sig
type t
type vertex
module S :
sig
type elt = vertex
type t
val empty : t
val is_empty : t -> bool
val mem : elt -> t -> bool
val add : elt -> t -> t
val singleton : elt -> t
val remove : elt -> t -> t
val union : t -> t -> t
val inter : t -> t -> t
val diff : t -> t -> t
val compare : t -> t -> int
val equal : t -> t -> bool
val subset : t -> t -> bool
val iter : (elt -> unit) -> t -> unit
val map : (elt -> elt) -> t -> t
val fold : (elt -> 'a -> 'a) -> t -> 'a -> 'a
val for_all : (elt -> bool) -> t -> bool
val exists : (elt -> bool) -> t -> bool
val filter : (elt -> bool) -> t -> t
val partition : (elt -> bool) -> t -> t * t
val cardinal : t -> int
val elements : t -> elt list
val min_elt : t -> elt
val min_elt_opt : t -> elt option
val max_elt : t -> elt
val max_elt_opt : t -> elt option
val choose : t -> elt
val choose_opt : t -> elt option
val split : elt -> t -> t * bool * t
val find : elt -> t -> elt
val find_opt : elt -> t -> elt option
val find_first : (elt -> bool) -> t -> elt
val find_first_opt : (elt -> bool) -> t -> elt option
val find_last : (elt -> bool) -> t -> elt
val find_last_opt : (elt -> bool) -> t -> elt option
val of_list : elt list -> t
end
type idom = Dominator.S.vertex -> Dominator.S.vertex
type idoms = Dominator.S.vertex -> Dominator.S.vertex -> bool
type dom_tree = Dominator.S.vertex -> Dominator.S.vertex list
type dominators = Dominator.S.vertex -> Dominator.S.vertex list
type dom = Dominator.S.vertex -> Dominator.S.vertex -> bool
type sdom = Dominator.S.vertex -> Dominator.S.vertex -> bool
type dom_frontier = Dominator.S.vertex -> Dominator.S.vertex list
val compute_idom :
Dominator.S.t ->
Dominator.S.vertex -> Dominator.S.vertex -> Dominator.S.vertex
val dominators_to_dom :
('a -> Dominator.S.S.t) -> Dominator.S.vertex -> 'a -> bool
val dominators_to_sdom :
(Dominator.S.vertex -> Dominator.S.S.t) ->
Dominator.S.vertex -> Dominator.S.vertex -> bool
val dom_to_sdom :
(Dominator.S.vertex -> Dominator.S.vertex -> bool) ->
Dominator.S.vertex -> Dominator.S.vertex -> bool
val dominators_to_sdominators :
(Dominator.S.vertex -> Dominator.S.S.t) ->
Dominator.S.vertex -> Dominator.S.S.t
val dominators_to_idoms :
(Dominator.S.vertex -> Dominator.S.S.t) ->
Dominator.S.vertex -> Dominator.S.vertex -> bool
val dominators_to_dom_tree :
Dominator.S.t ->
?pred:(Dominator.S.t -> Dominator.S.vertex -> Dominator.S.vertex list) ->
(Dominator.S.vertex -> Dominator.S.S.t) ->
Dominator.S.vertex -> Dominator.S.S.t
val idom_to_dom_tree :
Dominator.S.t ->
(Dominator.S.vertex -> Dominator.S.vertex) ->
Dominator.S.vertex -> Dominator.S.vertex list
val idom_to_idoms :
Dominator.S.idom -> Dominator.S.vertex -> Dominator.S.vertex -> bool
val compute_dom_frontier :
Dominator.S.t ->
Dominator.S.dom_tree ->
Dominator.S.idom -> Dominator.S.vertex -> Dominator.S.vertex list
val idom_to_dominators : ('a -> 'a) -> 'a -> 'a list
val idom_to_dom :
(Dominator.S.vertex -> Dominator.S.vertex) ->
Dominator.S.vertex -> Dominator.S.vertex -> bool
end