1 10

1 1 1 1 1 1 1 10 0 0 0 0 00 0Data from TDO:

Data to TDI LSB

Save TDI value (= TCLK)

Restore saved TDI value

1 10 0

0 1 0 0

Bit: 14 12 10 8 7 5 3 115 9 6 4 2 1613 11 19 170 18

MSB

Data input through TDI and data output through TDO

TCK

TMS

TDI

TDO

TCLK

1 100 0 1 0 1 0 10 0 1 0 10

1 1 1 1 1 1 1 10 0 0 0 0 00 0Data from TDO

Data to TDI MSB LSB

Save TDI value (= TCLK)

Restore saved TDI value

Data input through TDI and data output through TDO

Programming Using the JTAG Interface www.ti.com

8 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

Figure 4. Data Register I/O: DR_SHIFT16 (0x158B) (TDO Output Is 0x55AA)

2.2.2.1.3 DR_SHIFT20 (20-Bit Address) (Applies Only to MSP430X Devices)
The MSP430X architecture is based on a 20-bit memory address bus (MAB), to address up to 1 MB of
continuous memory. No new JTAG instructions are needed to control the 20-bit MAB (for details on
instructions, see Section 2.2.4.1), only the JTAG address register itself has been extended to 20 bits. This
macro loads a 20-bit address word into the 20-bit wide JTAG MAB register. The address word is shifted,
MSB first, into the TDI input of the target MSP430 device. Each bit is captured from TDI on a rising edge
of TCK. At the same time, TDO shifts out the last captured and stored value in the JTAG MAB register. A
new bit is present at TDO with a falling edge of TCK. TCLK should not change state while this macro is
executing. This macro should only be used when IR_ADDR_16BIT or IR_ADDR_CAPTURE has been
loaded into the JTAG instruction register before the MAB is manipulated through JTAG. On a 20-bit shift
access, the upper four bits (19:16) of the JTAG address register are shifted out last. Therefore, bit 15 of
the MAB is read first when the lower part of the MAB is accessed by performing a 16-bit shift. This
implementation ensures compatibility with the original MSP430 architecture and its JTAG MAB register
implementation.

NOTE: The DR_SHIFT20 (20-bit Address) macro in the associated C-code software example
application automatically reconstructs the swapped TDO (15:0) (19:16) output to a
continuous 20-bit address word (19:0) and simply returns a 32-bit LONG value.

Figure 5 shows how to load a 20-bit address word into the JTAG address register and read out a stored
value through TDO.

Figure 5. Address Register I/O: DR_SHIFT20 (0x12568) (TDO Output Is 0xA55AA)

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


TCLK

TDO

TCK

TMS

ClrTCLK

TCLK

TDO

TCK

TMS

SetTCLK

www.ti.com Programming Using the JTAG Interface

9SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

2.2.2.1.4 MsDelay (Time)
This macro causes the programming interface software to wait for a specified amount of time in
milliseconds (ms). While this macro is executing, all signals to and from the target MSP430 must hold their
previous values.

2.2.2.1.5 SetTCLK
This macro sets the TCLK input clock (which is provided on the TDI signal input) high. TCK and TMS must
hold their last value while this macro is performed (see Section 2.2.3.5.1 and Figure 10 for SBW-specific
constraints).

Figure 6. SetTCLK

2.2.2.1.6 ClrTCLK
This macro resets the TCLK input clock low. TCK and TMS must hold their last value while this action is
performed (see Section 2.2.3.5.1 and Figure 10 for SBW-specific constraints).

Figure 7. ClrTCLK

2.2.2.2 Macros for Spy-Bi-Wire (SBW) Interface
All JTAG macros described in Section 2.2.2.1 also apply to the 2-wire interface and are provided as
software source along with this document.

2.2.3 Spy-Bi-Wire (SBW) Timing and Control
The following sections described the fundamentals of the SBW implementation as it relates to supporting
generation of the macro function timing signals. This is intended to enable development of custom
MSP430 programming solutions, rather than just relying on the example application code also provided.

2.2.3.1 Basic Timing
The SBW interface serial communication uses time-division multiplexing and allocates three time slots:
TMS_SLOT, TDI_SLOT, and TDO_SLOT. To clock TCLK through the SBW interface in a similar method
as it is clocked through TDI during 4-wire JTAG access, an alternative JTAG timing method is
implemented. This implementation makes use of the fact that the TDI and TMS signals are captured with
the falling edge of SBWTCK in their respective slots as shown in Figure 8.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


TMS Slot TDI Slot TDO Slot

SBWTCK

TMS captured 
as 0

SBWTDIO

TDI captured 
as 1

 Target device starts 
driving output on TDO

<7 µs

Programming Using the JTAG Interface www.ti.com

10 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

Figure 8. Spy-Bi-Wire Timing Diagram

2.2.3.2 TMS Slot
The TMS Slot is used to switch between states in the TAP Controller state machine (see Section 2.1.2) of
the JTAG module of the target device. The following macros are located in the LowLevelFunc header file
in the Replicator example project.

2.2.3.2.1 TMSH Macro
Sets SBWTDIO high for TMS slot (no special TDI preparation handling)
• Set SBWTDIO high
• NOP 5 cycles (delay at 18 MHz)
• Set SBWTCK low
• NOP 5 cycles (delay at 18 MHz)
• Set SBWTCK high

2.2.3.2.2 TMSL Macro
Sets SBWTDIO low for TMS slot (no special TDI preparation handling)
• Set SBWTDIO low
• NOP 5 cycles (delay at 18 MHz)
• Set SBWTCK low
• NOP 5 cycles (delay at 18 MHz)
• Set SBWTCK high

2.2.3.2.3 TMSLDH Macro
Sets SBWTDIO low for TMS slot, but brings it back high after SBWTCK falling edge before TMS slot ends.
Used for some cases of ClrTCLK and SetTCLK.
• Set SBWTDIO low
• NOP 5 cycles (delay at 18 MHz)
• Set SBWTCK low
• NOP 5 cycles (delay at 18 MHz)
• Set SBWTDIO high
• Set SBWTCK high

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


www.ti.com Programming Using the JTAG Interface

11SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

2.2.3.3 TDI Slot
In most TAP Controller states (such as Shift-IR), TDI is used for shifting data into the target device. In
Run-Test/IDLE state, the TDI slot can also be used to clock the target CPU (see Section 2.2.3.5) The
following macros are located in the LowLevelFunc header file in the Replicator example project.

2.2.3.3.1 TDIH Macro
Sets SBWTDIO high for TDI slot.
• Set SBWTDIO high
• NOP 5 cycles (delay at 18 MHz)
• Set SBWTCK low
• NOP 5 cycles (delay at 18 MHz)
• Set SBWTCK high

2.2.3.3.2 TDIL Macro
Sets SBWTDIO low for TDI slot.
• Set SBWTDIO low
• NOP 5 cycles (delay at 18 MHz)
• Set SBWTCK low
• NOP 5 cycles (delay at 18 MHz)
• Set SBWTCK high

2.2.3.4 TDO Slot
As shown in Figure 8, the TDO operation is allocated one time slot (see also the detailed timing shown in
Figure 9). The master should release control of the SBWTDIO line based off of the rising edge of
SBWTCK of the TDI cycle. After the master releases the SBWTDIO line, an internal bus keeper holds the
voltage on the line. The next falling edge of SBWTCK triggers the slave to start driving the bus. The slave
only drives the SBWTDIO line during the low time of the SBWTCK cycle. The master should not enable its
drivers until the slave has released the SBWTDIO line. Therefore, the master could use the rising edge of
the SBWTCK signal as a trigger point to enable its driver.

NOTE: The low phase of the clock signal supplied on SBWTCK must not be longer than 7 µs. If the
low phase is longer, the SBW logic is deactivated, and it must be activated again according
to Section 2.3.1.

When using the provided source code example, make sure that interrupts are disabled
during the SBWTCK low phase to ensure accurate timings.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


SBWTCK

1 2

TDI_SLOT TDO_SLOT

TMSn-1 TMSn

JTAG TAP

STATE

TDIn-1 TDIn

TMS_SLOT

0 1 2

TDI_SLOTTMS_SLOT

0

10 2SHIFT_COUNT

LOAD_JTAG_REG

JTAG_REG

TCLK

TMS

TDI

TCK

TAP STATEn–1 TAP STATEn

TDO_SLOT

TDI TDOSBWTDIO

10 2

Master Slave Master Slave

TMS TDI TDOTMS

Programming Using the JTAG Interface www.ti.com

12 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

Figure 9. Detailed SBW Timing Diagram

The following macros are located in the LowLevelFunc header file in the Replicator example project.

2.2.3.4.1 TDO_RD Macro
TRSLDIR |= TDOI_DIR sets the SN74LVC1T45 transceiver on the board to Hi-Z, and
TRSLDR &= TDOI_DIR sets it back to being driven.

Used for reading TDO value during TDO slot.
• Set SBWTDIO Hi-Z
• NOP 5 cycles (delay at 18 MHz
• Set SBWTCK low
• NOP 5 cycles (delay at 18 MHz)
• Read SBWTDIO line
• NOP 5 cycles (delay at 18 MHz)
• Set SBWTCK high
• Set SBWTDIO to driven again

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


TMS Slot TDI Slot TDO Slot

          SBWTCK

(external clock signal)

ClrTCLK

TCLK

SetTCLK

SBWTDIO

latched at 1 in

 last TDI slot

latched at 0 in

 last TDI slot

latched at 0 in

 last TDI slot

latched at 1 in

 last TDI slot

SBWTDIO

SBWTDIO

SBWTDIO

TCLK

TCLK

TCLK

www.ti.com Programming Using the JTAG Interface

13SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

2.2.3.4.2 TDOsbw Macro (No Read)
Used for clocking through TDO slot, when no read is required.
• Set SBWTDIO Hi-Z
• NOP 5 cycles (delay at 18 MHz)
• Set SBWTCK low
• NOP 5 cycles (delay at 18 MHz)
• Set SBWTCK high
• Set SBWTDIO to driven again

2.2.3.5 TCLK Handling in Spy-Bi-Wire (SBW) Mode

2.2.3.5.1 SetTCLK and ClrTCLK
If the JTAG TAP controller is in the Run-Test/Idle state, the TDI slot can provide the TCLK signal (that is,
it can clock the target CPU). Following this implementation, the generation of a complete TCLK clock cycle
requires two TDI slots, one of which sets the TCLK signal and one of which clears it. In each case, the
SBWTDIO signal must be set low in the TMS slot to keep the TAP controller from leaving the Run-
Test/Idle state. To provide only a falling edge for ClrTCLK, the SBWTDIO signal must be set high before
entering the TDI slot. The corresponding rising edge must occur in the low phase of SBWTCK in the TMS
slot. Otherwise it would be interpreted as a trigger for TMS = 1 and the TAP controller would leave Run-
Test/Idle mode.

Figure 10 shows handling of TCLK in SBW mode. See the reference functions SetTCLK_sbw and
ClrTCLK_sbw in the MSP430 Replicator project (slau320.zip) for software implementation. The provided
code example for the MSP430Xv2 architecture uses preprocessor definitions to enable a better layered
software architecture. The upper software layers can simply reference the SetTCLK and ClrTCLK symbols
while the actual implementation symbols are SetTCLK_4wire and ClrTCLK_4wire for 4-wire JTAG and
SetTCLK_sbw and ClrTCLK_sbw for Spy-Bi-Wire (SBW).

Figure 10. Synchronization of TDI and TCLK During Run-Test/Idle

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI
http://www.ti.com/lit/zip/slau320


TMS Slot TDI Slot TDO Slot

          SBWTCK

(external clock signal)

latched at 0 in

 last TDI slot

latched at 1 in

 last TDI slot

Strobes

TCLK

SBWTDIO

TCLK

SBWTDIO

Programming Using the JTAG Interface www.ti.com

14 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

2.2.3.5.2 TCLK Strobes
For MSP430 devices from the F1xx, F2xx, G2xx, and F4xx families, a custom number of TCLK clocks can
be provided within a single TDI slot (refer to the example projects Replicator430 and Replicator430X). See
reference function: TCLKstrobes(). This implementation is not applicable for the F5xx or F6xx devices. For
those devices, the flash timing is generated by the internal MODOSC.

Figure 11. Clocking TCLK Using TCLK Strobes

2.2.4 JTAG Communication Instructions
Selecting a JTAG register and controlling the CPU is done by shifting in a JTAG instruction using the
IR_SHIFT macro described in Section 2.2.2.1.1. The following instructions that can be written to the JTAG
IR are used to program the target memory. All instructions sent to the target MSP430 through the JTAG
register are transferred LSB first.

Table 5. Memory Access Instructions

Instruction Name 8-Bit Instruction Value
Controlling the Memory Address Bus (MAB)
IR_ADDR_16BIT 0x83
IR_ADDR_CAPTURE 0x84
Controlling the Memory Data Bus (MDB)
IR_DATA_TO_ADDR 0x85
IR_DATA_16BIT 0x41
IR_DATA_QUICK 0x43
IR_BYPASS 0xFF
Controlling the CPU
IR_CNTRL_SIG_16BIT 0x13
IR_CNTRL_SIG_CAPTURE 0x14
IR_CNTRL_SIG_RELEASE 0x15
Memory Verification by Pseudo Signature Analysis (PSA)
IR_DATA_PSA 0x44
IR_SHIFT_OUT_PSA 0x46
JTAG Access Security Fuse Programming
IR_Prepare_Blow 0x22
IR_Ex_Blow 0x24
JTAG Mailbox System
IR_JMB_EXCHANGE 0x61

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


www.ti.com Programming Using the JTAG Interface

15SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

NOTE: Do not write any unlisted values to the JTAG instruction register. Instruction values written to
the MSP430 JTAG register other than those listed above may cause undesired device
behavior.

NOTE: When a new JTAG instruction is shifted into the JTAG instruction register, it takes effect with
the UPDATE-IR state of the TAP controller. When accessing a JTAG data register, the last
value written is captured with the CAPTURE-DR state, and the new value shifted in becomes
valid with the UPDATE-DR state. In other words, there is no need to go through Run-
Test/Idle state of the JTAG TAP controller to shift in instructions or data. Be aware of the fact
that clocking TCLK is only possible in the Run-Test/Idle state. This is why the provided
software example application exclusively makes use of the JTAG macros described in
Section 2.2.2, which always go through Run-Test/Idle state.

2.2.4.1 Controlling the Memory Address Bus (MAB)
The following instructions control the MAB of the target MSP430. To accomplish this, a 16-bit (or 20-bit in
MSP430X architectures) register, which is called the JTAG MAB register, is addressed. By using the
JTAG data path of the TAP controller, this register can be accessed and modified.

2.2.4.1.1 IR_ADDR_16BIT
This instruction enables setting of the MAB to a specific value, which is shifted in with the next JTAG 16-
bit data access using the DR_SHIFT16 (16-bit Data) macro or the next JTAG 20-bit address word access
using the DR_SHIFT (20-bit Address) macro. The MAB of the MSP430 CPU is set to the value written to
the JTAG MAB register. The previous value stored in the JTAG MAB register is simultaneously shifted out
on TDO while the new 16- or 20-bit address is shifted in through TDI.

NOTE: In MSP430X devices, a 16-bit shift to update the JTAG MAB register does not automatically
reset the upper four bits (19:16) of the JTAG MAB register. Always use the 20-bit shift macro
to ensure that the upper four bits (19:16) are set to a defined value.

2.2.4.1.2 IR_ADDR_CAPTURE
This instruction enables readout of the data on the MAB with the next 16- or 20-bit data access. The MAB
value is not changed during the 16- or 20-bit data access; that is, the 16- or 20-bit data sent on TDI with
this command is ignored (0 is sent as a default in the provided software).

In several places throughout the example code, the IR_ADDR_CAPTURE instruction is also used to set
the CPU to a defined state after accessing the data bus with the IR_DATA_16BIT instruction.

2.2.4.2 Controlling the Memory Data Bus (MDB)
The following instructions control the MDB of the MSP430 CPU. To accomplish this, a 16-bit register,
termed the JTAG MDB register, is addressed. By using the JTAG data path of the TAP controller, this
register can be accessed and modified.

2.2.4.2.1 IR_DATA_TO_ADDR
This instruction enables setting of the MSP430 MDB to a specific value shifted in with the next JTAG 16-
bit data access using the DR_SHIFT16 (16-bit Data) macro. The MDB of the MSP430 CPU is set to the
value written to the JTAG MDB register. As the new value is written into the MDB register, the prior value
in the MSP430 MDB is captured and shifted out on TDO. The MSP430 MAB is set by the value in the
JTAG MAB register during execution of the IR_DATA_TO_ADDR instruction. This instruction is used to
write to all memory locations of the MSP430.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


Programming Using the JTAG Interface www.ti.com

16 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

2.2.4.2.2 IR_DATA_16BIT
This instruction enables setting of the MSP430 MDB to the specified 16-bit value shifted in with the next
16-bit JTAG data access. The complete MSP430 MDB is set to the value of the JTAG MDB register. At
the same time, the last value of the MSP430 MDB is captured and shifted out on TDO. In this situation,
the MAB is still controlled by the CPU. The program counter (PC) of the target CPU sets the MAB value.

2.2.4.2.3 IR_DATA_QUICK
This instruction enables setting of the MSP430 MDB to a specific value shifted in with the next 16-bit
JTAG data access. The 16-bit MSP430 MDB is set to the value written to the JTAG MDB register. During
the 16-bit data transfer, the previous MDB value is captured and shifted out on TDO. The MAB value is
set by the program counter (PC) of the CPU. This instruction auto-increments the program counter by two
on every falling edge of TCLK to automatically point to the next 16-bit memory location. The program
counter of the target CPU must be loaded with the starting memory address before execution of this
instruction, which can be used to quickly read or write to a memory array (see Section 2.3.2.1.3 for more
information on setting the PC).

NOTE: IR_DATA_QUICK cannot be used to write flash memory.

NOTE: IR_DATA_QUICK cannot be used to read or write USB RAM as this is dual ported RAM. It
needs to be accessed word by word.

2.2.4.2.4 IR_BYPASS
This instruction delivers the input to TDI as an output on TDO delayed by one TCK clock. When this
instruction is loaded, the IR_CNTRL_SIG_RELEASE instruction (see Section 2.2.4.3.3) is performed
simultaneously. After execution of the bypass instruction, the 16-bit data shifted out on TDI does not affect
any register of the JTAG control module of the target MSP430 device.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


www.ti.com Programming Using the JTAG Interface

17SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

2.2.4.3 Controlling the CPU
The following instructions enable control of the MSP430 CPU through a 16-bit register accessed through
JTAG. This data register is called the JTAG control signal register. Table 6 describes the bit functions
making up the JTAG control signal register used for memory access.

Table 6. JTAG Control Signal Register for 1xx, 2xx, 4xx Families

Bit No. Name Description

0 R/W
Controls the read/write (RW) signal of the CPU
1 = Read
0 = Write

1 (N/A) Always write 0

2 (N/A) Always write 0

3 HALT_JTAG
Sets the CPU into a controlled halt state
1 = CPU stopped
0 = CPU operating normally

4 BYTE
Controls the BYTE signal of the CPU used for memory access data length
1 = Byte (8-bit) access
0 = Word (16-bit) access

5 (N/A) Always write 0

6 (N/A) Always write 0

7 INSTR_LOAD
Read only: Indicates the target CPU instruction state
1 = Instruction fetch state
0 = Instruction execution state

8 (N/A) Always write 0

9 TCE
Indicates CPU synchronization
1 = Synchronized
0 = Not synchronized

10 TCE1
Establishes JTAG control over the CPU
1 = CPU under JTAG control
0 = CPU free running

11 POR
Controls the power-on-reset (POR) signal
1 = Perform POR
0 = No reset

12 Release low byte
Selects control source of the RW and BYTE bits
1 = CPU has control
0 = Control signal register has control

13 TAGFUNCSAT
Sets flash module into JTAG access mode
1 = CPU has control (default)
0 = JTAG has control

14 SWITCH
Enables TDO output as TDI input
1 = JTAG has control
0 = Normal operation

15 (N/A) Always write 0

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


Programming Using the JTAG Interface www.ti.com

18 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

Table 7. JTAG Control Signal Register for 5xx and 6xx Families

Bit No. Name Description

0 R/W
Controls the read/write (RW) signal of the CPU, same as previous families.
1 = Read
0 = Write

1 (N/A) Always write 0, same as previous families.

2 (N/A) Always write 0, same as previous families.

3 WAIT
Wait signal to the CPU. Read only.
1 = CPU clock stopped - waiting for an operation to complete
0 = CPU clock not stopped

4 BYTE
Controls the BYTE signal of the CPU used for memory access data length, same as previous families.
1 = Byte (8-bit) access
0 = Word (16-bit) access

5 (N/A) Always write 0

6 (N/A) Always write 0

7 INSTR_LOAD

Read only: Indicates the target CPU instruction state. The actual state is not the same as previous
families.
1 = Instruction fetch state
0 = Instruction execution state

8 CPUSUSP

Suspend CPU.
The CPU pipeline is emptied by asserting the CPUSUSP bit and driving a minimum number of clocks
required to complete the longest possible instructions. When CPUSUSP is high, no instructions are
fetched or executed. To execute a forced external instruction sequence through JTAG (for example, set
the Program Counter), the CPUSUSP bit must be zero.
0 = CPU active
1 = CPU suspended
Reading CPUSUSP (Bit 8) shows if pipeline is empty:
0 = Pipeline is not empty yet
1 = Pipeline is empty

9 TCE0
Indicates CPU synchronization, same as previous families.
1 = Synchronized
0 = Not synchronized

10 TCE1
Establishes JTAG control over the CPU, same as previous families.
1 = CPU under JTAG control
0 = CPU free running

11 POR
Controls the power-on-reset (POR) signal, same as previous families.
1 = Perform POR
0 = No reset

12 RELEASE_LBYTE0 Release control bits in low byte from JTAG control.
00 = All bits are controlled by JTAG if TCE1 is 1
01 = RW (bit 0) and BYTE (bit 4) are released from JTAG control
10 = RW (bit 0), HALT (bit 1), INTREQ (bit 2), and BYTE (bit 4) are released from JTAG control
11 = Reserved

13 RELEASE_LBYTE1

14 INSTR_SEQ_NO0 Instruction sequence number. Read only.
Shows the instruction sequence number of the pipelined CPU currently using the CPU bus (there is a
maximum of three instructions in the pipe).
00 = CPU instruction sequence 0
01 = CPU instruction sequence 1
10 = CPU instruction sequence 2
11 = CPU generated "no-operation" cycle; data on buses is not used

15 INSTR_SEQ_NO1

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


www.ti.com Programming Using the JTAG Interface

19SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

2.2.4.3.1 IR_CNTRL_SIG_16BIT
This instruction enables setting of the complete JTAG control signal register with the next 16-bit JTAG
data access. Simultaneously, the last value stored in the register is shifted out on TDO. The new value
takes effect when the TAP controller enters the UPDATE-DR state.

2.2.4.3.2 IR_CNTRL_SIG_CAPTURE
This instruction enables readout of the JTAG control signal register with the next JTAG 16-bit data access
instruction.

2.2.4.3.3 IR_CNTRL_SIG_RELEASE
This instruction completely releases the CPU from JTAG control. Once executed, the JTAG control signal
register and other JTAG data registers no longer have any effect on the target MSP430 CPU. This
instruction is normally used to release the CPU from JTAG control.

2.2.4.4 Memory Verification by Pseudo Signature Analysis (PSA)
The following instructions support verification of the MSP430 memory content by means of a PSA mode.

2.2.4.4.1 IR_DATA_PSA
The IR_DATA_PSA instruction switches the JTAG_DATA_REG into the PSA mode. In this mode, the
program counter of the MSP430 is incremented by every two system clocks provided on TCLK. The CPU
program counter must be loaded with the start address before execution of this instruction. The number of
TCLK clocks determines how many memory locations are included in the PSA calculation.

2.2.4.4.2 IR_SHIFT_OUT_PSA
The IR_SHIFT_OUT_PSA instruction should be used in conjunction with the IR_DATA_PSA instruction.
This instruction shifts out the PSA pattern generated by the IR_DATA_PSA command. During the SHIFT-
DR state of the TAP controller, the content of the JTAG_DATA_REG is shifted out through the TDO pin.
While this JTAG instruction is executed, the capture and update functions of the JTAG_DATA_REG are
disabled.

2.2.4.5 JTAG Access Security Fuse Programming
The following instructions are used to access and program the built-in JTAG access protection fuse,
available on every MSP430F1xx, 2xx, and 4xx flash device. When the fuse is programmed (or blown),
future access to the MSP430 through the JTAG interface is permanently disabled. This allows for access
protection of the final MSP430 firmware programmed into the target device. These instructions are not
available for the MSP430F5xx and F6xx devices. A different software-based mechanism is used for these
families to enable JTAG access protection (see Section 2.4 for details).

2.2.4.5.1 IR_PREPARE_BLOW
This instruction sets the MSP430 into program-fuse mode.

2.2.4.5.2 IR_EX_BLOW
This instruction programs (blows) the access-protection fuse. To execute properly, it must be loaded after
the IR_PREPARE_BLOW instruction is given.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


Programming Using the JTAG Interface www.ti.com

20 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

2.3 Memory Programming Control Sequences

2.3.1 Start-Up
Before the main memory programming routine can begin, the target device must be initialized for
programming. This section describes how to perform the initialization sequence.

2.3.1.1 Enable JTAG Access
This step is only required for devices in which JTAG pins are shared with port I/Os, which is indicated by
the presence of a TEST pin. This is the case on all devices that support the Spy-Bi-Wire protocol.
Furthermore, some older device groups require special handling to enable 4-wire JTAG (see the "TEST
Pin" column in Table 14).

Reference function: GetDevice, GetDevice_sbw, GetDevice_430X, GetDevice_430Xv2
• MSP430 devices with TEST pin and 4-wire JTAG access only (no SBW)

To use the JTAG features of MSP430 devices with shared JTAG and a TEST pin, it is necessary to
enable the shared JTAG pins for JTAG communication mode. Devices with dedicated JTAG
inputs/outputs and no TEST pin do not require this step. The shared pins are enabled for JTAG
communication by connecting the TEST pin to VCC. For normal operation (non-JTAG mode), this pin
should be released, so that it is pulled to ground by the internal pulldown. Table 8 shows the port 1
pins that are used for JTAG communication.

Table 8. Shared JTAG Device Pin Functions

Port 1 Function
(TEST = Open)

JTAG Function
(TEST = VCC)

P1.4 TCK
P1.5 TMS
P1.6 TDI/TCLK
P1.7 TDO

• MSP430 devices with Spy-Bi-Wire (SBW) access
The SBW interface and any access to the JTAG interface is disabled while the TEST/SBWTCK pin is
held low. This is accomplished by an internal pulldown resistor. The pin can also be tied low externally.
Pulling the TEST/SBWTCK pin high enables the SBW interface and disables theRST/NMI functionality
of the RST/NMI/SBWTDIO pin. While the SBW interface is active, the internal reset signal is held high,
and the internal NMI signal is held at the input value seen at RST/NMI with TEST/SBWTCK going high.
Devices with SBW also support the standard 4-wire interface. The 4-wire JTAG interface access is
enabled by pulling the SBWTDIO line low and then applying a clock on SBWTCK. Exit the 4-wire JTAG
mode by holding the TEST/SBWTCK low for more than 100 µs.
To select the 2-wire SBW mode, the SBWTDIO line is held high and the first clock is applied on
SBWTCK. After this clock, the normal SBW timings are applied starting with the TMS slot, and the
normal JTAG patterns can be applied, typically starting with the Tap Reset and Fuse Check sequence.
Exit the SBW mode by holding the TEST/SBWTCK low for more than 100 µs.
In devices implementing the bootloader (BSL), the TEST/SBWTCK and RST/NMI/SBWTDIO are also
used to invoke the BSL. Figure 12 shows different cases that are used to enter the SBW/JTAG or BSL
mode.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


TEST/SBWTCK

RST/NMI/SBWTDIO

BSL Entry
disabled

Enter
SBW Mode

Case 1a:
SBW entry sequence
when is highRST

BSL Disabled
SBW

.

BSL Entry

enabled.

Case 1b:
SBW entry sequence
when is lowRST

RST/NMI/SBWTDIO
(RST function)

Enter
SBW Mode

BSL Entry

Disabled.

BSL Disabled
SBW

RST/NMI/SBWTDIO
(NMI function)

BSL Entry

disabled.

Enter 4-Wire

JTAG Mode

Case 2b:
JTAG entry sequence
when is lowRST

BSL Disabled
4-Wire JTAG

BSL Entry

disabled

Enter 4-Wire

JTAG Mode

Case 2a:
JTAG entry sequence
when is highRST

BSL Disabled
4-Wire JTAG

RST/NMI/SBWTDIO

www.ti.com Programming Using the JTAG Interface

21SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

Figure 12. JTAG Access Entry Sequences (for Devices That Support SBW)

NOTE: On some Spy-Bi-Wire capable MSP430 devices, TEST/SBWTCK is very sensitive to rising
signal edges that can cause the test logic to enter a state where an entry sequence (either 2-
wire or 4-wire) is not recognized correctly and JTAG access stays disabled. Unintentional
edges on SBWTCK can occur when the JTAG connector is connected to the target device.
There are two possibilities to work around this problem and ensure a stable JTAG access
initialization:
• Actively drive SBWTCK low before powering up the device or while plugging in the

connector to avoid unintentional rising signal edges.
• Run the initialization sequence multiple times (two to three repeats are typically sufficient

to establish a stable connection).

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


TCK

TCLK

TDI

TDO

TMS

SetTCLK
JTAG Fuse

Checked

JTAG State-Machine Reset

Run-Test/Idle

Programming Using the JTAG Interface www.ti.com

22 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

2.3.1.2 Fuse Check and Reset of the JTAG State Machine (TAP Controller)
Reference functions: ResetTAP, ResetTAP_sbw

Each MSP430F1xx, 2xx, and 4xx flash device includes a physical fuse that is used to permanently disable
memory access through JTAG communication. When this fuse is programmed (or blown), access to
memory through JTAG is permanently disabled and cannot be restored. When initializing JTAG access
after power up, a fuse check must be done before JTAG access is granted. Toggling of the TMS signal
twice performs the check.

While the fuse is tested, a current of up to 2 mA flows into the TDI input (or into the TEST pin on devices
without dedicated JTAG pins). To enable settling of the current, the low phase of the two TMS pulses
should last a minimum of 5 µs.

Under certain circumstances (for example, plugging in a battery), a toggling of TMS may accidentally
occur while TDI is logical low. In that case, no current flows through the security fuse, but the internal logic
remembers that a fuse check was performed. Thus, the fuse is mistakenly recognized as programmed
(that is, blown). To avoid the issue, newer MSP430 JTAG implementations (devices with CPUXv2 - see
Table 15) also reset the internal fuse-check logic on performing a reset of the TAP controller. Thus, it is
recommended to first perform a reset of the TAP and then check the JTAG fuse status as shown in
Figure 13. To perform a reset of the TAP controller it is recommended that a minimum of six TCK clocks
be sent to the target device while TMS is high followed by setting TMS low for at least one TCK clock.
This sets the JTAG state machine (TAP controller) to a defined starting point: the Run-Test/Idle state. This
procedure can also be used at any time during JTAG communication to reset the JTAG port.

Figure 13. Fuse Check and TAP Controller Reset

Following the same sequence in SBW mode has the side effect of changing the TAP controller state while
the fuse check is performed. As described in Section 2.2.3.1, the internal signal TCK is generated
automatically in every TDI_SLOT. Performing a fuse check in SBW mode, starting directly after a reset of
the TAP controller, ends in its Exit2-DR state. Two more dummy TCK cycles must be generated to return
to Run-Test/Idle state; one TCK with SBWTDIO being high during the TMS_SLOT followed by one TCK
with SBWTDIO being low during the TMS_SLOT (reference function: ResetTAP_sbw).

NOTE: A dedicated fuse check sequence (toggling TMS twice) is not required for the MSP430F5xx
and F6xx families. These families implement a software mechanism rather than a hardware
fuse (which needs to be checked or burned) to enable JTAG security protection.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


www.ti.com Programming Using the JTAG Interface

23SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

2.3.2 General Device (CPU) Control Functions
The functions described in this section are used for general control of the target MSP430 CPU, as well as
high-level JTAG access and bus control.

2.3.2.1 Function Reference for 1xx, 2xx, 4xx Families

2.3.2.1.1 Taking the CPU Under JTAG Control
Reference function: GetDevice, GetDevice_sbw, GetDevice_430X

After the initial fuse check and reset, the CPU of the target device must be taken under JTAG control. This
is done by setting bit 10 (TCE1) of the JTAG control signal register to 1. Thereafter, the CPU needs some
time to synchronize with JTAG control. To check if the CPU is synchronized, bit 9 (TCE) is tested (sync
successful if set to 1). After this bit is verified as high, the CPU is under the control of the JTAG interface.
Following is the flow used to take the target device under JTAG control.

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2401)

IR_SHIFT("IR_CNTRL_SIG_CAPTURE")

DR_SHIFT16(0x0000)
No

Bit 9 of TDOword = 1?
Yes

CPU is under JTAG control

2.3.2.1.2 Set CPU to Instruction-Fetch
Reference function: SetInstrFetch

Sometimes it is useful for the target device to directly execute an instruction presented by a host over the
JTAG port. To accomplish this, the CPU must be set to the instruction-fetch state. With this setting, the
target device CPU loads and executes an instruction as it would in normal operation, except that the
instruction is transmitted through JTAG. Bit 7 of the JTAG control signal register indicates that the CPU is
in the instruction-fetch state. TCLK should be toggled while this bit is zero. After a maximum of seven
TCLK clocks, the CPU should be in the instruction-fetch mode. If not (bit 7 = 1), a JTAG access error has
occurred and a JTAG reset is recommended.

IR_SHIFT("IR_CNTRL_SIG_CAPTURE")

DR_SHIFT16(0x0000) = Readout data

Bit 7 of TDOvalue = 0?

ClrTCLK

SetTCLK

CPU is in the instruction-fetch state

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


Programming Using the JTAG Interface www.ti.com

24 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

2.3.2.1.3 Setting the Target CPU Program Counter (PC)
To use some of the features of the JTAG interface provided by the MSP430, setting of the CPU PC of the
target device is required. The following flow is used to accomplish this. Implementations for both the
MSP430 and MSP430X architectures are shown.
• MSP430 architecture: Reference function: SetPC

CPU must be in the instruction-fetch state before the following sequence.

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x3401) : release low byte

IR_SHIFT("IR_DATA_16BIT")

DR_SHIFT16(0x4030) : Instruction to load PC

ClrTCLK

SetTCLK

DR_SHIFT16("PC_Value") : Insert the value for PC

ClrTCLK

SetTCLK

IR_SHIFT("IR_ADDR_CAPTURE") : Disable IR_DATA_16BIT

ClrTCLK : Now PC is set to "PC_Value"

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2401) : low byte controlled by JTAG

Load PC completed

• MSP430X architecture: Reference function: SetPC_430X

CPU must be in the instruction-fetch state before the following sequence.

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x3401) : release low byte

IR_SHIFT("IR_DATA_16BIT")

DR_SHIFT16(0x0X80) : Instruction to load PC, X = PC(19:16)

ClrTCLK

SetTCLK

DR_SHIFT16("PC(15:0)") : Insert the value for PC(15:0)

ClrTCLK

SetTCLK

IR_SHIFT("IR_ADDR_CAPTURE") : Disable IR_DATA_16BIT

ClrTCLK : Now PC is set to "PC_Value"

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2401) : low byte controlled by JTAG

Load PC completed

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


www.ti.com Programming Using the JTAG Interface

25SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

2.3.2.1.4 Controlled Stop or Start of the Target CPU
Reference function: HaltCPU/ReleaseCPU

While a memory location is accessed by the JTAG interface, the target device's CPU should be taken into
a defined halt state. Stopping of the CPU is supported by the HALT_JTAG bit (bit 3) in the JTAG control
signal register, which is set to 1 with execution of the HaltCPU function. After accessing the required
memory locations, the CPU can be returned to normal operation. This function is implemented by the
ReleaseCPU prototype and simply resets the HALT_JTAG bit.

CPU must be in the instruction-fetch state before the following sequence

HaltCPU

IR_SHIFT("IR_DATA_16BIT")

DR_SHIFT16(0x3FFF) : "JMP $" instruction to keep CPU from
changing the state

ClrTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2409) : set HALT_JTAG bit

SetTCLK

Now the CPU is in a controlled state and is not altered during memory accesses.
Note: Do not reset the HALT_JTAG bit (= 0) while accessing the target memory.

Memory Access Performed Here
The CPU is switched back to normal operation using ReleaseCPU.

ReleaseCPU

ClrTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2401) : Clear HALT_JTAG bit

IR_SHIFT("IR_ADDR_CAPTURE")

SetTCLK

The CPU is now in the instruction-fetch state and ready to receive a new JTAG instruction. If the PC has
been changed while the memory was being accessed, the PC must be loaded with the correct address.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


Programming Using the JTAG Interface www.ti.com

26 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

2.3.2.1.5 Resetting the CPU While Under JTAG Control
Reference function: ExecutePOR

Sometimes it is required to reset the target device while under JTAG control. It is recommended that a
reset be performed before programming or erasing the flash memory of the target device. When a reset
has been performed, the state of the target CPU is equivalent to that after an actual device power up. The
following flow is used to force a power-up reset.

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2C01) : Apply Reset

DR_SHIFT16(0x2401) : Remove Reset

ClrTCLK

SetTCLK

ClrTCLK

SetTCLK

ClrTCLK

IR_SHIFT("IR_ADDR_CAPTURE")

SetTCLK

The target CPU is now reset; the PC points to the start address of the user program, which is the address
pointed to by the data stored in the reset vector memory location 0xFFFEh and all registers are set to

their respective power-up values.
To avoid an undesired reset, the target device's watchdog timer must now be disabled by writing 0x5A80

to the device’s Watchdog Timer Control Register. WriteMem() can be used for this register access.
Unless WriteMem() was used to halt the watchdog timer, ReleaseCPU() needs to be called now.

2.3.2.1.6 Release Device From JTAG Control
Reference function: ReleaseDevice

After the desired JTAG communication is completed, the CPU is released from JTAG control. There are
two ways to accomplish this task:
• Disconnect the external JTAG hardware and perform a true power-up reset. The MSP430 then starts

executing the program code beginning at the address stored at 0xFFFEh (the reset vector).
• Release MSP430 from JTAG control. This is done by performing a reset using the JTAG control signal

register. The CPU must then be released from JTAG control by using the IR_CNTRL_SIG_RELEASE
instruction. The target MSP430 then starts executing the program at the address stored at 0xFFFE.

Flow to release the target device:

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2C01) : Apply Reset

DR_SHIFT16(0x2401) : Remove Reset

IR_SHIFT("IR_CNTRL_SIG_RELEASE")

The target CPU starts program execution with the address stored at location 0x0FFFE (reset vector).

NOTE: It is not recommended to release the device from JTAG control (or perform a power-up
cycle) during an erase-program-verify memory access cycle. Releasing the device from
JTAG control starts execution of the previously programmed user code, which might change
the flash memory content. In that case, verification of the memory content against the
originally programmed code image would fail.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


Is JTAG ID

Correct?

IsLockKeyProgrammed?

GetCoreipIdXv2()

Is CoreId 

Valid?

Is status OK?

Start

End

GetCoreID()

Return 

³STATUS_ERROR´

SyncJtag_AssertPor()

Read device ID

Return 

³STATUS_OK´

Yes

No

No

No

Yes

No

Yes

Yes

www.ti.com Programming Using the JTAG Interface

27SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

2.3.2.2 Function Reference for 5xx and 6xx Families

2.3.2.2.1 Taking the CPU Under JTAG Control
Reference function: GetDevice_430Xv2

For the 5xx and 6xx families, the CPU is taken under JTAG control by setting bit 10 (TCE1) of the JTAG
control signal register to 1. While the flow to take the target device under JTAG control is identical to the
flow described in Section 2.3.2.1.1, additional actions must be taken to completely take over control of the
target CPU; for example, it is not recommended to take over control without performing a CPU reset by
setting the POR signal in the JTAG Control Signal Register. Also, care must be taken that the CPU is in
the Full-Emulation-State (equivalent to the Instruction-Fetch state for MSP430 and MSP430X
architectures) by setting the CPUSUSP signal and providing a number of TCLK until the CPU prefetch
pipes are cleared. Figure 14 shows the full sequence required to get the CPU in the Full-Emulation-State.

Figure 14. Taking the CPU Under JTAG Control

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


Programming Using the JTAG Interface www.ti.com

28 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

Reference function: GetCoreID

Figure 15 shows the JTAG-entry sequence for MSP430Xv2 devices. If no valid JTAG-ID is returned by the
first entry sequence approach, a second one that uses a "magic pattern" is executed. The differences
between these two entry approaches is: the second approach holds the device in reset and shifts in a
"magic pattern" (0xA55A) by using the JTAG mailbox. The magic pattern is read by the BootCode, and the
device is sent into LPM4. If the device is in LPM4, no user code is executed. The magic pattern mode
forces a reset of the device.

In the special case that the device is in LPMx.5 (low-power mode where JTAG is unpowered and the
JTAG pins are locked by the ioLock), another mechanism is needed to take the device under JTAG
control. Only the TEST and the REST pin are not pulled down by the ioLock. That means that these pins
must be used to get control over the device. Compared to the normal SBW communication, which uses
TDI/TDO and TMS pins in the replicator implementation, TEST and RST are used for SBW
communication to disable the ioLock.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


Stop JTAG - release
JTAG and TEST signals

Connect JTAG - drive
JTAG and TEST signals

Start JTAG -
Apply 4-wire or

SBW entry sequence

Drive reset high

Reset TAP state machine
to Run-Test / Idle

Do instruction shift
to get JTAG-ID

Start

End sequence

No

Drive  reset low -
(device is held in reset)

Start JTAG-Mailbox
exchange

When JTAG-Mailbox is
ready for input request, feed
in 0xA55A (magic pattern)

Drive reset high

Valid JTAG-ID
returned?

Yes

Set error

No

Yes

Yes

Device in LPMx.5
and protocol is
JTAG 4-wire?

No

Yes

Drive reset low
(device is held in reset)

No

Disable ioLock
for debug

Yes

Yes

Drive reset high

Disable ioLock for debug

Stop JTAG - release
JTAG and TEST signals

Start JTAG -
Apply 4-Wire or

SBW entry sequence

Reset TAP state machine
to Run-Test / Idle

Connect JTAG - drive
JTAG and TEST signals

Connect JTAG - drive
JTAG and TEST signals

Start JTAG mailbox
exchange

Reset TAP state machine
to Run-Test / Idle

Start JTAG -
Apply 4-wire or

SBW entry sequence

Reset TAP state machine
to Run-Test / Idle

Reset TAP state machine
to Run-Test / Idle

Do instruction shift
to get JTAG-ID

Stop JTAG -
release JTAG and

TEST signals

Device in LPMx.5
and protocol is

SBW?

When JTAG mailbox is
ready for input request, feed
in 0xA55A (magic pattern)

Valid JTAG-ID
returned?

Start JTAG -
Apply SBW entry sequence

by using and TESTRST
(TDI, TDO and TCK are
locked by LPM ioLock)

Start JTAG -
Apply SBW entry sequence

by using and TESTRST
(TDI, TDO and TCK are
locked by LPM ioLock)

www.ti.com Programming Using the JTAG Interface

29SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

Figure 15. JTAG Entry Sequence for 430Xv2 Devices

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


Programming Using the JTAG Interface www.ti.com

30 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

• Reference function: GetCoreipIdXv2()

IR_Shift(IR_COREIP_ID)

CoreId = DR_Shift16(0)

CoreId = 0 ? Yes
No

IR_Shift(IR_DEVICE_ID)

DeviceIdPointer = DR_Shift20(0)

• Reference function: SyncJtag_AssertPor()

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x1501)

IR_SHIFT("IR_CNTRL_SIG_CAPTURE")

DR_SHIFT16(0x0000)
No

Bit 9 of TDOword = 1?
Yes

CPU is under JTAG control - always apply Power on Reset (POR) afterwards.

2.3.2.2.2 Setting the Target CPU Program Counter (PC)
To use some of the features of the JTAG interface provided by the MSP430Xv2 architecture, setting of the
CPU PC of the target device is required. The following flow is used to accomplish this. With the
MSP430Xv2 architecture, it is strongly recommended that after setting the PC no additional memory
access is performed other than the described quick access methods under Section 2.3.3.3 and
Section 2.3.7. After setting the PC, the target device can be either released from JTAG control or
continued to be clocked by providing TCLK to execute user program code that was previously stored at
the memory location the PC is now pointing to. In any case, before the memory can be accessed again,
the CPU must be put again into the Full-Emulation-State as described in Section 2.3.2.2.1.
• MSP430Xv2 architecture: Reference function: SetPC_430Xv2

CPU must be in the Full-Emulation-State before the following sequence.

ClrTCLK

IR_SHIFT("IR_DATA_16BIT")

SetTCLK

DR_SHIFT16("MOVA opcode incl. upper nibble of 20 bit PC value")

clrTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x1400) : release low byte

IR_SHIFT("IR_DATA_16BIT")

ClrTCLK

SetTCLK

DR_SHIFT16("PC_Value") : Insert the lower 16 bit value for PC

ClrTCLK

SetTCLK

DR_SHIFT16(0x4303) : insert NOP instruction to be pre-fetched by CPU

ClrTCLK : Now PC is set

IR_SHIFT("IR_ADDR_CAPTURE") : Disable IR_DATA_16BIT

DR_SHIFT20(0x00000)

Load PC completed

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


www.ti.com Programming Using the JTAG Interface

31SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

2.3.2.2.3 Resetting the CPU While Under JTAG Control
Reference function: ExecutePOR_430Xv2

NOTE: On devices with Low Energy Accelerator (LEA), executing a POR using the described
functions resets the LEA module.

• MSP430Xv2 architecture with Flash memory

IR_SHIFT("IR_CNTRL_SIG_CAPTURE") : returns JTAG ID

ClrTCLK : provide one clock cycle to empty the pipe

SetTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT") : prepare access to the JTAG CNTRL SIG register

DR_Shift16(0x0C01) : release CPUSUSP signal and apply POR signal

DR_Shift16(0x0401) : release POR signal again

ClrTCLK

SetTCLK

ClrTCLK

SetTCLK

ClrTCLK

SetTCLK

ClrTCLK : two more clock cycles to release CPU internal POR delay signals

SetTCLK

ClrTCLK

SetTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT") : set CPUSUSP signal again

DR_Shift16(0x0501)

ClrTCLK : ...and provide one more clock cycle

SetTCLK

The CPU is now in Full-Emulation-State'
Disable Watchdog Timer on target device now by setting the HOLD signal in the WDT_CNTRL register (that is, by using

WriteMem_430Xv2
'Full-Emulation-State' can be checked by the running the commands below

IR_Shift("IR_CNTRL_SIG_CAPTURE")

DR_Shift16(0) : return value & 0x0301 should be true

• MSP430Xv2 architecture with FRAM memory

ClrTCLK : provide one clock cycle to empty the pipe

SetTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT") : prepare access to the JTAG CNTRL SIG register

DR_Shift16(0x0C01) : release CPUSUSP signal and apply POR signal

DR_Shift16(0x0401) : release POR signal again

IR_Shift(IR_DATA_16BIT) : set PC to safe memory location

ClrTCLK

SetTCLK

ClrTCLK

SetTCLK

DR_Shift16(SAFE_FRAM_PC) : PC is set to 0x4 - MAB value can be 0x6 or 0x8

ClrTCLK : Drive safe address into PC

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


Programming Using the JTAG Interface www.ti.com

32 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

SetTCLK

IR_SHIFT("IR_DATA_CAPTURE")

ClrTCLK : two more clock cycles to release CPU internal POR delay signals

SetTCLK

ClrTCLK

SetTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT") : set CPUSUSP signal again

DR_Shift16(0x0501)

ClrTCLK : ...and provide one more clock cycle

SetTCLK

The CPU is now in Full-Emulation-State'
Disable Watchdog Timer on target device now by setting the HOLD signal in the WDT_CNTRL register (i.e. by using

WriteMem_430Xv2 – note different WDT addresses for individual FRAM device groups)
Initialize Test Memory with default values to ensure consistency between PC value and MAB (MAB is +2 after sync) – Use

WriteMem_430Xv2 to write 0x3FFF to addresses 0x06 and 0x08 (this is only applicable for devices with JTAG ID 0x91 or 0x99)
'Full-Emulation-State' can be checked by the running the commands below

IR_Shift("IR_CNTRL_SIG_CAPTURE")

DR_Shift16(0) : return value & 0x0301 should be true

2.3.2.2.4 Release Device From JTAG Control
Also for 5xx and 6xx family, both ways described in Section 2.3.2.1.6 can be applied. A POR (power-on-
reset) using the JTAG control signal register is not equivalent to a true power-up reset, which additionally
issues a BOR (brownout reset) before the POR. Only a BOR causes the target devices' boot code to be
executed, which performs various calibration and configuration tasks. Thus, the 5xx and 6xx JTAG
interface is enhanced with the ability to generate a BOR through the JTAG interface by accessing a
dedicated JTAG data register. As soon as the appropriate BOR bit in the JTAG data register is set, the
device is released from JTAG and performs a complete brownout reset startup sequence. See the
ReleaseDevice_Xv2 reference function for implementation details. Also see the MSP430F5xx and
MSP430F6xx Family User's Guide System Resets, Interrupts and Operating Modes, System Control
Module (SYS) chapter for more information about various reset sources and device boot behavior.

Reference function: ReleaseDevice_430Xv2

NOTE: It is not recommended to release the device from JTAG control (or perform a power-up
cycle) during an erase-program-verify memory access cycle. Releasing the device from
JTAG control starts execution of the previously programmed user code, which might change
the flash memory content. In that case, verification of the memory content against the
originally programmed code image would fail.

2.3.3 Accessing Non-Flash Memory Locations With JTAG

2.3.3.1 Read Access
To read from any memory address location (peripherals, RAM, or flash/FRAM), the R/W signal must be
set to READ using the JTAG control signal register (bit 0 set to 1). The MSP430 MAB must be set to the
specific address to be read using the IR_ADDR_16BIT instruction while TCLK is 0. To capture the
corresponding value of the MSP430 MDB, the IR_DATA_TO_ADDR instruction must be executed. After
the next rising edge of TCLK, the data of this address is present on the MDB. The MDB can now be
captured and read out from the TDO pin using a 16-bit JTAG data access. When TCLK is set low again,
the address of the next memory location to be read can be applied to the target MAB. Following is the flow
required to read data from any memory address of a target device. Implementations for both the MSP430
and MSP430X architectures are shown.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI
http://www.ti.com/lit/pdf/SLAU208
http://www.ti.com/lit/pdf/SLAU208


www.ti.com Programming Using the JTAG Interface

33SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

• MSP430 architecture, Reference function: ReadMem

Set CPU to stopped state (HaltCPU)

ClrTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2409)
: Read one word from memory. To read a byte,
the value to shift is 0x2419.

IR_SHIFT("IR_ADDR_16BIT")

Yes

DR_SHIFT16("Address") : Set desired address

IR_SHIFT("IR_DATA_TO_ADDR")

SetTCLK

ClrTCLK

DR_SHIFT16(0x0000) : Memory value shifted out on TDO

Read again?
No

ReleaseCPU should now be executed, returning the CPU to normal operation.

• MSP430X architecture, Reference function: ReadMem_430X

Set CPU to stopped state (HaltCPU)

ClrTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2409)
: Read one word from memory. To read a byte,
the value to shift is 0x2419.

IR_SHIFT("IR_ADDR_16BIT")

Yes

DR_SHIFT20("Address") : Set desired address

IR_SHIFT("IR_DATA_TO_ADDR")

SetTCLK

ClrTCLK

DR_SHIFT16(0x0000) : Memory value shifted out on TDO

Read again?
No

ReleaseCPU should now be executed, returning the CPU to normal operation.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


Programming Using the JTAG Interface www.ti.com

34 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

• MSP430Xv2 architecture, Reference function: ReadMem_430Xv2

CPU must be in the Full-Emulation-State before the following sequence.

ClrTCLK

Yes

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x0501)
: Read one word from memory. To
read a byte, the value to shift
is 0x0511.

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT20("Address") : Set desired address

IR_SHIFT("IR_DATA_TO_ADDR")

SetTCLK

ClrTCLK

DR_SHIFT16(0x0000) : Memory value shifted out on TDO

SetTCLK

ClrTCLK

SetTCLK

Read again?
No

CPU is now again in Full-Emulation-State.

2.3.3.2 Write Access
To write to a memory location in peripherals or to RAM (but not to flash or FRAM), the R/W signal must be
set to WRITE using the JTAG control signal register (bit 0 set to 0). The MAB must be set to the specific
address using the IR_ADDR_16BIT instruction while TCLK is low. The MDB must be set to the data value
to be written using the IR_DATA_TO_ADDR instruction and a 16-bit JTAG data input shift. On the next
rising edge of TCLK, this data is written to the selected address set by the value on the MAB. When TCLK
is asserted low, the next address and data to be written can be applied to the MAB and MDB. After
completion of the write operation, it is recommended to set the R/W signal back to READ. Following is the
flow for a peripheral or RAM memory address write. Implementations for both the MSP430 and MSP430X
architectures are shown.
• MSP430 architecture, Reference function: WriteMem

Set CPU to stopped state (HaltCPU)

ClrTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2408)
: To write a word in memory. For a byte, the
value to shift is 0x2418.

IR_SHIFT("IR_ADDR_16BIT")

Yes

DR_SHIFT16("Address") : Set desired address

IR_SHIFT("IR_DATA_TO_ADDR")

DR_SHIFT16("Data") : Send 16-bit Data

SetTCLK

Write again?
No

ReleaseCPU should now be executed, returning the CPU to normal operation.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


www.ti.com Programming Using the JTAG Interface

35SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

• MSP430X architecture, Reference function: WriteMem_430X

Set CPU to stopped state (HaltCPU)

ClrTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2408)
: To write a word in memory. For a byte, the
value to shift is 0x2418.

IR_SHIFT("IR_ADDR_16BIT")

Yes

DR_SHIFT20("Address") : Set desired address

IR_SHIFT("IR_DATA_TO_ADDR")

DR_SHIFT16("Data") : Send 16-bit Data

SetTCLK

Write again?
No

ReleaseCPU should now be executed, returning the CPU to normal operation.

• MSP430Xv2 architecture, Reference function: WriteMem_430Xv2

CPU must be in the Full-Emulation-State before the following sequence.

ClrTCLK

Yes

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x0500)
: To write a word in memory. For a
byte, the value to shift is
0x0510.

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT20("Address") : Set desired address

SetTCLK

IR_SHIFT("IR_DATA_TO_ADDR")

DR_SHIFT16("Data") : Send 16-bit Data

ClrTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x0501)

SetTCLK

ClrTCLK

SetTCLK

Write again?
No

CPU is now again in Full-Emulation-State.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


Programming Using the JTAG Interface www.ti.com

36 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

2.3.3.3 Quick Access of Memory Arrays
The JTAG communication implemented on the MSP430 also supports access to a memory array in a
more efficient manner. The instruction IR_DATA_QUICK is used to accomplish this operation. The R/W
signal selects whether a read or write access is to be performed. Before this instruction can be loaded into
the JTAG IR register, the program counter (PC) of the target MSP430 CPU must be set to the desired
memory starting address. After the IR_DATA_QUICK instruction is shifted into the IR register, the PC is
incremented by two with each falling edge of TCLK, automatically pointing the PC to the next memory
location. The IR_DATA_QUICK instruction allows setting the corresponding MDB to a desired value
(write), or captures (reads) the MDB with a DR_SHIFT16 operation. The MDB should be set when TCLK
is low. On the next rising TCLK edge, the value on the MDB is written into the location addressed by the
PC. To read a memory location, TCLK must be high before the DR_SHIFT16 operation is executed.

2.3.3.3.1 Flow for Quick Read (All Memory Locations)
• Both MSP430 and MSP430X architecture, Reference function: ReadMemQuick

Set PC to start address – 4 (SetPC or SetPC_430X, depending on the architecture)
Switch CPU to stopped state (HaltCPU)

ClrTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2409) : Set RW to read

IR_SHIFT("IR_DATA_QUICK")

SetTCLK

Yes
DR_SHIFT16(0x0000) : Memory value shifted out on TDO

ClrTCLK : Auto-increments PC

Read From Next Address?
No

ReleaseCPU should now be executed, returning the CPU to normal operation. Reset the PC of the target
CPU if needed (SetPC).

• MSP430Xv2 architecture, Reference function: ReadMem_430Xv2

CPU must be in the Full-Emulation-State before the following sequence.
Set PC to start address (SetPC_430Xv2)

SetTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x0501) : Set RW to read

IR_SHIFT("IR_ADDR_CAPTURE")

IR_SHIFT("IR_DATA_QUICK")

SetTCLK

Yes
ClrTCLK : Auto-increments PC

DR_SHIFT16(0x0000) : Memory value shifted out on TDO

Read From Next Address?
No

Get CPU in Full-Emulation-State.

NOTE: For the MSP430F5xx and MSP430F6xx families, quick memory access must be used with
care because the PC already points to one address ahead of the actual address to be read.
This can lead to security access violations, especially at the end of a physical memory block.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


www.ti.com Programming Using the JTAG Interface

37SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

2.3.3.3.2 Flow for Quick Write
• Both MSP430 and MSP430X architecture, Reference function: WriteMemQuick

Set PC to start address – 4 (SetPC)
Switch CPU to stopped state (HaltCPU)

ClrTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2408) : Set RW to write

Yes

IR_SHIFT("IR_DATA_QUICK")

DR_SHIFT16("Data") : Set data

SetTCLK

ClrTCLK : Auto-increments PC

Write To Next Address?
No

ReleaseCPU should now be executed, returning the CPU to normal operation. Reset the PC of the target
CPU if needed (SetPC).

• MSP430Xv2 architecture
For the MSP430Xv2 architecture in both flash and FRAM devices, there is no specific implementation
of a quick write operation. The available implementation in the REP430 firmware is to call the
WriteMem_430Xv2() function to write word by word into the specified memory.

2.3.4 Programming the Flash Memory (Using the Onboard Flash Controller)

2.3.4.1 Function Reference for 1xx, 2xx, 4xx Families
Reference function: WriteFLASH

This section describes one method available to program the flash memory module in an MSP430 device.
It uses the same procedure that user-defined application software would use, which would be
programmed into a production-equipment MSP430 device. Nonconsecutive flash memory addressing is
supported.

This programming method requires a TCLK frequency of 350 kHz ±100 kHz while the erase or
programming cycle is being executed. The frequency that must be applied to SBWTCK in Spy-Bi-Wire
mode is the same frequency that is applied to TCK in 4-wire mode.

For more information on the flash controller timing, see the corresponding MSP430 user's guide and
device-specific data sheet. Table 9 shows the required minimum number of TCLK cycles, depending on
the action performed on the flash (for FCTL2 register bits 0 to 7 = 0x40 as defined in the MSP430 user's
guide).

(1) MSP430 device dependent, see device-specific data sheet. See
Section 2.3.5 for more details.

Table 9. Erase and Program Minimum TCLK Clock
Cycles

Flash Action Minimum TCLK Count
Segment erase 4820 (default) or 9628 (MSP430ixx family)
Mass erase 5300 to 10600 (1)

Program word 35

The following JTAG communication flow shows programming of the MSP430 flash memory using the
onboard flash controller. In this implementation, 16-bit words are programmed into the main flash memory
area. To program bytes, the BYTE bit in the JTAG CNTRL_SIG register must be set high while in
programming mode. StartAddr is the starting address of the flash memory array to be programmed.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


Programming Using the JTAG Interface www.ti.com

38 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

(1) Replace with DR_SHIFT20("Address") when programming an MSP430X architecture device.
(2) Substitute 0xA540 for 2xx devices for Info-Segment A programming.
(3) Correct timing required. Must meet minimum and maximum TCLK frequency requirement of 350 kHz

±100 kHz.

Switch CPU to stopped state (HaltCPU)

ClrTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2408) : Set RW to Write

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT16(0x0128) (1) : Point to FCTL1 Address

IR_SHIFT("IR_DATA_TO_ADDR")

DR_SHIFT16(0xA540) : Enable FLASH Write Access

SetTCLK

ClrTCLK

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT16(0x012A) (1) : Point to FCTL2 Address

IR_SHIFT("IR_DATA_TO_ADDR")

DR_SHIFT16(0xA540) : Source is MCLK, divider by 1

SetTCLK

ClrTCLK

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT16(0x012C) (1) : Point to FCTL3 Address

IR_SHIFT("IR_DATA_TO_ADDR")

DR_SHIFT16(0xA500) (2) : Clear FCTL3 Register

SetTCLK

ClrTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2408) : Set RW to Write

Yes

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT16("Address") (1) : Set Address for Write

IR_SHIFT("IR_DATA_TO_ADDR")

DR_SHIFT16("Data") : Set Data for Write

SetTCLK

ClrTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2409) : Set RW to Read

SetTCLK
Repeat 35 times (3)

ClrTCLK

Write Another Flash Address?
No

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2408) : Set RW to Write

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT16(0x0128) (1) : Point to FCTL1 Address

IR_SHIFT("IR_DATA_TO_ADDR")

DR_SHIFT16(0xA500) : Disable FLASH Write Access

SetTCLK

ClrTCLK

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


www.ti.com Programming Using the JTAG Interface

39SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

(4) Substitute 0xA550 for 2xx devices for Info-Segment A programming.

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT16(0x012C) (1) : Point to FCTL3 Address

IR_SHIFT("IR_DATA_TO_ADDR")

DR_SHIFT16(0xA510) (4) : Set LOCK bit in FCTL3

SetTCLK

ReleaseCPU should now be executed, returning the CPU to normal operation.

2.3.4.2 Function Reference for 5xx and 6xx Families
Because the 5xx and 6xx devices have a dedicated timing generator available on chip, flash access is
significantly easier compared to the other MSP430 families. There is no need for the user to ensure a
certain erase or program frequency on the TCLK signal. All timings that are required for memory erase
and write access are generated automatically.

The basis for the following description is that the flash memory access operation can be initiated from
within RAM, as described in the relevant MSP430F5xx and MSP430F6xx Family User's Guide chapters.
This document describes how to load an appropriate code in the target device RAM and how to control
the correct execution of the code using the JTAG interface. Controlling the execution of the target code
can be done by releasing the device from JTAG control. Releasing the device from JTAG control makes
the CPU execute the program code in free running mode. After the desired operation is finished, the
device must be taken under JTAG control again.

This method has advantages and disadvantages. Having a free-running device can increase flash
programming speed to its upper limit; it requires a polling mechanism through JTAG to retrieve the current
target device state. On the other hand, such a polling mechanism is not suitable for systems in which
more than one target device is accessed in parallel. As all targets would not run at exactly the same
frequency, keeping them under JTAG control would be the recommended approach for a parallel access
system. This is not implemented in the REP430 firmware.

Exchanging information between the target devices' CPU and JTAG (for example, for device state polling
purposes) uses a new feature of the 5xx JTAG implementation: The JTAG mailbox system. The idea
behind the JTAG mailbox system is to have a direct interface to the CPU during debugging, programming,
and test that is identical for all devices in this family and that uses few or no user application resources
(refer to the MSP430F5xx and MSP430F6xx Family User's Guide System Resets, Interrupts and
Operating Modes, System Control Module (SYS) chapter).

Figure 16 shows the general flow required to perform flash memory operations on 5xx and 6xx devices
through the JTAG interface. The term Flash-Access-Code stands for an appropriate executable MSP430
code that can be used to perform the flash access operation. The following sections use the term Flash-
Write-Code for code that is used to program the flash memory and Flash-Erase-Code for code that is used
to erase the flash memory.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI
http://www.ti.com/lit/pdf/SLAU208
http://www.ti.com/lit/pdf/SLAU208


CPU must be in Full-Emulation-State

Prepare Flash-Access-Code binary image
(parameters to be passed to the code;

for example, appropriate Flash Controller settings)

Load Flash-Access-Code into target RAM

Set target program counter to
Flash-Access-Code in RAM

Release from JTAG control

Exchange data throug JTAG mailbox.
CPU to JTAG: Provide information about code execution state

JTAG to CPU: Provide data to be programmed into flash

Erase used target RAM
(to avoid Flash-Access-Code being accidentally executed)

Set target device under JTAG control

End of sequence

Programming Using the JTAG Interface www.ti.com

40 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

Figure 16. Accessing Flash Memory

Reference function: WriteFLASH_430Xv2

This section describes one method to program the flash memory subsequently with 16-bit word data by
executing an appropriate Flash-Write-Code in RAM and providing the data to the CPU through the JTAG
mailbox system. The provided source code example includes a Flash-Write-Code example that has the
capability to be parameterized in binary state. Figure 17 shows a generic map of the binary image of the
flash access codes provided with this document.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


0

2

4

. 
. 
.

n

n + 2

. 
. 
.

. 
. 
.

n + m

n + m + 2

Offset to code

Parameters

Code

jmp $

R
e
la

tiv
e
 a

d
d
re

s
s
 in

 ta
rg

e
t R

A
M

www.ti.com Programming Using the JTAG Interface

41SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

Figure 17. Flash Access Code Binary Image Map

• The code is position independent.
• The first address holds an offset value relative to the actual program code start address. The current

address plus the offset value results in the value that must be assigned to the Program Counter before
starting execution of the code.

• Space for code specific parameters.
• Actual program code.
• Endless loop at the end.

The Flash-Write-Code in particular takes the following parameters:
• StartAddr: First address in target memory to be written to
• Length: Number of 16-bit words to be written
• FCTL3: The value to be written into FCTL3 of the flash controller module (basically to define whether

LOCKA should be set or not)

When executing the Flash-Write-Code, the data to be programmed into the target flash memory must be
provided through the JTAG mailbox system. The following sequence shows how this is established.
• Released from JTAG control

Target device is released from JTAG control (free running)

IR_SHIFT("IR_JB_EXCHANGE")

Yes

DR_SHIFT16(0x0000)
No

Bit 0 of TDOword = 1 ?
Yes

DR_SHIFT16(0x0001) : Send input request to JTAG mailbox

DR_SHIFT16("Data") : Shift 16 bit word into JTAG mailbox

Write Another Flash Address?
No

Get target device in Full-Emulation-State

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


Programming Using the JTAG Interface www.ti.com

42 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

2.3.5 Erasing the Flash Memory (Using the Onboard Flash Controller)

2.3.5.1 Function Reference for 1xx, 2xx, 4xx Families
Reference function: EraseFLASH

This section describes how to erase one segment of flash memory (ERASE_SGMT), how to erase the
device main memory (ERASE_MAIN), and how to perform an erase of the complete flash memory
address range including main and info flash segments (ERASE_MASS). This method requires the user to
provide a TCLK signal at a frequency of 350 kHz ±100 kHz while the erase cycle is being executed, as is
also the case when programming the flash memory. The following tables show the segment and mass
erase flows, respectively, and the minimum number of TCLK cycles required by the flash controller to
perform each action (FCTL2 register bits 0 to 7 = 0x40).

2.3.5.1.1 Flow to Erase a Flash Memory Segment

(1) Replace with DR_SHIFT20("Address") when programming an MSP430X architecture device.
(2) Substitute 0xA540 for 2xx devices for Info-Segment A programming.

Switch CPU to stopped state (HaltCPU)

ClrTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2408) : Set RW to Write

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT16(0x0128) (1) : Point to FCTL1 Address

IR_SHIFT("IR_DATA_TO_ADDR")

DR_SHIFT16(0xA502) : Enable FLASH segment erase

SetTCLK

ClrTCLK

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT16(0x012A) (1) : Point to FCTL2 Address

IR_SHIFT("IR_DATA_TO_ADDR")

DR_SHIFT16(0xA540) : Source is MCLK, divider by 1

SetTCLK

ClrTCLK

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT16(0x012C) (1) : Point to FCTL3 Address

IR_SHIFT("IR_DATA_TO_ADDR")

DR_SHIFT16(0xA500) (2) : Clear FCTL3 Register

SetTCLK

ClrTCLK

IR_SHIFT("IR_ADDR_16BIT")

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


www.ti.com Programming Using the JTAG Interface

43SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

(3) The EraseAddr parameter is the address pointing to the flash memory segment to be erased.
(4) Correct timing required. Must meet minimum and maximum TCLK frequency requirement of

350 kHz ±100 kHz.
(5) Substitute 0xA550 for 2xx devices for Info-Segment A programming.

DR_SHIFT16("EraseAddr") (1) : Set Address for Erase (3)

IR_SHIFT("IR_DATA_TO_ADDR")

DR_SHIFT16(0x55AA)
: Write Dummy Data for Erase
Start

SetTCLK

ClrTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2409) : Set RW to Read

SetTCLK
Repeat 4819 times (4)

ClrTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2408) : Set RW to Write

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT16(0x0128) (1) : Point to FCTL1 Address

IR_SHIFT("IR_DATA_TO_ADDR")

DR_SHIFT16(0xA500) : Disable FLASH Erase

SetTCLK

ClrTCLK

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT16(0x012C) (1) : Point to FCTL3 Address

IR_SHIFT("IR_DATA_TO_ADDR")

DR_SHIFT16(0xA510) (5) : Set LOCK bit in FCTL3

SetTCLK

ReleaseCPU should now be executed, returning the CPU to normal operation.

2.3.5.1.2 Flow to Erase the Entire Flash Address Space (Mass Erase)
In addition to the TCLK signal at a frequency of 350 kHz ±100 kHz (used for the flash timing generator,
see data sheet parameter fFTG), two more data sheet parameters must be taken into account when using
the described method to perform a mass or main memory erase. The first is tCMErase (cumulative mass
erase time) and the second is tMass Erase (mass erase time). Two different specification combinations of
these parameters are currently implemented in dedicated MSP430 devices. Table 10 shows an overview
of the parameters (assuming a maximum TCLK frequency of 450 KHz).

Table 10. Flash Memory Parameters (fFTG = 450 kHz)

Implementation tCMErase tMass Erase
Mass Erase Duration Generated by the

Flash Timing Generator
1 200 ms 5300 × tFTG 11.1 ms
2 20 ms 10600 × tFTG 20 ms

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


Programming Using the JTAG Interface www.ti.com

44 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

For implementation 1, to assure the recommended 200-ms erase time to safely erase the flash memory
space, 5300 TCLK cycles are transmitted to the target MSP430 device and repeated 19 times. With
implementation 2, the following sequence needs to be performed only once.

NOTE: MSP430F2xx devices have four information memory segments of 64 bytes each. Segment
INFOA (see the MSP430F2xx Family User's Guide for more information) is a lockable flash
information segment and contains important calibration data for the MSP430F2xx clock
system (DCO) unique to the given device programmed at production test. The remaining
three information memory segments (INFOB, INFOC, and INFOD) cannot be erased by a
mass erase operation as long as INFOA is locked. INFOB, INFOC, and INFOD can be
erased segment by segment, independent of the lock setting for INFOA. Unlocking INFOA
allows performing the mass erase operation.

(1) Correct timing required. Must meet minimum and maximum TCLK frequency requirement of 350 kHz ±100 kHz.
(2) Replace with DR_SHIFT20("Address") when programming an MSP430X architecture device.

Switch CPU to stopped state (HaltCPU)

Perform once or
Repeat 19 times (1)

ClrTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2408) : set RW to write

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT16(0x0128) (2) : FCTL1 address

IR_SHIFT("IR_DATA_TO_ADDR")

DR_SHIFT16(0xA506) : Enable FLASH mass erase

SetTCLK

ClrTCLK

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT16(0x012A) (2) : FCTL2 address

IR_SHIFT("IR_DATA_TO_ADDR")

DR_SHIFT16(0xA540) : Source is MCLK and divider is 0

SetTCLK

ClrTCLK

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT16(0x012C) (2) : FCTL3 address

IR_SHIFT("IR_DATA_TO_ADDR")

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI
http://www.ti.com/lit/pdf/SLAU144


www.ti.com Programming Using the JTAG Interface

45SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

(3) Substitute 0xA540 for 2xx devices for INFO Segment A programming.
(4) The EraseAddr parameter is the address pointing to the flash memory segment to be erased. For mass erase, an even value in

the address range of the information memory should be used. For main memory erase, an even value in the address range of
the main memory should be used.

(5) Substitute 0xA550 for 2xx devices for Info-Segment A programming.

DR_SHIFT16(0xA500) (3) : Clear FCTL3 register

Perform once or
Repeat 19 times (1)

SetTCLK

ClrTCLK

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT16("EraseAddr") (2) : Set address for erase (4)

IR_SHIFT("IR_DATA_TO_ADDR")

DR_SHIFT16(0x55AA) : Write dummy data for erase start

SetTCLK

ClrTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2409) : set RW to read

SetTCLK
Perform 10600 or 5300 times (1)

ClrTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2408) : set RW to write

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT16(0x0128) (2) : FCTL1 address

IR_SHIFT("IR_DATA_TO_ADDR")

DR_SHIFT16(0xA500) : Disable FLASH erase

SetTCLK

ClrTCLK

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT16(0x012C) (2) : Point to FCTL3 Address

IR_SHIFT("IR_DATA_TO_ADDR")

DR_SHIFT16(0xA510) (5) : Set LOCK bit in FCTL3

SetTCLK

ReleaseCPU should now be executed, returning the CPU to normal operation.

2.3.5.2 Function Reference for 5xx and 6xx Families
Reference function: EraseFLASH_430Xv2 and EraseFLASH_430Xv2_wo_release

Similar to what is used for flash programming also the erase operation is handled by a executable code
loaded into RAM of the target device. The Flash-Erase-Code provided with this document takes the
following parameters.
• EraseAddr: Valid flash memory address used for the dummy write that triggers the Flash memory

operation
• EraseMode: The value to be written into FCTL1 of the flash controller module (basically to define the

erase mode by the MERAS and ERASE bits)
• FCTL3: The value to be written into FCTL3 of the flash controller module (basically to define whether

LOCKA should be set or not)

The Flash-Erase-Code can be executed either under JTAG control or in free-running mode. Similar to
what is described in Section 2.3.4.2, the JTAG mailbox system is used to retrieve the current execution
state of the Flash-Erase-Code in the target device.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


Programming Using the JTAG Interface www.ti.com

46 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

NOTE: Single stepping over a flash memory segment erase operation is not supported. Any
attempt might result in corruption of the program counter.

2.3.6 Reading From Flash Memory
Reference function: ReadMem or ReadMemQuick

The flash memory can be read using the normal memory read flow given earlier for non-flash memory
addresses. The quick access method can also be used to read flash memory.

2.3.7 Verifying the Target Memory
Reference function: VerifyMem

Verification is performed using a pseudo signature analysis (PSA) algorithm, which is built into the
MSP430 JTAG logic and executes in approximately 23 ms/4KB.
• Both MSP430 and MSP430X architecture, Reference functions: VerifyPSA, VerifyPSA_430X

ExecutePOR
PSA_CRC = StartAddr-2

Device has EnhancedVerify (see Table 14) Device does not have EnhancedVerify (see Table 14)

SetPC(StartAddr-4) SetPC(StartAddr-2)

HaltCPU SetTCLK

ClrTCLK ClrTCLK

IR_SHIFT("IR_DATA_16BIT")

DR_SHIFT16(StartAddr-2)

IR_SHIFT("IR_DATA_PSA")

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


www.ti.com Programming Using the JTAG Interface

47SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

Calculate the PSA value:

No

PSA_CRC & 0x8000 == 0x8000 PSA_CRC & 0x8000 != 0x8000
XOR PSA_CRC with 0x0805 PSA_CRC <<= 0x1

PSA_CRC <<= 0x1

PSA_CRC |= 0x0001

Actual Verify or EraseCheck?
Verify EraseCheck

XOR PSA_CRC with next word from
reference data

XOR PSA_CRC with 0xFFFF

Clock through the PSA:

SetTCLK

ClrTCK

SetTMS

SetTCK : Select DR-Scan

ClrTCK

ClrTMS

SetTCK : Capture-DR

ClrTCK

SetTCK : Shift-DR

ClrTCK

SetTMS

SetTCK : Exit-DR

ClrTCK

SetTCK

ClrTMS

ClrTCK

SetTCK

ClrTCLK

Reached end of memory area to verify?
Yes

IR_SHIFT("IR_SHIFT_OUT_PSA")

DR_SHIFT16(0x0000) : Read out the PSA value

SetTCLK

Call ReleaseCPU() here if device has Enhanced Verify feature (see Table 14)
Compare shifted out PSA value with PSA_CRC

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


Programming Using the JTAG Interface www.ti.com

48 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

• MSP430Xv2 architecture (including FRxx devices), Reference function: VerifyPSA_430Xv2

ExecutePOR
PSA_CRC = StartAddr-2

SetPC(StartAddr)

SetTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x0501)

IR_SHIFT("IR_DATA_16BIT")

DR_SHIFT16(StartAddr-2)

IR_SHIFT("IR_DATA_PSA")

Calculate the PSA value:

No

PSA_CRC & 0x8000 == 0x8000 PSA_CRC & 0x8000 != 0x8000
XOR PSA_CRC with 0x0805 PSA_CRC <<= 0x1

PSA_CRC <<= 0x1

PSA_CRC |= 0x0001

Actual Verify or EraseCheck?
Verify EraseCheck

XOR PSA_CRC with next word from
reference data

XOR PSA_CRC with 0xFFFF

Clock through the PSA:

ClrTCLK

ClrTCK

SetTMS

SetTCK : Select DR-Scan

ClrTCK

ClrTMS

SetTCK : Capture-DR

ClrTCK

SetTCK : Shift-DR

ClrTCK

SetTMS

SetTCK : Exit-DR

ClrTCK

SetTCK

ClrTMS

ClrTCK

SetTCK

SetTCLK

Reached end of memory area to verify?
Yes

IR_SHIFT("IR_SHIFT_OUT_PSA")

DR_SHIFT16(0x0000) : Read out the PSA value

Call ExecutePOR_430Xv2() here if device has Enhanced Verify feature (see Table 14)
Compare shifted out PSA value with PSA_CRC

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


www.ti.com Programming Using the JTAG Interface

49SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

2.3.8 FRAM Memory Technology
FRAM memory is a non-volatile memory that behaves like standard SRAM. FRAM can be read in a similar
fashion to SRAM and has no special requirements. Similarly, any writes to unprotected segments can be
written in the same fashion as SRAM.

An FRAM read is destructive and, therefore, always requires a write back to the same memory location
with the information read. This write back is part of the FRAM memory controller itself and requires no
user interaction. These write backs are different from the normal write access by application code or
programming tool.

2.3.8.1 Writing and Reading FRAM
Referring to the statement above, the WriteMem_430Xv2 and ReadMem_430Xv2 functions can be used
to read and write FRAM. WriteMemQuick_430Xv2 and ReadMemQuick_430Xv2 are applicable as well.

2.3.8.2 Erasing FRAM
One advantage of FRAM is that erases are not required before writing memory. If a "flash-style" erase
needs to be executed, a dummy erase can be done by using the write function to write 0xFF to all
locations in the memory.

The Replicator430FR example project offers two different reference implementations. For segment erases
in FRAM, refer to the function EraseFRAM_430Xv2. An FRAM mass erase is done using the flow
described in EraseFRAMViaBootCode_430Xv2.

2.4 JTAG Access Protection
There are various ways of protecting memory access to an MSP device.Table 11 is an overview of all
available methods and the applicable device families. All mechanisms directly related to the JTAG
interface are described in the referenced sections.

For the sake of completeness, this list also includes the lock mechanisms of the BSL interface. See the
documents listed in the Reference column for a detailed description of these features and instructions for
their use.

Table 11. Overview Of Memory Protection Mechanisms

Protection
Mode

Applicable
Devices

Permanently
Locked Description Unlocking Method Reference

JTAG fuse

Flash 1xx, 2xx,
and 4xx families

(except FRxx
and i20xx
devices)

Yes

Applying a high voltage
to the TEST pin (TDI pin
for devices without
TEST pin) blows an
actual physical polyfuse
and renders the JTAG
interface unusable

none Section 2.4.1

Combination of
JTAG "soft"-fuse
(e-fuse) and
disabling BSL

5xx, 6xx, and
FRxx families Yes

To prevent unlocking the
target memory by either
JTAG or BSL interface,
both must be disabled.

none

Section 2.4.2.1,
Section 2.4.2.2, and
MSP430™ Flash
Devices Bootloader
(BSL) User's Guide

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI
http://www.ti.com/lit/pdf/SLAU319
http://www.ti.com/lit/pdf/SLAU319
http://www.ti.com/lit/pdf/SLAU319


Programming Using the JTAG Interface www.ti.com

50 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

Table 11. Overview Of Memory Protection Mechanisms (continued)
Protection

Mode
Applicable

Devices
Permanently

Locked Description Unlocking Method Reference

JTAG lock
without
password

Flash 5xx and
6xx families No

Writing a pattern other
than 0x00000000 or
0xFFFFFFFF at the
address 0x17FC locks
the JTAG interface

Resetting the lock key in
BSL memory using the
BSL interface

Section 2.4.2.1

FR2xx and
FR4xx devices No

Writing the pattern
0x55555555 at the
address 0xFF80 locks
the JTAG interface
(solution implemented in
the REP430FR
firmware).
NOTE: For FR2xx and
FR4xx devices, it is also
possible to lock the
JTAG access by writing
a pattern other than
0x00000000 and
0xFFFFFFFF at the
address 0xFF80

1. Using the BSL to
erase the main memory
2. Using a special erase
command
(User_Code_Erase
01A1A) applied through
the JTAG mailbox. The
function to use in the
REP430FR firmware is
EraseFRAMViaBootCod
e_430Xv2().

Section 2.4.2.2

FR5xx and
FR6xx devices No Using the BSL to erase

the main memory.

JTAG lock with
password

FR5xx and
FR6xx devices No

Writing a JTAG lock
signature (0xAAAA),
password length and the
password itself to
0xFF80 and the
following memory
segment (password
might extend up to the
reset vector at 0xFFFE)
locks the JTAG interface

Using the JTAG mailbox
in combination with the
device BootCode, the
given password is
compared to the applied
password.

See the device family
user's guide for details
on how to set the
password.
Unlocking:
Section 2.4.4.1

Memory
Protection Unit
(MPU)

FRxx devices No

User can specify up to
three memory segments
with different access
rights (read, write,
execute)

Brown-Out-Reset (BOR)
will reset all MPU
settings

See the device family
user's guide for details
on how to set up the
MPU.
Unlocking:
Section 2.4.5

IP-
Encapsulation

FR5xx and
FR6xx families

(except FR57xx)
devices

No

User can specify start
and end address of one
memory segment to be
protected from any read,
write, or execute access

Performing a "total
erase" ("erase main,
information and IP-
protected area on
connect" in CCS) will
erase the entire memory
and reset IPE settings

See the device family
user's guide for details
on how to set up the IP
Encapsulation.
Unlocking:
Section 2.4.6

BSL Password
protection

All devices with
BSL No

BSL is protected by
default against reading
and writing

BSL password equals
interrupt vector table
content – can be
provided by reduced
BSL command-set in
locked mode

MSP430™ Flash
Devices Bootloader
(BSL) User's Guide

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI
http://www.ti.com/lit/pdf/SLAU319
http://www.ti.com/lit/pdf/SLAU319
http://www.ti.com/lit/pdf/SLAU319


www.ti.com Programming Using the JTAG Interface

51SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

Table 11. Overview Of Memory Protection Mechanisms (continued)
Protection

Mode
Applicable

Devices
Permanently

Locked Description Unlocking Method Reference

Disable BSL

Flash 1xx, 2xx,
and 4xx families No

BSL interface is disabled
by writing a lock
signature to a certain
address (depending on
BSL implementation)

Can be unlocked using
JTAG interface (see
device family user
guides for details)

MSP430™ Flash
Devices Bootloader
(BSL) User's Guide

Flash 5xx and
6xx families No

BSL interface is locked
by clearing certain
signatures at the end of
the BSL memory
(0x17F6 and 0x17F4)

Signatures can be
restored by erasing and
reprogramming the
Flash segment
containing it using the
JTAG interface

MSP430F5xx and
MSP430F6xx Family
User's Guide

FRxx devices No

BSL interface is locked
by writing a given BSL
lock signature at 0xFF84
and 0xFF86 in the main
memory

Access to the BSL
interface can be re-
enabled by overwriting
the lock signature using
the JTAG interface

MSP430FR58xx,
MSP430FR59xx, and
MSP430FR6xx Family
User's Guide

Memory
protection by
customer-written
startup code
(SUC)

MSP430i20xx
family

(MSP430i2040)

Depends on
SUC

implementation

User can write startup
code to set up JTAG
access protection

Depends on SUC
implementation

See theMSP430i2xx
Family User's Guide for
details

2.4.1 Burning the JTAG Fuse - Function Reference for 1xx, 2xx, 4xx Families
Two similar methods are described and implemented, depending on the target MSP430 device family.

All devices having a TEST pin use this input to apply the programming voltage, VPP. As previously
described, these devices have shared-function JTAG interface pins. The higher pin count MSP430
devices with dedicated JTAG interface pins use the TDI pin for fuse programming.

Devices with a TEST pin:

Table 12. MSP430 Device JTAG Interface (Shared Pins)

Pin Direction Use
P1.5/TMS IN Signal to control JTAG state machine
P1.4/TCK IN JTAG clock input
P1.6/TDI IN JTAG data input/TCLK input
P1.7/TDO OUT JTAG data output
TEST IN Logic high enables JTAG communication; VPP input while programming JTAG fuse

Devices without a TEST pin (dedicated JTAG pins):

Table 13. MSP430 Device Dedicated JTAG Interface

Pin Direction Use
TMS IN Signal to control JTAG state machine
TCK IN JTAG clock input
TDI IN JTAG data input/TCLK input; VPP input while programming JTAG fuse
TDO OUT/IN JTAG data output; TDI input while programming JTAG fuse

NOTE: The value of VPP required for fuse programming can be found in the corresponding target
device data sheet. For existing flash devices, the required voltage for VPP is 6.5 V ±0.5 V.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI
http://www.ti.com/lit/pdf/SLAU319
http://www.ti.com/lit/pdf/SLAU319
http://www.ti.com/lit/pdf/SLAU319
http://www.ti.com/lit/pdf/SLAU208
http://www.ti.com/lit/pdf/SLAU208
http://www.ti.com/lit/pdf/SLAU208
http://www.ti.com/lit/pdf/SLAU367
http://www.ti.com/lit/pdf/SLAU367
http://www.ti.com/lit/pdf/SLAU367
http://www.ti.com/lit/pdf/SLAU367
http://www.ti.com/lit/pdf/SLAU335
http://www.ti.com/lit/pdf/SLAU335


Programming Using the JTAG Interface www.ti.com

52 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

2.4.1.1 Standard 4-Wire JTAG
Reference function: BlowFuse

2.4.1.1.1 Fuse-Programming Voltage on TDI Pin (Dedicated JTAG Pin Devices Only)
When the fuse is being programmed, VPP is applied through the TDI input. Communication data that is
normally sent on TDI is sent through TDO during this mode. (Table 13 describes the dual functionality for
the TDI and TDO pins.) The settling time of the VPP source must be taken into account when generating
the proper timing to blow the fuse. The following flow details the fuse-programming sequence built into the
BlowFuse function.

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT_IN(0x7201) : Configure TDO as TDI

TDI signal releases to target, TDI is now provided on TDO.

IR_SHIFT("IR_PREPARE_BLOW") (through TDO pin)

MsDelay(1) : Delay for 1ms

Connect VPP to TDI pin
Wait until VPP input has settled (depends on VPP source)

IR_SHIFT("IR_EX_BLOW") : Sent to target on TDO

MsDelay(1) : Delay for 1ms

Remove VPP from TDI pin
Switch TDI pin back to TDI function and reset the JTAG state machine (ResetTAP)

2.4.1.1.2 Fuse-Programming Voltage On TEST Pin
The same method is used to program the fuse for the TEST pin MSP430 devices, with the exception that
the fuse-blow voltage, VPP, is now applied to the TEST input pin.

IR_SHIFT("IR_PREPARE_BLOW")

MsDelay(1) : Delay for 1ms

Connect VPP to TEST pin
Wait until VPP input has settled (depends on VPP source)

IR_SHIFT("IR_EX_BLOW")

MsDelay(1) : Delay for 1ms

Remove VPP from TEST pin
Reset the JTAG state machine (ResetTAP)

2.4.1.2 Fuse-Programming Voltage Using SBW
Reference function: BlowFuse_sbw

In SBW mode, the TEST/SBWTCK pin is used to apply fuse-blow voltage VPP. The required timing
sequence is shown in Figure 18. The actual fuse programming happens in the Run-Test/Idle state of the
TAP controller. After the IR_EX_BLOW instruction is shifted in through SBW, one more TMS_SLOT must
be performed. Then a stable VPP must be applied to SBWTCK. Taking SBWTDIO high as soon as VPP has
been settled blows the fuse. It is required that SBWTDIO is low on exit of the IR_EX_BLOW instruction
shift.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


SBWTCK

TCK

TAP State Run-Test/Idle

SBWTDIO

Enable Blow

Execute Blow

Signal to fuse blow
transistor delayed until
SBWTDIO goes high.

Apply fuse blow voltage

before taking SBWTDIO high .

TDI Slot TDO Slot TMS Slot TDI SlotTDI Slot

Update-IR

TMS SlotTDO Slot

“Original” fuse blow signal
goes high with entering
the Run-Test/Idle state.

www.ti.com Programming Using the JTAG Interface

53SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

Figure 18. Fuse Blow Timing

2.4.2 Programming the JTAG Lock Key - Function Reference for 5xx, 6xx, and FRxx Families

2.4.2.1 Flash Memory Devices
Reference function: ProgramLockKey

NOTE: For the MSP430F5xx and MSP430F6xx families, it is NOT required to apply a special high
voltage to the device's TEST pin.

In contrast to the 1xx, 2xx, 4xx families, which require special handling to burn the JTAG security fuse, the
5xx and 6xx families' JTAG is locked by programming a certain signature into the devices' flash memory at
dedicated addresses. The JTAG security lock key resides at the end of the bootloader (BSL) memory at
addresses 0x17FC to 0x17FF. Any value other than 0 or 0xFFFFFFFF programmed to these addresses
irreversibly locks the JTAG interface. All of the 5xx and 6xx MSP430 devices come with a preprogrammed
BSL (TI-BSL) code that, by default, protects itself from unintended erase and write access. This is done by
setting the SYSBSLPE bit in the SYSBSLC register of the SYS module (see the MSP430F5xx and
MSP430F6xx Family User's Guide SYS Module chapter for details). Because the JTAG security lock key
resides in the BSL memory address range, appropriate action must be taken to unprotect the memory
area before programming the protection key. This can be done by a regular memory write access as
described in Section 2.3.3.2 by writing directly to the SYSBSLC register address and setting the
SYSBSLPE to 0. Afterward, the BSL memory behaves like regular flash memory and a JTAG lock key can
be programmed at addresses 0x17FC to 0x17FF as described in Section 2.3.4.2. A brownout reset (BOR)

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI
http://www.ti.com/lit/pdf/SLAU208
http://www.ti.com/lit/pdf/SLAU208


Programming Using the JTAG Interface www.ti.com

54 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

is required to activate the JTAG security protection during boot. The BOR can be issued as described in
Section 2.3.2.2.4. If the hardware setup does not allow performing a power cycle (for example, the battery
is already soldered to the PCB) a BOR can also be generated by JTAG by writing into a dedicated JTAG
test data register. A BOR also resets the JTAG interface, which causes the device to be released from
JTAG control.

2.4.2.2 FRAM Memory Devices
Reference function: ProgramLockKey

NOTE: For the MSP430FR5xx family, it is NOT required to apply a special high voltage to the
device's TEST pin.

FRAM-based devices use a LockKey that is written into a special location to secure the device. The
devices support two different levels of protection: "protected mode" for FR5xx and FR6xx devices only and
"secured mode" for all FRAM devices.

In the protected mode, the application can define a password and protect the device with this password.
The UnlockDevice function could be used to connect to the device by applying the correct password (see
Section 2.4.4 for detailed information). For general information about the password, see the
MSP430FR57xx Family User's Guide.

In the secured mode, the device cannot be accessed through JTAG. To enable the secured mode, write
0x55555555 to the memory location 0xFF80. After writing the password, a BOR is required to enable the
security fuse.

2.4.3 Testing for a Successfully Protected Device
Reference function: IsFuseBlown, IsLockKeyProgrammed

After the JTAG Fuse is burned (for 1xx, 2xx, or 4xx devices) or the JTAG Lock Key is programmed (for
5xx or 6xx devices) and a RESET (by the JTAG ExecutePOR command or theRST/NMI pin in hardware)
has been issued, the only JTAG function that is available on the target MSP430 is BYPASS. When the
target is in BYPASS, data sent from host to target is delayed by one TCK pulse and then output on TDO,
where it can be received by other devices downstream of the target MSP430.

To test a device for being protected, access to any JTAG data register can be attempted. In the following
communication sequence, the JTAG CNTRL_SIG register is accessed.

Initialize JTAG access (ResetTAP)

IR_SHIFT("IR_CNTRL_SIG_CAPTURE")

DR_SHIFT16(0xAAAA)

Is TDO output value = 0x5555?
Yes:

Device IS protected
No:

Device NOT protected

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI
http://www.ti.com/lit/pdf/SLAU272


www.ti.com Programming Using the JTAG Interface

55SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

2.4.4 Unlocking an FRAM Device in Protected and Secured Modes

2.4.4.1 FR5xx and FR6xx Devices
Devices that support protection by user password can be unlocked by providing the correct password. To
unlock the device, the JTAG mailbox is used in combination with the device BootCode.

To activate the password unlock mechanism, the password exchange request (0x1E1E) must be applied
to the device (see the detailed sequence diagram below).

NOTE: After executing the password exchange request, there is a timeslot of only 1.2 s to apply the
correct password. If the password is not applied during this time frame or if the password is
wrong, a BOR event is executed by the device.

Initialize JTAG access (ResetTAP) and hold device in RESET
IR_Shift(IR_JMB_EXCHANGE) :do JTAG mailbox exchange request
DR_Shift16(0x0011) :configure JTAG mailbox to 32-bit mode
DR_Shift16(0xA55A) :send device after BootCode execution into LPM4
DR_Shift16(0x1E1E) :perform password exchange request

Stop JTAG (release and run device)
Wait until BootCode is executed and device is in LPM4

Initialize JTAG access (ResetTAP)
IR_Shift(IR_JMB_EXCHANGE) :do JTAG mailbox exchange request
DR_Shift16(0x0001) :configure JTAG mailbox to 16-bit mode
DR_Shift16(password[i]) :configure JTAG mailbox to 16-bit mode Repeat for password length

2.4.4.2 FR4xx and FR2xx Devices
The FR4xx and FR2xx device families do not support JTAG protection by a user-defined password. These
device families have only a simple JTAG lock mechanism. If a JTAG lock signature is written to memory
address 0xFF80, JTAG access is locked. To unlock these device families, a special erase command
(User_Code_Erase 0x1A1A) must be applied through the JTAG mailbox (see the following detailed
sequence diagram).

Restart device, initialize JTAG and feed in Erase command while device is in reset
ClrTST() Restart device
ClrRST() Restart device
StartJtag(RSTLOW) Restart JTAG – Keep RST low device do not start
ResetTAP() Reset JTAG TAP state machine
IR_Shift(IR_JMB_EXCHANGE) Do JTAG mailbox exchange request
DR_Shift(0xA55A) Send device after BootCode execution into LPM4
DR_Shift(0x1A1A) Send device UserCode erase command

Stop JTAG (release device to run)
Wait until BootCode is executed and device is in LPM4

Initialize JTAG access (Rest Tap)
Get back JTAG control calling SyncJtag_AssertPor() function

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


Programming Using the JTAG Interface www.ti.com

56 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

2.4.5 Memory Protection Unit Handling
If a device has a Memory Protection Unit (MPU), it must be disabled before erasing or writing memory.
The MPU can separate the memory into different parts. Each part can have different access rights such as
READ, WRITE, and EXECUTE. A nondisabled MPU could cause a write or erase to be incomplete.
Furthermore, the MPU settings, which are stored in a register, could be locked. To disable this register
lock, a BOR must be performed. The sequence diagram below shows how to disable the MPU. The
example code can be found in the associated zip file in the function DisableMpu430Xv2().

Is MPU enabled (read register at 0x05A0)?
YES NO

Are MPU settings locked? Return
YES NO

IR_Shift(IR_JMB_EXCHANGE) :do JTAG mailbox
exchange request

Write 0xA500 at address 0x05A0 :disable MPU

DR_Shift16(0x0001) :configure mailbox
to 16-bit mode

Return :MPU is disabled

DR_Shift16(0xA55A) :send device after
BootCode execution
into LPM4

Execute BOR
Initialize JTAG access (ResetTAP)
Synchronize JTAG and assert POR

Write 0xA500 at address 0x05A0 :disable MPU
Return :MPU is disabled

2.4.6 Intellectual Property Encapsulation (IPE)
In addition to the Memory Protection Unit (MPU), FR59xx, FR58xx, FR69xx, and FR68xx devices feature
the IP Encapsulation (IPE) module. The IPE module allows the user to specify a single memory segment
to be protected against external access. See the MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx
Family User's Guide for information on how to invoke the IP Encapsulation feature.

To remove IPE settings, the target memory must be completely erased. Because a regular mass erase
does not affect the IPE protected area, a special erase sequence, which is detailed in the following
diagram below, must be performed to reset the IPE settings.

Restart device, initialize JTAG and feed in Erase command while device is in reset
ClrTST() Restart device
ClrRST() Restart device
StartJtag(RSTLOW) Restart JTAG – Keep RST low device does not start
ResetTAP() Reset JTAG TAP state machine
IR_Shift(IR_JMB_EXCHANGE) Do JTAG mailbox exchange request
DR_Shift(0xA55A) Send device into LPM4 after BootCode execution
DR_Shift(0x1B1B) Send Total Erase command

Stop JTAG (release device to run)
Wait until BootCode is executed and device is in LPM4

Initialize JTAG access (Rest Tap)
Get back JTAG control calling SyncJtag_AssertPor() function

2.4.7 FRAM Write Protection
On MSP430FR2xx and MSP430FR4xx devices, the FRAM is protected against unwanted access. To
enable FRAM access, clear bits DFWP and PFWP in the SYSCFG0 register. On some devices from these
families, the SYSCFG0 register is password protected. See the device family user’s guide for more
details. Reference function: DisableMPU_430Xv2.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI
http://www.ti.com/lit/zip/slau320
http://www.ti.com/lit/pdf/SLAU367
http://www.ti.com/lit/pdf/SLAU367


www.ti.com Programming Using the JTAG Interface

57SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

2.5 JTAG Function Prototypes

2.5.1 Low-Level JTAG Functions

static word IR_Shift (byte Instruction)
Shifts a new instruction into the JTAG instruction register through TDI. (The instruction is shifted in
MSB first; the MSB is interpreted by the JTAG instruction register as the LSB.)

Arguments: byte Instruction (8-bit JTAG instruction)
Result: word TDOword (value shifted out on TDO = JTAG_ID)

static word DR_Shift16 (word Data)
Shifts a given 16-bit word into the JTAG data register through TDI (data shift MSB first)

Arguments: word data (16-bit data value)
Result: word (value shifted out simultaneously on TDO)

static void ResetTAP (void)
Performs fuse-blow check, resets the JTAG interface, and sends the JTAG state machine (TAP
controller) to the Run-Test/Idle state

Arguments: None
Result: None

static word ExecutePOR (void)
Executes a power-up clear command through the JTAG control signal register. This function also
disables the target device's watchdog timer to avoid an automatic reset condition.

Arguments: None

Result: word (STATUS_OK if the queried JTAG ID is valid, STATUS_ERROR
otherwise)

static word SetInstrFetch (void)
Sends the target device's CPU into the instruction fetch state

Arguments: None

Result: word (STATUS_OK if instruction-fetch state is set, STATUS_ERROR
otherwise)

static void SetPC (word Addr)
Loads the target device CPU's program counter (PC) with the desired 16-bit address

Arguments: word Addr (desired 16-bit PC value)
Result: None

static void HaltCPU (void)
Sends the target CPU into a controlled, stopped state

Arguments: None
Result: None

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


Programming Using the JTAG Interface www.ti.com

58 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

static void ReleaseCPU (void)
Releases the target device's CPU from the controlled, stopped state. (Does not release the target
device from JTAG control. See ReleaseDevice.)

Arguments: None
Result: None

word VerifyPSA (word StartAddr, word Length, word *DataArray)
Compares the computed pseudo signature analysis (PSA) value to the PSA value shifted out from
the target device. It can be used for very fast data block or erasure verification (called by the
EraseCheck and VerifyMem prototypes discussed previously).

Arguments: word StartAddr (start address of the memory data block to be checked)
word Length (number of words within the data block)
word *DataArray (pointer to an array containing the data, 0 for erase check)

Result: word (STATUS_OK if comparison was successful, STATUS_ERROR
otherwise)

For MSP430X and MSP430Xv2 architecture devices, the following function is defined:

static unsigned long DR_Shift20(unsigned long address)
Shifts a given 20-bit address word into the JTAG data register through TDI (data shift MSB first)

Arguments: long address (20-bit address word)
Result: long TDO value

For MSP430Xv2 architecture devices, the following functions are defined:

word GetCoreipIdXv2()
Determines and compares core identification info (Xv2)

Arguments: None

Result: word (STATUS_OK if correct JTAG ID was returned, STATUS_ERROR
otherwise)

void jResetJtagTap(void)
Resets target JTAG interface and perform fuse-HW check

Arguments: None
Result: None

void StartJtagJSbw(byte states)
Starts JTAG communication in JSBW mode

Arguments: byte states (reset state)
Result: None

void jRelease(void)
Releases the JSBW logic

Arguments: None
Result: None

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


www.ti.com Programming Using the JTAG Interface

59SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

long jsbw_Shift(word Format, long Data)
Shifts a value into TDI (MSB first) and simultaneously shift out a value from TDO (MSB first)

Arguments: word Format (number of bits shifted, 8 (F_BYTE), 16 (F_WORD), 20
(F_ADDR) or 32 (F_LONG))
long Data (data to be shifted into TDI)

Result: unsigned long (scanned TDO value)

long jsbw_IR_Shift(byte instruction)
Shifts a new instruction into the JTAG instruction register through JSBW (MSB first, but with
interchanged MSB - LSB, to simply use the same shifting function Shift()).

Arguments: instruction (8 bit JTAG instruction)
Result: word (TDOword - value shifted out from TDO: JTAG identification)

long jsbw_DR_Shift(long data)
Shifts data into the JTAG data register through JSBW (MSB first, but with interchanged MSB -
LSB, to simply use the same shifting function Shift()).

Arguments: long data
Result: word (TDOword - value shifted out from TDO: JTAG identification)

void JsbwMagicPattern(void)
Applies the magic pattern through JSBW

Arguments: None
Result: None

void jsbwJtagUnlock(void)
Resets the JTAG lock through JSBW

Arguments: None
Result: None

2.5.2 High-Level JTAG Routines

word GetDevice (void)
Takes the target MSP430 device under JTAG control. Sets the target device's CPU watchdog to a
hold state; sets the global DEVICE variable.

Arguments: None
Result: word (STATUS_ERROR if fuse is blown, JTAG_ID is incorrect (not = 0x89) or

synchronizing time-out occurs; STATUS_OK otherwise)

void ReleaseDevice (word Addr)
Releases the target device from JTAG control; CPU starts execution at the specified PC address

Arguments: word Addr (0xFFFE: perform reset; address at reset vector loaded into PC;
otherwise address specified by Addr loaded into PC)

Result: None

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


Programming Using the JTAG Interface www.ti.com

60 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

void WriteMem (word Format, word Addr, word Data)
Writes a single byte or word to a given address (RAM/peripheral only)

Arguments: word Format (F_BYTE or F_WORD)
word Addr (destination address for data to be written)
word Data (data value to be written)

Result: None

void WriteMemQuick (word StartAddr, word Length, word *DataArray)
Writes an array of words into the target device memory (RAM/peripheral only)

Arguments: word StartAddr (start address of destination memory)
word Length (number of words to be programmed)
word *DataArray (pointer to array containing the data)

Result: None

void WriteFLASH (word StartAddr, word Length, word *DataArray)
Programs/verifies an array of words into flash memory using the flash controller of the target
device

Arguments: word StartAddr (start address of destination flash memory)
word Length (number of words to be programmed)
word *DataArray (pointer to array containing the data)

Result: None

word WriteFLASHallSections(const unsigned int *data, const unsigned long *address, const
unsigned long *length_of_sections, const unsigned long sections)

Programs and verifies a set of data arrays of words into a flash memory by using the
WriteFLASH() function. It conforms with the CodeArray structure convention of file
Target_Code_(IDE).s43 or Target_Code.h.

Arguments: const unsigned int *DataArray (pointer to array with the data)
const unsigned long *address (pointer to array with the startaddresses)
const unsigned long *length_of_sections (pointer to array with the number of
words counting from startaddress)
const unsigned long sections (number of sections in code file)

Result: word (STATUS_OK if verification was successful, STATUS_ERROR
otherwise)

word ReadMem (word Format, word Addr)
Reads one byte or word from a specified target memory address

Arguments: word Format (F_BYTE or F_WORD)
word Addr (target address for data to be read)

Result: word (data value stored in the target address memory location)

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


www.ti.com Programming Using the JTAG Interface

61SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

void ReadMemQuick (word StartAddr, word Length, word *DataArray)
Reads an array of words from target memory

Arguments: word StartAddr (start address of target memory to be read)
word Length (number of words to be read)
word *DataArray (pointer to array for data storage)

Result: None

void EraseFLASH (word EraseMode, word EraseAddr)
Performs a mass erase (with or without information memory) or a segment erase of a flash module
specified by the given mode and address

Arguments: word EraseMode (ERASE_MASS, ERASE_MAIN or ERASE_SGMT)
word EraseAddr (any address within the selected segment to be erased)

Result: None

word EraseCheck (word StartAddr, word Length)
Uses the VerifyPSA function to perform an erase check over the given memory range

Arguments: word StartAddr (start address of memory to be checked)
word Length (number of words to be checked)

Result: word (STATUS_OK if erase check was successful, STATUS_ERROR
otherwise)

word VerifyMem (word StartAddr, word Length, word *DataArray)
Performs a program verification over the given memory range

Arguments: word StartAddr (start address of memory to be verified)
word Length (number of words to be verified)
word *DataArray (pointer to array containing the data)

Result: word (STATUS_OK if verification was successful, STATUS_ERROR
otherwise)

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


Programming Using the JTAG Interface www.ti.com

62 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

For MSP430 and MSP430X architecture devices, the following functions are defined:

word BlowFuse (void)
Programs (or blows) the JTAG interface access security fuse. This function also checks for a
successfully programmed fuse using the IsFuseBlown() prototype.

Arguments: None
Result: word (STATUS_OK if fuse blow was successful, STATUS_ERROR otherwise)

word IsFuseBlown (void)
Determines if the security fuse has been programmed on the target device

Arguments: None
Result: word (STATUS_OK if fuse is blown, STATUS_ERROR otherwise)

void UnlockInfoA(void)
Unlocks segment A of the InfoMemory (Flash)

Arguments: None
Result: None

For MSP430Xv2 architecture (flash and FRAM devices), the following functions are defined:

word ProgramLockKey(void)
Disables JTAG access to the target device.

Arguments: None
Result: word (TRUE if fuse blow was successful, FALSE otherwise)

word IsLockKeyProgrammed(void)
Checks if the JTAG lock key is programmed.

Arguments: None
Result: word (STATUS_OK if fuse is blown, STATUS_ERROR otherwise)

For MSP430Xv2 architecture (only flash devices), the following functions are defined:

void UnlockInfoA_430Xv2(void)
Unlocks segment A of the InfoMemory (flash).

Arguments: None
Result: None

void UnlockBsl_430Xv2Flash(void)
Unlocks the BSL memory protection.

Arguments: None
Result: None

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


www.ti.com Programming Using the JTAG Interface

63SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

For MSP430Xv2 architecture (only FRAM devices), the following functions are defined:

word UnlockDevice_430Xv2(unsigned short* password, unsigned long passwordLength)
Unlocks the FRAM memory when a JTAG password is set

Arguments: unsigned short* password (Pointer to array containing the JTAG Password)
unsigned long passwordLength (length of the password in words)

Result: word (STATUS_OK if memory unlock was successful, STATUS_ERROR
otherwise)

void EraseFRAM_430Xv2(unsigned long StartAddr, unsigned long Length)
Performs an erase of a user defined FRAM memory section. For FRAM devices the erase equals
a write operation of 0xFFFF to the respective memory section. (Could be extended with erase
check via PSA) This function should be used for "segment erases" only. For a "mass erase",
consider using EraseFRAMViaBootCode_430Xv2 instead.

Arguments: word StartAddr (start address for the erase)
word Length (length of the memory section in WORDS)

Result: None

word DisableMpu_430Xv2(void)
Disables the Memory Protection Unit (FRAM devices only)

Arguments: None
Result: word (STATUS_OK if MPU was disabled successfully, STATUS_ERROR

otherwise)

word DisableFramWprod_430Xv2(void)
Disables the Memory Write Protection (FRAM devices only FR6047, FR5994)

Arguments: None
Result: word (STATUS_OK if Memory Write Protection was disabled successfully,

STATUS_ERROR otherwise)

void UnlockBsl_430Xv2FRAM(void)
Unlocks the BSL memory protection.

Arguments: None
Result: None

word EraseFRAMViaBootCode_430Xv2(word mailBoxMode, word data1, word data2)
Performs a Erase of FRxx devices using the JTAG mailbox.

Arguments: word mailBoxMode 32Bit 16Bit mode
word data1 mailbox data - first 16BIT
word data2 mailbox data - second 16BIT

Result: word (STATUS_OK if erase was successful, STATUS_ERROR otherwise)

short DownloadProgram(struct_Program* program)
This function downloads a converted MSP430.txt file

Arguments: struct_Program* program Structure containing executable code and memory
data

Result: word STATUS_OK if verification was successful, STATUS_ERROR otherwise

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


Programming Using the JTAG Interface www.ti.com

64 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

short DownloadMsp430Code()
This function configures all needed information to download a program into target memory. After
configuration is done it calls the DownloadProgram() function.

Arguments: None
Result: None

2.6 JTAG Features Across Device Families

(1) All devices listed in this table have JTAG ID 0x89.
(2) DataQuick Access to SRAM: If READ/WRITE, the device supports read and write of SRAM in quick mode using the IR_DATA_QUICK

instruction (see Section 2.3.3.3). Certain devices might support this instruction for either READ or WRITE operations only.
(3) DataQuick Access to Flash: If READ/WRITE, the device supports read and write of Flash memory in quick mode using the

IR_DATA_QUICK instruction (see Section 2.3.3.3). Certain devices might support this instruction for either READ or WRITE operations
only.

(4) FastFlash: If TRUE, device has a cumulative erase time (tCMErase) of 20 ms; if FALSE, tCMErase is 200 ms (see Section 2.3.5.1.2).
(5) EnhVerify: If TRUE, the device supports a more advanced memory content verification mechanism (PSA checksum calculation). If

FALSE, the CPU of the device works in the background while the PSA checksum algorithm is executed. Therefore, a POR must be
performed after checksum calculation. With the enhanced PSA hardware implementation, the CPU is completely halted during checksum
calculation, and a POR is not required after calculation.

Table 14. MSP430F1xx, MSP430F2xx, MSP430F4xx, MSP430Gxx JTAG Features (1)

Device Device ID
at 0x0FF0

Device ID
at 0x0FF1

Device ID
at 0x0FFD TEST Pin CPUX

Data
Quick

Access to
SRAM (2)

Data Quick
Access to

Flash (3)

Fast
Flash (4)

Enh
Verify (5)

Spy-Bi-
Wire

AFE2xx 0x02 0x53 - TRUE FALSE READ/
WRITE READ TRUE FALSE TRUE

F11x1(A) 0xF1 0x12 - TRUE FALSE READ/
WRITE READ FALSE FALSE FALSE

F11x2 0x11 0x32 - TRUE FALSE READ/
WRITE READ FALSE FALSE FALSE

F12x 0xF1 0x23 - TRUE FALSE FALSE READ FALSE FALSE FALSE

F12x2 0x12 0x32 - TRUE FALSE READ/
WRITE READ FALSE FALSE FALSE

F13x, F14x,
F14x1 0xF1 0x49 - FALSE FALSE READ/

WRITE READ FALSE FALSE FALSE

F15x, F16x 0xF1 0x69 - FALSE FALSE READ/
WRITE READ FALSE FALSE FALSE

F161x 0xF1 0x6C - FALSE FALSE READ/
WRITE READ FALSE FALSE FALSE

F20x1 0xF2 0x01 0x01 TRUE FALSE READ/
WRITE READ TRUE FALSE TRUE

F20x2 0xF2 0x01 0x02 TRUE FALSE READ/
WRITE READ TRUE FALSE TRUE

F20x3 0xF2 0x01 0x03 TRUE FALSE READ/
WRITE READ TRUE FALSE TRUE

F21x1 0xF2 0x13 0x01 TRUE FALSE READ/
WRITE READ FALSE TRUE FALSE

F21x2 0xF2 0x13 0x02 TRUE FALSE READ/
WRITE READ TRUE TRUE TRUE

F22x2,
F22x4,
G2x44

0xF2 0x27 - TRUE FALSE READ/
WRITE READ TRUE TRUE TRUE

F23x, F24x,
F24x1,
F2410

0xF2 0x49 - FALSE FALSE READ/
WRITE READ TRUE TRUE FALSE

F23x0 0xF2 0x37 - TRUE FALSE READ/
WRITE READ TRUE TRUE FALSE

F241x,
F261x 0xF2 0x6F - FALSE TRUE READ/

WRITE READ TRUE TRUE FALSE

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


www.ti.com Programming Using the JTAG Interface

65SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

Table 14. MSP430F1xx, MSP430F2xx, MSP430F4xx, MSP430Gxx JTAG Features (1) (continued)

Device Device ID
at 0x0FF0

Device ID
at 0x0FF1

Device ID
at 0x0FFD TEST Pin CPUX

Data
Quick

Access to
SRAM (2)

Data Quick
Access to

Flash (3)

Fast
Flash (4)

Enh
Verify (5)

Spy-Bi-
Wire

F412, F413 0xF4 0x13 - FALSE FALSE FALSE READ FALSE FALSE FALSE

F415, F417 0xF4 0x27 'W' FALSE FALSE READ/
WRITE READ FALSE FALSE FALSE

F41x2 0x41 0x52 - TRUE FALSE READ/
WRITE READ TRUE TRUE TRUE

F(E)42x 0xF4 0x27 'E' FALSE FALSE READ/
WRITE READ FALSE FALSE FALSE

F(E)42xA 0x42 0x7A 'E' FALSE FALSE READ/
WRITE READ TRUE FALSE FALSE

F(G)42x0 0xF4 0x27 'G' FALSE FALSE READ/
WRITE READ FALSE FALSE FALSE

F43x (80 pin) 0xF4 0x37 - FALSE FALSE READ/
WRITE READ FALSE FALSE FALSE

F43x, F44x
(100 pin) 0xF4 0x49 - FALSE FALSE READ/

WRITE READ FALSE FALSE FALSE

F471xx 0xF4 0x7F - FALSE TRUE READ/
WRITE READ TRUE TRUE FALSE

F47xx 0xF4 0x49 0x02 FALSE FALSE READ/
WRITE READ TRUE TRUE FALSE

FE42x2 0x42 0x52 'E' FALSE FALSE READ/
WRITE READ FALSE FALSE FALSE

FG43x 0xF4 0x39 'G' FALSE FALSE READ/
WRITE READ FALSE FALSE FALSE

F(G)461x,
F461x1 0xF4 0x6F 'G' FALSE TRUE READ/

WRITE READ TRUE TRUE FALSE

F(G)47x 0xF4 0x79 'G' FALSE FALSE READ/
WRITE READ TRUE TRUE FALSE

FW428 0xF4 0x29 'W' FALSE FALSE READ/
WRITE READ FALSE FALSE FALSE

FW429 0xF4 0x29 'W' FALSE FALSE READ/
WRITE READ FALSE FALSE FALSE

FW42x 0xF4 0x27 'W' FALSE FALSE READ/
WRITE READ FALSE FALSE FALSE

G2x01,
G2x11 0xF2 0x01 0x01 TRUE FALSE READ/

WRITE READ TRUE FALSE TRUE

G2x21,
G2x31 0xF2 0x01 0x02 TRUE FALSE READ/

WRITE READ TRUE FALSE TRUE

G2xx2 0x24 0x52 - TRUE FALSE READ/
WRITE READ TRUE FALSE TRUE

G2xx3 0x25 0x53 - TRUE FALSE READ/
WRITE READ TRUE FALSE TRUE

G2xx5 0x29 0x55 - TRUE FALSE READ/
WRITE READ TRUE FALSE TRUE

TCH5E 0x25 0x5C - TRUE FALSE READ/
WRITE READ TRUE FALSE TRUE

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


Programming Using the JTAG Interface www.ti.com

66 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

(1) All devices listed in this table have JTAG ID 0x91.
(2) See the section Device Descriptor Table in the MSP430F5xx and MSP430F6xx Family User's Guide for more details on identification

information.
(3) DataQuick Access to SRAM: If READ/WRITE, the device supports read and write of SRAM in quick mode using the IR_DATA_QUICK

instruction (see Section 2.3.3.3). Certain devices might support this instruction for either READ or WRITE operations only.
(4) DataQuick Access to Flash: If READ/WRITE, the device supports read and write of Flash memory in quick mode using the

IR_DATA_QUICK instruction (see Section 2.3.3.3). Certain devices might support this instruction for either READ or WRITE operations
only.

Table 15. MSP430F5xx, MSP430F6xx, CC430 JTAG Features (1) (2)

Device Device ID at 0x1A04 Device ID at 0x1A05 Data Quick Access to
SRAM (3)

Data Quick Access to
Flash (4)

CC430F5123 0x3C 0x81 READ/WRITE READ
CC430F5125 0x3B 0x81 READ/WRITE READ
CC430F5133 0x51 0x33 READ/WRITE READ
CC430F5135 0x51 0x35 READ/WRITE READ
CC430F5137 0x51 0x37 READ/WRITE READ
CC430F5143 0x3A 0x81 READ/WRITE READ
CC430F5145 0x39 0x81 READ/WRITE READ
CC430F5147 0x38 0x81 READ/WRITE READ
CC430F6125 0x61 0x25 READ/WRITE READ
CC430F6126 0x61 0x26 READ/WRITE READ
CC430F6127 0x61 0x27 READ/WRITE READ
CC430F6135 0x61 0x35 READ/WRITE READ
CC430F6137 0x61 0x37 READ/WRITE READ
CC430F6143 0x37 0x81 READ/WRITE READ
CC430F6145 0x36 0x81 READ/WRITE READ
CC430F6147 0x35 0x81 READ/WRITE READ

MSP430F5131 0x26 0x80 READ/WRITE READ
MSP430F5132 0x28 0x80 READ/WRITE READ
MSP430F5151 0x2A 0x80 READ/WRITE READ
MSP430F5152 0x2C 0x80 READ/WRITE READ
MSP430F5171 0x2E 0x80 READ/WRITE READ
MSP430F5172 0x30 0x80 READ/WRITE READ
MSP430F5212 0x40 0x81 READ/WRITE READ
MSP430F5213 0x41 0x81 READ/WRITE READ
MSP430F5214 0x42 0x81 READ/WRITE READ
MSP430F5217 0x45 0x81 READ/WRITE READ
MSP430F5218 0x46 0x81 READ/WRITE READ
MSP430F5219 0x47 0x81 READ/WRITE READ
MSP430F5222 0x4A 0x81 READ/WRITE READ
MSP430F5223 0x4B 0x81 READ/WRITE READ
MSP430F5224 0x4C 0x81 READ/WRITE READ
MSP430F5227 0x4F 0x81 READ/WRITE READ
MSP430F5228 0x50 0x81 READ/WRITE READ
MSP430F5229 0x51 0x81 READ/WRITE READ
MSP430F5232 0xFA 0x81 READ/WRITE READ
MSP430F5234 0xF9 0x81 READ/WRITE READ
MSP430F5237 0xF8 0x81 READ/WRITE READ
MSP430F5239 0xF7 0x81 READ/WRITE READ
MSP430F5242 0xF6 0x81 READ/WRITE READ
MSP430F5244 0xF5 0x81 READ/WRITE READ
MSP430F5247 0xF4 0x81 READ/WRITE READ

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI
http://www.ti.com/lit/pdf/SLAU208


www.ti.com Programming Using the JTAG Interface

67SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

Table 15. MSP430F5xx, MSP430F6xx, CC430 JTAG Features (1) (2) (continued)

Device Device ID at 0x1A04 Device ID at 0x1A05 Data Quick Access to
SRAM (3)

Data Quick Access to
Flash (4)

MSP430F5249 0xF3 0x81 READ/WRITE READ
MSP430F5252 0x06 0x82 READ/WRITE READ
MSP430F5253 0x05 0x82 READ/WRITE READ
MSP430F5254 0x04 0x82 READ/WRITE READ
MSP430F5255 0x03 0x82 READ/WRITE READ
MSP430F5256 0x02 0x82 READ/WRITE READ
MSP430F5257 0x01 0x82 READ/WRITE READ
MSP430F5258 0x00 0x82 READ/WRITE READ
MSP430F5259 0xFF 0x81 READ/WRITE READ
MSP430F5304 0x12 0x81 READ/WRITE READ
MSP430F5308 0x13 0x81 READ/WRITE READ
MSP430F5309 0x14 0x81 READ/WRITE READ
MSP430F5310 0x15 0x81 READ/WRITE READ
MSP430F5324 0x16 0x81 READ/WRITE READ
MSP430F5325 0x17 0x81 READ/WRITE READ
MSP430F5326 0x18 0x81 READ/WRITE READ
MSP430F5327 0x19 0x81 READ/WRITE READ
MSP430F5328 0x1A 0x81 READ/WRITE READ
MSP430F5329 0x1B 0x81 READ/WRITE READ
MSP430F5333 0x25 0x81 READ/WRITE READ
MSP430F5335 0x27 0x81 READ/WRITE READ
MSP430F5336 0x28 0x81 READ/WRITE READ
MSP430F5338 0x2A 0x81 READ/WRITE READ
MSP430F5340 0x1C 0x81 READ/WRITE READ
MSP430F5341 0x1D 0x81 READ/WRITE READ
MSP430F5342 0x1E 0x81 READ/WRITE READ
MSP430F5357 0x34 0x81 READ/WRITE READ
MSP430F5358 0x33 0x81 READ/WRITE READ
MSP430F5359 0x32 0x81 READ/WRITE READ
MSP430F5418 0x54 0x18 READ/WRITE READ

MSP430F5418A 0x00 0x80 READ/WRITE READ
MSP430F5419 0x54 0x19 READ/WRITE READ

MSP430F5419A 0x01 0x80 READ/WRITE READ
MSP430F5435 0x54 0x35 READ/WRITE READ

MSP430F5435A 0x02 0x80 READ/WRITE READ
MSP430F5436 0x54 0x36 READ/WRITE READ

MSP430F5436A 0x03 0x80 READ/WRITE READ
MSP430F5437 0x54 0x37 READ/WRITE READ

MSP430F5437A 0x04 0x80 READ/WRITE READ
MSP430F5438 0x54 0x38 READ/WRITE READ

MSP430F5438A 0x05 0x80 READ/WRITE READ
MSP430F5500 0x3B 0x80 READ/WRITE READ
MSP430F5501 0x32 0x80 READ/WRITE READ
MSP430F5502 0x33 0x80 READ/WRITE READ
MSP430F5503 0x34 0x80 READ/WRITE READ
MSP430F5504 0x35 0x80 READ/WRITE READ
MSP430F5505 0x36 0x80 READ/WRITE READ

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


Programming Using the JTAG Interface www.ti.com

68 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

Table 15. MSP430F5xx, MSP430F6xx, CC430 JTAG Features (1) (2) (continued)

Device Device ID at 0x1A04 Device ID at 0x1A05 Data Quick Access to
SRAM (3)

Data Quick Access to
Flash (4)

MSP430F5506 0x37 0x80 READ/WRITE READ
MSP430F5507 0x38 0x80 READ/WRITE READ
MSP430F5508 0x39 0x80 READ/WRITE READ
MSP430F5509 0x3A 0x80 READ/WRITE READ
MSP430F5510 0x31 0x80 READ/WRITE READ
MSP430F5513 0x55 0x13 READ/WRITE READ
MSP430F5514 0x55 0x14 READ/WRITE READ
MSP430F5515 0x55 0x15 READ/WRITE READ
MSP430F5517 0x55 0x17 READ/WRITE READ
MSP430F5519 0x55 0x19 READ/WRITE READ
MSP430F5521 0x55 0x21 READ/WRITE READ
MSP430F5522 0x55 0x22 READ/WRITE READ
MSP430F5524 0x55 0x24 READ/WRITE READ
MSP430F5525 0x55 0x25 READ/WRITE READ
MSP430F5526 0x55 0x26 READ/WRITE READ
MSP430F5527 0x55 0x27 READ/WRITE READ
MSP430F5528 0x55 0x28 READ/WRITE READ
MSP430F5529 0x55 0x29 READ/WRITE READ
MSP430F5630 0x3C 0x80 READ/WRITE READ
MSP430F5631 0x3E 0x80 READ/WRITE READ
MSP430F5632 0x40 0x80 READ/WRITE READ
MSP430F5633 0x42 0x80 READ/WRITE READ
MSP430F5634 0x44 0x80 READ/WRITE READ
MSP430F5635 0x0E 0x80 READ/WRITE READ
MSP430F5636 0x10 0x80 READ/WRITE READ
MSP430F5637 0x12 0x80 READ/WRITE READ
MSP430F5638 0x14 0x80 READ/WRITE READ
MSP430F5658 0x31 0x81 READ/WRITE READ
MSP430F5659 0x30 0x81 READ/WRITE READ
MSP430F6433 0x1F 0x81 READ/WRITE READ
MSP430F6435 0x21 0x81 READ/WRITE READ
MSP430F6436 0x22 0x81 READ/WRITE READ
MSP430F6438 0x24 0x81 READ/WRITE READ
MSP430F6458 0x2E 0x81 READ/WRITE READ
MSP430F6459 0x2D 0x81 READ/WRITE READ
MSP430F6630 0x46 0x80 READ/WRITE READ
MSP430F6631 0x48 0x80 READ/WRITE READ
MSP430F6632 0x4A 0x80 READ/WRITE READ
MSP430F6633 0x4C 0x80 READ/WRITE READ
MSP430F6634 0x4E 0x80 READ/WRITE READ
MSP430F6635 0x16 0x80 READ/WRITE READ
MSP430F6636 0x18 0x80 READ/WRITE READ
MSP430F6637 0x1A 0x80 READ/WRITE READ
MSP430F6638 0x1C 0x80 READ/WRITE READ
MSP430F6658 0x2C 0x81 READ/WRITE READ
MSP430F6659 0x2B 0x81 READ/WRITE READ
MSP430F6700 0x54 0x80 READ/WRITE READ

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


www.ti.com Programming Using the JTAG Interface

69SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

Table 15. MSP430F5xx, MSP430F6xx, CC430 JTAG Features (1) (2) (continued)

Device Device ID at 0x1A04 Device ID at 0x1A05 Data Quick Access to
SRAM (3)

Data Quick Access to
Flash (4)

MSP430F6701 0x55 0x80 READ/WRITE READ
MSP430F6702 0x56 0x80 READ/WRITE READ
MSP430F6703 0x57 0x80 READ/WRITE READ
MSP430F6720 0x58 0x80 READ/WRITE READ

MSP430F6720A 0x76 0x82 READ/WRITE READ
MSP430F6721 0x59 0x80 READ/WRITE READ

MSP430F6721A 0x77 0x82 READ/WRITE READ
MSP430F6722 0x60 0x80 READ/WRITE READ
MSP430F6723 0x61 0x80 READ/WRITE READ

MSP430F6723A 0x79 0x82 READ/WRITE READ
MSP430F6724 0x6D 0x81 READ/WRITE READ

MSP430F6724A 0x7A 0x82 READ/WRITE READ
MSP430F6725 0x6E 0x81 READ/WRITE READ

MSP430F6725A 0x7B 0x82 READ/WRITE READ
MSP430F6726 0x6F 0x81 READ/WRITE READ

MSP430F6726A 0x7C 0x82 READ/WRITE READ
MSP430F6730 0x62 0x80 READ/WRITE READ

MSP430F6730A 0x80 0x82 READ/WRITE READ
MSP430F6731 0x63 0x80 READ/WRITE READ

MSP430F6731A 0x81 0x82 READ/WRITE READ
MSP430F6732 0x64 0x80 READ/WRITE READ
MSP430F6733 0x65 0x80 READ/WRITE READ

MSP430F6733A 0x83 0x82 READ/WRITE READ
MSP430F6734 0x6A 0x81 READ/WRITE READ

MSP430F6734A 0x84 0x82 READ/WRITE READ
MSP430F6735 0x6B 0x81 READ/WRITE READ

MSP430F6735A 0x85 0x82 READ/WRITE READ
MSP430F6736 0x6C 0x81 READ/WRITE READ

MSP430F6736A 0x86 0x82 READ/WRITE READ
MSP430F6745 0x88 0x81 READ/WRITE READ
MSP430F67451 0x97 0x81 READ/WRITE READ

MSP430F67451A 0x25 0x82 READ/WRITE READ
MSP430F6745A 0x16 0x82 READ/WRITE READ
MSP430F6746 0x89 0x81 READ/WRITE READ
MSP430F67461 0x98 0x81 READ/WRITE READ

MSP430F67461A 0x26 0x82 READ/WRITE READ
MSP430F6746A 0x17 0x82 READ/WRITE READ
MSP430F6747 0x8A 0x81 READ/WRITE READ
MSP430F67471 0x99 0x81 READ/WRITE READ

MSP430F67471A 0x27 0x82 READ/WRITE READ
MSP430F6747A 0x18 0x82 READ/WRITE READ
MSP430F6748 0x8B 0x81 READ/WRITE READ
MSP430F67481 0x9A 0x81 READ/WRITE READ

MSP430F67481A 0x28 0x82 READ/WRITE READ
MSP430F6748A 0x19 0x82 READ/WRITE READ
MSP430F6749 0x8C 0x81 READ/WRITE READ
MSP430F67491 0x9B 0x81 READ/WRITE READ

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


Programming Using the JTAG Interface www.ti.com

70 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

Table 15. MSP430F5xx, MSP430F6xx, CC430 JTAG Features (1) (2) (continued)

Device Device ID at 0x1A04 Device ID at 0x1A05 Data Quick Access to
SRAM (3)

Data Quick Access to
Flash (4)

MSP430F67491A 0x29 0x82 READ/WRITE READ
MSP430F6749A 0x1A 0x82 READ/WRITE READ
MSP430F67621 0x38 0x82 READ/WRITE READ

MSP430F67621A 0x87 0x82 READ/WRITE READ
MSP430F67641 0x39 0x82 READ/WRITE READ

MSP430F67641A 0x88 0x82 READ/WRITE READ
MSP430F6765 0x8D 0x81 READ/WRITE READ
MSP430F67651 0x9C 0x81 READ/WRITE READ

MSP430F67651A 0x2A 0x82 READ/WRITE READ
MSP430F6765A 0x1B 0x82 READ/WRITE READ
MSP430F6766 0x8E 0x81 READ/WRITE READ
MSP430F67661 0x9D 0x81 READ/WRITE READ

MSP430F67661A 0x2B 0x82 READ/WRITE READ
MSP430F6766A 0x1C 0x82 READ/WRITE READ
MSP430F6767 0x8F 0x81 READ/WRITE READ
MSP430F67671 0x9E 0x81 READ/WRITE READ

MSP430F67671A 0x2C 0x82 READ/WRITE READ
MSP430F6767A 0x1D 0x82 READ/WRITE READ
MSP430F6768 0x90 0x81 READ/WRITE READ
MSP430F67681 0x9F 0x81 READ/WRITE READ

MSP430F67681A 0x2D 0x82 READ/WRITE READ
MSP430F6768A 0x1E 0x82 READ/WRITE READ
MSP430F6769 0x91 0x81 READ/WRITE READ
MSP430F67691 0xA0 0x81 READ/WRITE READ

MSP430F67691A 0x2E 0x82 READ/WRITE READ
MSP430F6769A 0x1F 0x82 READ/WRITE READ
MSP430F6775 0x92 0x81 READ/WRITE READ
MSP430F67751 0xA1 0x81 READ/WRITE READ

MSP430F67751A 0x2F 0x82 READ/WRITE READ
MSP430F6775A 0x20 0x82 READ/WRITE READ
MSP430F6776 0x93 0x81 READ/WRITE READ
MSP430F67761 0xA2 0x81 READ/WRITE READ

MSP430F67761A 0x30 0x82 READ/WRITE READ
MSP430F6776A 0x21 0x82 READ/WRITE READ
MSP430F6777 0x94 0x81 READ/WRITE READ
MSP430F67771 0xA3 0x81 READ/WRITE READ

MSP430F67771A 0x31 0x82 READ/WRITE READ
MSP430F6777A 0x22 0x82 READ/WRITE READ
MSP430F6778 0x95 0x81 READ/WRITE READ
MSP430F67781 0xA4 0x81 READ/WRITE READ

MSP430F67781A 0x32 0x82 READ/WRITE READ
MSP430F6778A 0x23 0x82 READ/WRITE READ
MSP430F6779 0x96 0x81 READ/WRITE READ
MSP430F67791 0xA5 0x81 READ/WRITE READ

MSP430F67791A 0x33 0x82 READ/WRITE READ
MSP430F6779A 0x24 0x82 READ/WRITE READ
MSP430FG6425 0x37 0x82 READ/WRITE READ

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


www.ti.com Programming Using the JTAG Interface

71SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

Table 15. MSP430F5xx, MSP430F6xx, CC430 JTAG Features (1) (2) (continued)

Device Device ID at 0x1A04 Device ID at 0x1A05 Data Quick Access to
SRAM (3)

Data Quick Access to
Flash (4)

MSP430FG6426 0x36 0x82 READ/WRITE READ
MSP430FG6625 0x35 0x82 READ/WRITE READ
MSP430FG6626 0x34 0x82 READ/WRITE READ
MSP430SL5438A 0xEE 0x81 READ/WRITE READ

(1) All devices listed in this table support both 4-wire JTAG and Spy-Bi-Wire.
(2) See the section Device Descriptor Table in the MSP430F5xx and MSP430F6xx Family User's Guide for more details on identification

information.
(3) DataQuick Access to SRAM: If READ/WRITE, the device supports read and write of SRAM in quick mode using the IR_DATA_QUICK

instruction (see Section 2.3.3.3). Certain devices might support this instruction for either READ or WRITE operations only.

Table 16. MSP430FRxx JTAG Features (1) (2)

Device Device ID at
0x1A04

Device ID at
0x1A05

Data Quick
Access to SRAM (3)

Data Quick
Access to FRAM JTAG ID

MSP430FR2000 0x20 0x83 READ/WRITE READ/WRITE 0x98
MSP430FR2032 0x78 0x82 READ/WRITE READ/WRITE 0x98
MSP430FR2033 0x75 0x82 READ/WRITE READ/WRITE 0x98
MSP430FR2100 0x21 0x83 READ/WRITE READ/WRITE 0x98
MSP430FR2110 0xFB 0x82 READ/WRITE READ/WRITE 0x98
MSP430FR2111 0xFA 0x82 READ/WRITE READ/WRITE 0x98
MSP430FR2153 0x1D 0x83 READ/WRITE READ/WRITE 0x98
MSP430FR2155 0x1E 0x83 READ/WRITE READ/WRITE 0x98
MSP430FR2310 0xF1 0x82 READ/WRITE READ/WRITE 0x98
MSP430FR2311 0xF0 0x82 READ/WRITE READ/WRITE 0x98
MSP430FR2353 0x0D 0x83 READ/WRITE READ/WRITE 0x98
MSP430FR2355 0x0C 0x83 READ/WRITE READ/WRITE 0x98
MSP430FR2422 0x11 0x83 READ/WRITE READ/WRITE 0x98
MSP430FR2433 0x40 0x82 READ/WRITE READ/WRITE 0x98
MSP430FR2475 0x2B 0x83 READ/WRITE READ/WRITE 0x98
MSP430FR2476 0x2A 0x83 READ/WRITE READ/WRITE 0x98
MSP430FR2512 0x1C 0x83 READ/WRITE READ/WRITE 0x98
MSP430FR2522 0x10 0x83 READ/WRITE READ/WRITE 0x98
MSP430FR2532 0x3F 0x82 READ/WRITE READ/WRITE 0x98
MSP430FR2533 0x3D 0x82 READ/WRITE READ/WRITE 0x98
MSP430FR2632 0x3E 0x82 READ/WRITE READ/WRITE 0x98
MSP430FR2633 0x3C 0x82 READ/WRITE READ/WRITE 0x98
MSP430FR2672 0x39 0x83 READ/WRITE READ/WRITE 0x98
MSP430FR2673 0x38 0x83 READ/WRITE READ/WRITE 0x98
MSP430FR2675 0x29 0x83 READ/WRITE READ/WRITE 0x98
MSP430FR2676 0x28 0x83 READ/WRITE READ/WRITE 0x98
MSP430FR4131 0xF2 0x81 READ/WRITE READ/WRITE 0x98
MSP430FR4132 0xF1 0x81 READ/WRITE READ/WRITE 0x98
MSP430FR4133 0xF0 0x81 READ/WRITE READ/WRITE 0x98
MSP430FR5041 0x0F 0x83 READ/WRITE READ/WRITE 0x99
MSP430FR5043 0x17 0x83 READ/WRITE READ/WRITE 0x99
MSP430FR50431 0x18 0x83 READ/WRITE READ/WRITE 0x99
MSP430FR5720 0x70 0x81 READ/WRITE READ/WRITE 0x91
MSP430FR5721 0x77 0x80 READ/WRITE READ/WRITE 0x91

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI
http://www.ti.com/lit/pdf/SLAU208


Programming Using the JTAG Interface www.ti.com

72 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

Table 16. MSP430FRxx JTAG Features (1) (2) (continued)

Device Device ID at
0x1A04

Device ID at
0x1A05

Data Quick
Access to SRAM (3)

Data Quick
Access to FRAM JTAG ID

MSP430FR5722 0x71 0x81 READ/WRITE READ/WRITE 0x91
MSP430FR5723 0x72 0x81 READ/WRITE READ/WRITE 0x91
MSP430FR5724 0x73 0x81 READ/WRITE READ/WRITE 0x91
MSP430FR5725 0x78 0x80 READ/WRITE READ/WRITE 0x91
MSP430FR5726 0x74 0x81 READ/WRITE READ/WRITE 0x91
MSP430FR5727 0x79 0x80 READ/WRITE READ/WRITE 0x91
MSP430FR5728 0x7A 0x80 READ/WRITE READ/WRITE 0x91
MSP430FR5729 0x7B 0x80 READ/WRITE READ/WRITE 0x91
MSP430FR5730 0x7C 0x80 READ/WRITE READ/WRITE 0x91
MSP430FR5731 0x7E 0x80 READ/WRITE READ/WRITE 0x91
MSP430FR5732 0x75 0x81 READ/WRITE READ/WRITE 0x91
MSP430FR5733 0x7F 0x80 READ/WRITE READ/WRITE 0x91
MSP430FR5734 0x00 0x81 READ/WRITE READ/WRITE 0x91
MSP430FR5735 0x76 0x81 READ/WRITE READ/WRITE 0x91
MSP430FR5736 0x77 0x81 READ/WRITE READ/WRITE 0x91
MSP430FR5737 0x01 0x81 READ/WRITE READ/WRITE 0x91
MSP430FR5738 0x02 0x81 READ/WRITE READ/WRITE 0x91
MSP430FR5739 0x03 0x81 READ/WRITE READ/WRITE 0x91
MSP430FR5847 0x53 0x81 READ/WRITE READ/WRITE 0x99
MSP430FR5848 0x54 0x81 READ/WRITE READ/WRITE 0x99
MSP430FR5849 0x55 0x81 READ/WRITE READ/WRITE 0x99
MSP430FR5857 0x57 0x81 READ/WRITE READ/WRITE 0x99
MSP430FR5858 0x58 0x81 READ/WRITE READ/WRITE 0x99
MSP430FR5859 0x59 0x81 READ/WRITE READ/WRITE 0x99
MSP430FR5867 0x5B 0x81 READ/WRITE READ/WRITE 0x99
MSP430FR5868 0x5C 0x81 READ/WRITE READ/WRITE 0x99
MSP430FR5869 0x5D 0x81 READ/WRITE READ/WRITE 0x99
MSP430FR5870 0x5E 0x82 READ/WRITE READ/WRITE 0x99

MSP430FR5872(1) 0x60 0x82 READ/WRITE READ/WRITE 0x99
MSP430FR5887 0xC1 0x81 READ/WRITE READ/WRITE 0x99
MSP430FR5888 0xC2 0x81 READ/WRITE READ/WRITE 0x99
MSP430FR5889 0xC3 0x81 READ/WRITE READ/WRITE 0x99

MSP430FR5922(1)
DGG package 0x61 0x82 READ/WRITE READ/WRITE 0x99

MSP430FR5922(1)
PM or RGC package 0x62 0x82 READ/WRITE READ/WRITE 0x99

MSP430FR5947 0x5F 0x81 READ/WRITE READ/WRITE 0x99
MSP430FR5948 0x60 0x81 READ/WRITE READ/WRITE 0x99
MSP430FR5949 0x61 0x81 READ/WRITE READ/WRITE 0x99
MSP430FR5957 0x63 0x81 READ/WRITE READ/WRITE 0x99
MSP430FR5958 0x64 0x81 READ/WRITE READ/WRITE 0x99
MSP430FR5959 0x65 0x81 READ/WRITE READ/WRITE 0x99
MSP430FR5962 0xA6 0x82 READ/WRITE READ/WRITE 0x99
MSP430FR5964 0xA4 0x82 READ/WRITE READ/WRITE 0x99
MSP430FR5967 0x67 0x81 READ/WRITE READ/WRITE 0x99
MSP430FR5968 0x68 0x81 READ/WRITE READ/WRITE 0x99
MSP430FR5969 0x69 0x81 READ/WRITE READ/WRITE 0x99

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


www.ti.com Programming Using the JTAG Interface

73SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

Table 16. MSP430FRxx JTAG Features (1) (2) (continued)

Device Device ID at
0x1A04

Device ID at
0x1A05

Data Quick
Access to SRAM (3)

Data Quick
Access to FRAM JTAG ID

MSP430FR5970 0x5B 0x82 READ/WRITE READ/WRITE 0x99
MSP430FR5972(1) 0x5D 0x82 READ/WRITE READ/WRITE 0x99

MSP430FR5986 0xDF 0x81 READ/WRITE READ/WRITE 0x99
MSP430FR5987 0xA9 0x81 READ/WRITE READ/WRITE 0x99
MSP430FR5988 0xAA 0x81 READ/WRITE READ/WRITE 0x99

MSP430FR5989(1) 0xAB 0x81 READ/WRITE READ/WRITE 0x99
MSP430FR5992 0xA3 0x82 READ/WRITE READ/WRITE 0x99
MSP430FR5994 0xA1 0x82 READ/WRITE READ/WRITE 0x99
MSP430FR59941 0xA2 0x82 READ/WRITE READ/WRITE 0x99
MSP430FR6005 0x2E 0x83 READ/WRITE READ/WRITE 0x98
MSP430FR6007 0x2F 0x83 READ/WRITE READ/WRITE 0x98
MSP430FR6035 0xED 0x82 READ/WRITE READ/WRITE 0x99
MSP430FR60371 0xEF 0x82 READ/WRITE READ/WRITE 0x99
MSP430FR6037 0xEC 0x82 READ/WRITE READ/WRITE 0x99
MSP430FR6041 0x14 0x83 READ/WRITE READ/WRITE 0x99
MSP430FR6043 0x12 0x83 READ/WRITE READ/WRITE 0x99
MSP430FR60431 0x1A 0x83 READ/WRITE READ/WRITE 0x99
MSP430FR6045 0xEB 0x82 READ/WRITE READ/WRITE 0x99
MSP430FR60471 0xEE 0x82 READ/WRITE READ/WRITE 0x99
MSP430FR6047 0xEA 0x82 READ/WRITE READ/WRITE 0x99
MSP430FR6820
DGG package 0x55 0x82 READ/WRITE READ/WRITE 0x99

MSP430FR6820
PM or RGC package 0x56 0x82 READ/WRITE READ/WRITE 0x99

MSP430FR6822(1)
DGG package 0x59 0x82 READ/WRITE READ/WRITE 0x99

MSP430FR6822(1)
PM or RGC package 0x5A 0x82 READ/WRITE READ/WRITE 0x99

MSP430FR6870 0x4C 0x82 READ/WRITE READ/WRITE 0x99
MSP430FR6872(1) 0x4E 0x82 READ/WRITE READ/WRITE 0x99

MSP430FR6877 0xC4 0x81 READ/WRITE READ/WRITE 0x99
MSP430FR6879 0xC6 0x81 READ/WRITE READ/WRITE 0x99
MSP430FR6887 0xBE 0x81 READ/WRITE READ/WRITE 0x99
MSP430FR6888 0xBF 0x81 READ/WRITE READ/WRITE 0x99
MSP430FR6889 0xC0 0x81 READ/WRITE READ/WRITE 0x99
MSP430FR6920
DGG package 0x4F 0x82 READ/WRITE READ/WRITE 0x99

MSP430FR6920
PM or RGC package 0x50 0x82 READ/WRITE READ/WRITE 0x99

MSP430FR6922(1)
DGG package 0x53 0x82 READ/WRITE READ/WRITE 0x99

MSP430FR6922(1)
PM or RGC package 0x54 0x82 READ/WRITE READ/WRITE 0x99

MSP430FR6927 0xB2 0x81 READ/WRITE READ/WRITE 0x99
MSP430FR6928 0xB3 0x81 READ/WRITE READ/WRITE 0x99
MSP430FR6970 0x49 0x82 READ/WRITE READ/WRITE 0x99

MSP430FR6972(1) 0x4B 0x82 READ/WRITE READ/WRITE 0x99
MSP430FR6977 0xAC 0x81 READ/WRITE READ/WRITE 0x99
MSP430FR6979 0xAE 0x81 READ/WRITE READ/WRITE 0x99

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


Programming Using the JTAG Interface www.ti.com

74 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

Table 16. MSP430FRxx JTAG Features (1) (2) (continued)

Device Device ID at
0x1A04

Device ID at
0x1A05

Data Quick
Access to SRAM (3)

Data Quick
Access to FRAM JTAG ID

MSP430FR6987 0xA6 0x81 READ/WRITE READ/WRITE 0x99
MSP430FR6988 0xA7 0x81 READ/WRITE READ/WRITE 0x99

MSP430FR6989(1) 0xA8 0x81 READ/WRITE READ/WRITE 0x99

(1) All devices listed in this table have JTAG ID 0x89.
(2) All devices listed in this table support both 4-wire JTAG and Spy-Bi-Wire.
(3) DataQuick Access to SRAM: If READ/WRITE, the device supports read and write of SRAM in quick mode using the IR_DATA_QUICK

instruction (see Section 2.3.3.3). Certain devices might support this instruction for either READ or WRITE operations only.
(4) DataQuick Access to Flash: If READ/WRITE, the device supports read and write of Flash memory in quick mode using the

IR_DATA_QUICK instruction (see Section 2.3.3.3). Certain devices might support this instruction for either READ or WRITE operations
only.

Table 17. MSP430ixx JTAG Features (1) (2)

Device Device ID at 0x0FF0 Device ID at 0x0FF1 Data Quick Access to
SRAM (3)

Data Quick Access to
Flash (4)

MSP430i2020 0x40 0x20 READ/WRITE READ
MSP430i2021 0x40 0x20 READ/WRITE READ
MSP430i2030 0x40 0x20 READ/WRITE READ
MSP430i2031 0x40 0x20 READ/WRITE READ
MSP430i2040 0x40 0x20 READ/WRITE READ
MSP430i2041 0x40 0x20 READ/WRITE READ

2.7 References
MSP430 device data sheets

CC430 device data sheets

MSP430x1xx Family User's Guide

MSP430x4xx Family User's Guide

MSP430x2xx Family User's Guide

MSP430F5xx and MSP430F6xx Family User's Guide

MSP430FR2xx and MSP430FR4xx Family User's Guide

MSP430FR57xx Family User's Guide

MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide

CC430 Family User's Guide

IEEE Standard Test Access Port and Boundary-Scan Architecture, IEEE Std 1149.1

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI
http://www.ti.com/lsds/ti/microcontrollers_16-bit_32-bit/msp/tech_docs.page
http://www.ti.com/lsds/ti/microcontrollers_16-bit_32-bit/wireless_mcus/cc430/tech_docs.page
http://www.ti.com/lit/pdf/SLAU049
http://www.ti.com/lit/pdf/SLAU056
http://www.ti.com/lit/pdf/SLAU144
http://www.ti.com/lit/pdf/SLAU208
http://www.ti.com/lit/pdf/SLAU445
http://www.ti.com/lit/pdf/SLAU272
http://www.ti.com/lit/pdf/SLAU367
http://www.ti.com/lit/pdf/SLAU259


www.ti.com JTAG Programming Hardware and Software Implementation

75SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

3 JTAG Programming Hardware and Software Implementation

3.1 Implementation History
There are four Replicator implementations. The latest version is included in the associated source code
ZIP file and discussed in this document. The main difference between the first two implementations is the
use of the srec_cat.exe function in place of FileMaker.exe. The implementation described in this document
is the preferred implementation, the previous two implementations are no longer maintained.

NOTE: This version of the Replicator software only supports the REP430F hardware with an
MSP430F5437 as the host controller. Older versions of the Replicator hardware are no
longer supported.

3.2 Implementation Overview
The following sections describe the examples that are provided with this document (download examples
from http://www.ti.com/lit/zip/slau320). Each example demonstrates the software functions described in the
previous sections using an MSP430F5437 as the host controller that programs the given target MSP430
device of choice. The complete C source code and project files are provided in the examples zip file. A
schematic for the system as implemented in this discussion is also provided.

Key features of the JTAG Replicator programmer implementations are as follows:
• Support all MSP430 flash- and FRAM-based devices. There are specific software projects for the

following target device Replicator implementations:
– Replicator430: Original MSP430 architecture devices (includes Spy-Bi-Wire implementation for

devices that support it)
– Replicator430X: MSP430 devices from the 2xx and 4xx families with extended address space

(20 bit), also referred to as MSP430X devices (4-wire JTAG only)
– Replicator430Xv2: MSP430 devices from the 5xx and 6xx families with flash memory and extended

address space (20 bit), also referred to as MSP430Xv2 devices (includes both 4-wire JTAG and
Spy-Bi-Wire implementation)

– Replicator430FR: FRAM devices (FR2xx, FR4xx, FR5xx, and FR6xx families) (includes both 4-wire
JTAG and Spy-Bi-Wire implementation)

NOTE: The Replicator source files are provided in independent folders with the same names as
previously given. Within these folders, file names are assigned accordingly when
applicable to a certain device type. For example, the file JTAGfunc430.c that is used in
the Replicator430 version is renamed to JTAGfunc430X.c in the Replicator430X version
and JTAGfunc430Xv2.c in the Replicator430Xv2 version.

• Maximum target device program code size: approximately 250KB (due to the limited memory
resources of the MSP430F5437 host controller of 256KB)

• Programming speed (erase, program, verify): approximately 8KB in 1.5 s, 48KB in 8 s
• Fast verify and erase check: 17KB in 10 ms
• Support programming of the JTAG access fuse (permanently disables device memory access through

JTAG)
• Stand-alone target programming operation (no personal computer or additional supporting hardware or

software required)

3.3 Software Operation
The host controller stores the JTAG communication protocol code and the target program in its flash
memory (256KB available on the MSP430F5437). The programming software itself occupies between 4KB
and 6KB, so approximately 250KB remain for the target device program. The Replicator host can be
loaded with the target source code by the flash emulation tool (FET) or by the MSP430 serial
programming adapter (visit the MSP430 website for more information on device programming tools).

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI
http://www.ti.com/lit/zip/slau320
http://www.ti.com/lit/zip/slau320
http://www.ti.com/lit/zip/slau320
http://www.ti.com


JTAG Programming Hardware and Software Implementation www.ti.com

76 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

The basic functionality of the programmer is as follows:
1. Push the GO button to generate a hardware reset and start the host controller's JTAG communication

routine to erase, program, and verify the target device.
2. While the system is active, the yellow LED on the programmer board is on.
3. After successful completion, only the green LED is on.
4. If an error occurs or communication to the target device fails, only the red LED remains on.

The entire procedure takes approximately 3 seconds for a target program size of 8KB. (Some code not
strictly required to erase, program, and verify the target MSP430 MCU is executed in the Replicator.c
source file, increasing the specified programming times. These additional instructions can be customized
to fit the individual system programming requirements.)

To program the host MSP430F5437, different development environments can be used—IAR Embedded
Workbench® IDE (IAR) or Code Composer Studio™ IDE (CCS) by Texas Instruments. The free version of
IAR imposes code size restrictions. To use the 250KB previously mentioned, the full version of IAR or is
needed. The folder structure provides both an IAR and CCS folder, each of which contains the
environment-specific files. For IAR, the workspace file (extension .eww) must be started to open the IAR
workbench. Using CCS, each Replicator project must be imported into the user's workspace. This can be
done by right-clicking in the project's view and selecting "Import" in the context menu. After choosing the
desired Replicator folder, the project is imported and ready to use.

3.4 Software Structure

3.4.1 Programmer Firmware
The programming software is partitioned in three levels and consists of nine files in addition to the target
program (see Table 18).

Table 18. Programmer Firmware

Top level Specifies which programming functions (erase, program, verify, blow fuse) are to be executed.

Replicator430.c
Replicator430X.c
Replicator430Xv2.c
Replicator430FR.c

Contains the main section, which can be modified to meet custom requirements. In the
main section of this program, the target device is erased, checked for successful erasure,
and programmed. Programming loads the provided example code to the target device's
memory space. (The provided code file simply flashes port pins P1.0 and/or P5.1, which
drive the LEDs on the socket board provided with the FET tools, available from Texas
Instruments MSP430 Group. This is the compiled FETXXX_1.s43 example code file.) This
file must be replaced by the required user program and added to the project to be compiled
and loaded into the host. To demonstrate the capabilities of the MSP430 JTAG interface,
additional code is included, which manipulates the I/O-ports and RAM of the target device.
These routines can be used to test the target device and PCB for successful
communication.

Config430.h
Config430X.h
Config430Xv2.h
Config430FR.h

Contains high-level definitions to be set by the user before initially programming the host
controller firmware. These so called 'quick start options' specify among other things the
voltage level supplied by the Replicator hardware and the interface used to communicate
with the target device.

Target_Code.h

Contains the basic declarations of the program code of the target device. If a C-header file
should be implemented to program the target device instead of an assembly file, replace
the content of Target_Code.h by the output of srec_cat.exe and remove Target_Code.s43
(IAR) or Target_Code.asm (CCS) from the project. The Target_Code.h file is generated by
the srec_cat.exe file directly or by the srec.bat file.

JTAG functions All MSP430-specific functions are defined here. These files should not be modified under any circumstance.
JTAGfunc.c
JTAGfunc430X.c
JTAGfunc430Xv2.c
JTAGfunc430FR.c

Contain the MSP430-specific functions needed for flash programming

JTAGfunc.h
JTAGfunc430X.h
JTAGfunc430Xv2.h
JTAGfunc430FR.h

Contain constant definitions and function prototypes used for JTAG communication

JSBW.c Contains special functions that emulate the Spy-Bi-Wire interface to wake up MSP430
devices from LPMx.5 (Replicator430Xv2 and Replicator430FR only)

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


www.ti.com JTAG Programming Hardware and Software Implementation

77SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

Table 18. Programmer Firmware (continued)
Low-level functions All functions that depend specifically on the host controller (JTAG port I/O and timing functions) are located here.

These files need to be adapted if a host controller other than the MSP430F5437 is implemented.
LowLevelFunc430.c
LowLevelFunc430X.c
LowLevelFunc430Xv2.c

Contain the basic host-specific functions

LowLevelFunc430.h
LowLevelFunc430X.h
LowLevelFunc430Xv2.h

Contain host-specific definitions and function prototypes

Devices Describes features and differences between MSP430 devices with respect to FLASH programming. (Replicator430
and Replicator430X only)
Devices430.c
Devices430x.c Functions to distinguish MSP430 devices concerning FLASH programming.

Devices430.h
Devices430x.h Device function prototypes and definitions for FLASH programming.

Funclets Contain target code which is written into the target's RAM to speed up writing to and erasing from the device's NVM.
(These files can only be rebuilt using IAR Embedded Workbench and SRecord)
FlashErase.c
FlashWrite.c Funclets to speed up flash erase and programming

FramErase.c
FramWrite.c Funclets to speed up FRAM erase and programming

3.4.2 Target Code

3.4.2.1 Target Code Download for Replicator430, Replicator430X, and Replicator430Xv2
As mentioned previously, the target device's program code must be supplied separately. There are two
ways to include the provided example in the project space of the program to be sent to the host. Either
include a separate file (for example, Target_Code.s43 (IAR) or Target_Code.asm (CCS)) or replace the C-
Array in the Target_Code.h header file. Both alternatives must provide the binary target code and conform
to the format expected by thesource code.

To build these files from the TI-txt format output from the compiler, an open-source conversion program
called SRecord can be downloaded fromhttp://sourceforge.net/projects/srecord/. The SRecord package
includes the executable srec_cat.exe.

This executable is a command line application that expects parameters in the following format:
srec_cat.exe Target_Code.txt -ti_txt -Output Target_Code.h -c_array -output_word -c_compressed

or
(IAR) srec_cat.exe Target_Code.txt -ti_txt -Output Target_Code.s43 -asm -output_word -a430
(CCS) srec_cat.exe Target_Code.txt -ti_txt -Output Target_Code.asm -asm -output_word -cl430

Parameter description:
• srec_cat.exe : The name of the application
• Target_Code.txt -ti_txt : This is the input file by name and its format
• -Output : A keyword to make clear that following parameters describe the output file and format
• Target_Code.x -[c_array,asm] : This is the output file by name and the format that the input file should

be converted to. For this example only, C-header and assembly formats are allowed. Choose one
format for your purpose.

• -output_word : The parameter is necessary because the source code expects words to write to the
target device. Otherwise, srec_cat.exe would write bytes.

• -c_compressed : This statement is additional to the c_array output. If specified, the output does not fill
any address gap with a 0xFF pattern, and does not increase the file size.

• The following statements are additional to the assembly output. Choose one to specify your format.
– -a430 : Writes an assembly file that is understood by the IAR Embedded Workbench in the

Replicator context.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI
http://www.ti.com/lit/zip/slau320
http://sourceforge.net/projects/srecord/


JTAG Programming Hardware and Software Implementation www.ti.com

78 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

– -cl430 : Writes an assembly file that is understood by TI CCS in the Replicator context.

The provided file srec.bat generates all three types of output files (.h, .asm, and .s43) simultaneously. The
command line format is: srec Target_Code. In addition to generating the actual target code, SRecord is
also used to convert the funclets for flash-/Fram-write/erase which can only be rebuilt using IAR
Embedded Workbench. In this case the SRecord is started as a post build process in the corresponding
projects to convert the TI-txt code to a format accepted by the source code. TI-txt format can be output by
the IAR Linker by setting the required compiler/linker options (see the IAR tool instruction guides for more
information or see the funclet projects that were described previously). This can also be done in CCS
using the hex430 command line executable.

NOTE: If the TI-txt source file includes odd segment addresses or an odd number of data bytes,
additional byte padding might be required to generate appropriate word-aligned output
format. Use srec_cat.exe with a "--fill 0xFF --within <input> --range-padding 2" filter to fix this
problem. The srec.bat automatically filters the output format for appropriate word alignment.
For example, "srec_cat.exe Target_Code.txt -ti_txt --fill 0xFF --within Target_Code.txt -ti_txt -
-range-padding 2 -Output Target_Code.h -c_array -output_word -c_compressed".

NOTE: If using assembly source code that contains the target code, make sure that the array
declarations are stored in target_code.h. An example can be seen in the included basic
header file.

NOTE: The SRecord conversion program is open source and has a much larger range of functions.
For more information and documentation see http://srecord.sourceforge.net/.

This software was tested to function correctly with version 1.36, but is not necessarily
compatible with future versions.

NOTE: To enable easy porting of the software to other microcontrollers, the provided source code is
written in ANSI C. As always, it is recommended that the latest available version of the
applicable MSP430 development software be installed before beginning a new project.

3.4.2.2 Target Code Download for Replicator430FR (FRAM)
How to download an msp430.txt file generated by EW430 or CCS:
To download different code with the Replicator430FR, generate an msp430.txt file using EW430 or CSS.
Name this file msp430Code.txt and save it into the folder $ProjectDir$\Targetcode\SRecord.

Convert this msp430Code.txt file by running the batch file "ConvertMsp430_txt.bat" in the
$ProjectDir$\Targetcode\SRecord folder. The output is a C header file including the converted target code.
Copy this C header file into the Replicator430FR code folder and include it in the JTAGfunc430FR.c file
(#include "msp430Code.h").

Call the function DownloadMsp430Code() in the JTAGfunc430FR.c file to load the converted program into
the target device memory.

3.5 Hardware Setup
The hardware consists of the host controller MSP430F5437, programmable voltage regulator that can
supply target device with VCC 2.1 V to 3.6 V with step 0.1 V, two JTAG interface connectors, and one BSL
interface connector. An external power supply delivering 8 V to 10 V dc at 200 mA is required for
operation if the option to blow the security fuse is required, or 4 V to 10 V dc at 200 mA can be used
otherwise. The REP430F can also be supplied from the target's device VCC ≥ 3 V (on JTAG pin 2 or 4; see
Figure 19) if the option to blow the security fuse is not required.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI
http://www.ti.com/lit/zip/slau320
http://srecord.sourceforge.net/


www.ti.com JTAG Programming Hardware and Software Implementation

79SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

3.5.1 Host Controller
To achieve maximum programming speed, the host controller MSP430F5437 can run at a maximum CPU
clock frequency of 18 MHz that is used from PLL and XTAL 12 MHz provided on LFXT1. The host is
programmed through a dedicated JTAG port labeled Host JTAG (see Figure 19).

3.5.2 Target Connection
The target MSP430 device is connected to the host controller/programmer through the 14-pin connector
labeled Target JTAG, which has the same standard signal assignment as all available MSP430 emulation
tools with extra two pins that can be used for BSL connection. The programmable target device supply
voltage of 2.1 V to 3.6 V with step 0.1 V is available on pin 2 of this connector, eliminating the need for an
additional supply for the target system The required Spy-Bi-Wire or 4-wire JTAG and GND must be
connected. (On devices requiring the TEST pin, the TEST signal also must be provided from the
programmer to the target MSP430 device.) Host controller in the REP430F is supplied from the VCC = 3 V,
while target device can be supplied with the VCC from 2.1 V to 3.6 V. To avoid a problem with I/O levels,
the REP430V contains voltage level translators between target device and host controller. Voltage
translators are supplied from the host controller VCC = 3 V from one side, and from the target's device VCC
(provided on pin 2 of the target JTAG connector) from the other side. That allows supply the target device
with the I/O levels exactly as required by the target device.)

To enable programming of all MSP430 flash-based devices including a JTAG access fuse, voltage
translators are used and MOSFET switches are controlled by the host MSP430. MOSFET Q2 controls Vpp
on devices with a TEST pin; Q1 connects Vpp to TDI on devices not requiring a TEST signal. U8 isolates
the host controller from the target TEST pin while Vpp is connected to the target TEST input, while U6
isolates the host controller from the target TDI pin while Vpp is connected to the target TDI input. U7
connects the host TDI signal to the target TDO pin while the fuse is programmed (for devices without a
TEST pin). The host controller program includes delays, which consider a MOSFET switching time of a
maximum of 1 ms. Q1 and Q2 should have a Ron < 2 Ω to minimize voltage drop during fuse
programming. While the fuse is being programmed, a maximum current flow of 100 mA is possible for
approximately 2 µs into the TDI pin (or the TEST pin, depending on the target device).

NOTE: An MSP430 flash programmer system designed for a specific MSP430 target device or a
system not implementing fuse-blow functionality may require fewer relays or no relays at all.
The programmer system described herein was developed with the intention that it can be
used with any MSP430 flash- or FRAM-based device, across all families, including all
memory access functionality, as well as fuse-blow capability.

NOTE: Never unplug the JTAG cable during an active connection to the target device. Make
sure that the debug or programming routine is completed before removing the JTAG
connection.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


JTAG Programming Hardware and Software Implementation www.ti.com

80 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

Figure 19. Replicator Application Schematic

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


www.ti.com JTAG Programming Hardware and Software Implementation

81SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

3.5.3 Host Controller or Programmer Power Supply
From the input voltage of 8 V to 10 V dc, onboard voltages are generated using adjustable LDOs: U3
generates VCC of 3.0 V as the supply voltage for the host controller MSP430F5437, U4 generates VCC of
2.1 V to 3.6 V as the supply voltage to the target device, and U1 generates VPP of 6.7 V to program the
JTAG access fuse. While the fuse is being programmed, a peak current of 100 mA can flow through the
TEST or TDI input pin (see the corresponding target MSP430 device data sheet).

When using a target system that is powered locally, the VCClevel from the target device should be
connected to pin 2 of the JTAG connector that supplies the I/O voltage translator in the REP430F. This
ensures that the I/O levels of the REP430F match the I/O levels of the target device. The programmable
LDO that can supply the target device should be disabled when the target device is powered locally. When
pin 2 of the JTAG connector from REP430F is not connected to the target VCC, a difference between the
I/O voltage rails of the target device and the REP430F can occur and communication between host and
target may fail due to invalid logic levels. It is also possible under these conditions that device damage
can occur.

3.5.4 Third-Party Support
Elprotronic Incorporated offers a complete REP430F system that is compatible with the software available
with this user's guide. Visit http://www.elprotronic.com for more information.

Elprotronic Inc.
35 Austin Rumble Crt.
King City
ON, L7B 0B2
Canada
Tel.: +(905)539-0424
Fax: +(905)539-0474
E-mail: info@elprotronic.com
Web site: www.elprotronic.com

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI
http://www.elprotronic.com
mailto:info@elprotronic.com
http://www.elprotronic.com


Errata and Revision Information www.ti.com

82 SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

MSP430™ Programming With the JTAG Interface

4 Errata and Revision Information

4.1 Known Issues
Description

Dual port memory must be read in slow mode (word by word)

Workaround
None

4.2 Revisions and Errata From Previous Documents
The following is a summary of the errata in former revisions ofApplication of Bootstrap Loader in MSP430
With Flash Hardware and Software Proposal (SLAA096).
• Appendix D: Universal Bootstrap Loader Interface Board: Operational amplifier IC2 must be replaced

with TL062D or equivalent type.

The following is a summary of changes in former revisions of Programming a Flash-Based MSP430 Using
the JTAG Interface (SLAA149).

Version Date Changes/Comments

SLAA149F October 2008
• Added timing requirements to Section 3.4.2.
• Removed section 4.4, which was a duplicate of Section 3.7.
• Added notes to Release from JTAG control sections.

SLAA149E September 2008

• Added Figure 1.
• Enhanced Section 2.3.3.
• Changed Table 5 caption.
• Added Table 6 for 5xx family.
• Updated Section 2.4.5 with 5xx information.
• Reworked and updated Section 3.1.2 with 5xx information.
• Renamed Section 3.2 and moved Section 3.2.1.1 in this section.
• Divided Section 3.2, Section 3.4, Section 3.5 and Section 4 in subsections for both 1xx,

2xx, 4xx and 5xx family.
• Added IR_JMB_EXCHANGE to Table 4

SLAA149D February 2008

• Fixed Section 3.5.1.1. The instruction IR_CNTRL_SIG_16BIT instead of
IR_ADDR_16BIT was shown to be loaded before shifting in the according address
value.

• Updated Figure 10.
• Added note about disabling interrupts to Section 2.3.2.
• Referenced MSP430 Family user's guides for JTAG signal connections in Section 2.1.

SLAA149C September 2007

• Added information about MSP430 JTAG restrictions, Section A.3
• Renamed bit 11 of the JTAG control signal register from PUC to POR, Section 2.4.3
• Added Section A.1
• Updated Section A.4 with description for the use of SRecord conversion tool

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


www.ti.com Revision History

83SLAU320AI–July 2010–Revised March 2020
Submit Documentation Feedback

Copyright © 2010–2020, Texas Instruments Incorporated

Revision History

Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from November 23, 2019 to March 23, 2020 .................................................................................................... Page

• Added MSP430FR2672 and MSP430FR2673 to Table 16, MSP430FRxx JTAG Features .................................. 71
• Added MSP430FR6005 and MSP430FR6007 to Table 16, MSP430FRxx JTAG Features .................................. 73

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU320AI


IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE 
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” 
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY 
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD 
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate 
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable 
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you 
permission to use these resources only for development of an application that uses the TI products described in the resource. Other 
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third 
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, 
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on 
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable 
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	MSP430™ Programming With the JTAG Interface
	1 Introduction
	1.1 About This Document
	1.2 Organization of This Document

	2 Programming Using the JTAG Interface
	2.1 Introduction
	2.1.1 MSP430 JTAG Restrictions (Noncompliance With IEEE Std 1149.1)
	2.1.2 TAP Controller State Machine

	2.2 Interface and Instructions
	2.2.1 JTAG Interface Signals
	2.2.1.1 Pros and Cons of 2-Wire Spy-Bi-Wire and 4-Wire JTAG
	2.2.1.2 4-Wire JTAG Interface
	2.2.1.3 2-Wire Spy-Bi-Wire (SBW) JTAG Interface

	2.2.2 JTAG Access Macros
	2.2.2.1 Macros for 4-Wire JTAG Interface
	2.2.2.2 Macros for Spy-Bi-Wire (SBW) Interface

	2.2.3 Spy-Bi-Wire (SBW) Timing and Control
	2.2.3.1 Basic Timing
	2.2.3.2 TMS Slot
	2.2.3.3 TDI Slot
	2.2.3.4 TDO Slot
	2.2.3.5 TCLK Handling in Spy-Bi-Wire (SBW) Mode

	2.2.4 JTAG Communication Instructions
	2.2.4.1 Controlling the Memory Address Bus (MAB)
	2.2.4.2 Controlling the Memory Data Bus (MDB)
	2.2.4.3 Controlling the CPU
	2.2.4.4 Memory Verification by Pseudo Signature Analysis (PSA)
	2.2.4.5 JTAG Access Security Fuse Programming


	2.3 Memory Programming Control Sequences
	2.3.1 Start-Up
	2.3.1.1 Enable JTAG Access
	2.3.1.2 Fuse Check and Reset of the JTAG State Machine (TAP Controller)

	2.3.2 General Device (CPU) Control Functions
	2.3.2.1 Function Reference for 1xx, 2xx, 4xx Families
	2.3.2.2 Function Reference for 5xx and 6xx Families

	2.3.3 Accessing Non-Flash Memory Locations With JTAG
	2.3.3.1 Read Access
	2.3.3.2 Write Access
	2.3.3.3 Quick Access of Memory Arrays

	2.3.4 Programming the Flash Memory (Using the Onboard Flash Controller)
	2.3.4.1 Function Reference for 1xx, 2xx, 4xx Families
	2.3.4.2 Function Reference for 5xx and 6xx Families

	2.3.5 Erasing the Flash Memory (Using the Onboard Flash Controller)
	2.3.5.1 Function Reference for 1xx, 2xx, 4xx Families
	2.3.5.2 Function Reference for 5xx and 6xx Families

	2.3.6 Reading From Flash Memory
	2.3.7 Verifying the Target Memory
	2.3.8 FRAM Memory Technology
	2.3.8.1 Writing and Reading FRAM
	2.3.8.2 Erasing FRAM


	2.4 JTAG Access Protection
	2.4.1 Burning the JTAG Fuse - Function Reference for 1xx, 2xx, 4xx Families
	2.4.1.1 Standard 4-Wire JTAG
	2.4.1.2 Fuse-Programming Voltage Using SBW

	2.4.2 Programming the JTAG Lock Key - Function Reference for 5xx, 6xx, and FRxx Families
	2.4.2.1 Flash Memory Devices
	2.4.2.2 FRAM Memory Devices

	2.4.3 Testing for a Successfully Protected Device
	2.4.4 Unlocking an FRAM Device in Protected and Secured Modes
	2.4.4.1 FR5xx and FR6xx Devices
	2.4.4.2 FR4xx and FR2xx Devices

	2.4.5 Memory Protection Unit Handling
	2.4.6 Intellectual Property Encapsulation (IPE)
	2.4.7 FRAM Write Protection

	2.5 JTAG Function Prototypes
	2.5.1 Low-Level JTAG Functions
	2.5.2 High-Level JTAG Routines

	2.6 JTAG Features Across Device Families
	2.7 References

	3 JTAG Programming Hardware and Software Implementation
	3.1 Implementation History
	3.2 Implementation Overview
	3.3 Software Operation
	3.4 Software Structure
	3.4.1 Programmer Firmware
	3.4.2 Target Code
	3.4.2.1 Target Code Download for Replicator430, Replicator430X, and Replicator430Xv2
	3.4.2.2 Target Code Download for Replicator430FR (FRAM)


	3.5 Hardware Setup
	3.5.1 Host Controller
	3.5.2 Target Connection
	3.5.3 Host Controller or Programmer Power Supply
	3.5.4 Third-Party Support


	4 Errata and Revision Information
	4.1 Known Issues
	4.2 Revisions and Errata From Previous Documents


	Revision History
	Important Notice

