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CHAPTER 5

Analysis of Variance: Weight Gain,
Foster Feeding in Rats, Water

Hardness and Male Egyptian Skulls

5.1 Introduction

5.2 Analysis of Variance

5.3 Analysis Using R

5.3.1 Weight Gain in Rats

Before applying analysis of variance to the data in Table ?? we should try to
summarise the main features of the data by calculating means and standard
deviations and by producing some hopefully informative graphs. The data is
available in the data.frame weightgain. The following R code produces the
required summary statistics

R> data("weightgain", package = "HSAUR2")

R> tapply(weightgain$weightgain,

+ list(weightgain$source, weightgain$type), mean)

High Low

Beef 100.0 79.2

Cereal 85.9 83.9

R> tapply(weightgain$weightgain,

+ list(weightgain$source, weightgain$type), sd)

High Low

Beef 15.1 13.9

Cereal 15.0 15.7

To apply analysis of variance to the data we can use the aov function in R

and then the summary method to give us the usual analysis of variance table.
The model formula specifies a two-way layout with interaction terms, where
the first factor is source, and the second factor is type.

R> wg_aov <- aov(weightgain ~ source * type, data = weightgain)

The estimates of the intercept and the main and interaction effects can be
extracted from the model fit by

R> coef(wg_aov)

(Intercept) sourceCereal typeLow

100.0 -14.1 -20.8

sourceCereal:typeLow

18.8

3



4 ANALYSIS OF VARIANCE

R> plot.design(weightgain)
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Figure 5.1 Plot of mean weight gain for each level of the two factors.

R> summary(wg_aov)

Df Sum Sq Mean Sq F value Pr(>F)

source 1 221 221 0.99 0.327

type 1 1300 1300 5.81 0.021

source:type 1 884 884 3.95 0.054

Residuals 36 8049 224

Figure 5.2 R output of the ANOVA fit for the weightgain data.

Note that the model was fitted with the restrictions γ1 = 0 (corresponding to
Beef) and β1 = 0 (corresponding to High) because treatment contrasts were
used as default as can be seen from

R> options("contrasts")

$contrasts
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R> interaction.plot(weightgain$type, weightgain$source,

+ weightgain$weightgain)
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Figure 5.3 Interaction plot of type and source.

unordered ordered

"contr.treatment" "contr.poly"

Thus, the coefficient for source of −14.1 can be interpreted as an estimate of
the difference γ2 − γ1. Alternatively, we can use the restriction

∑
i
γi = 0 by

R> coef(aov(weightgain ~ source + type + source:type,

+ data = weightgain, contrasts = list(source = contr.sum)))

(Intercept) source1 typeLow

92.95 7.05 -11.40

source1:typeLow

-9.40



6 ANALYSIS OF VARIANCE

R> plot.design(foster)
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Figure 5.4 Plot of mean litter weight for each level of the two factors for the

foster data.

5.3.2 Foster Feeding of Rats of Different Genotype

As in the previous subsection we will begin the analysis of the foster feeding
data in Table ?? with a plot of the mean litter weight for the different geno-
types of mother and litter (see Figure 5.4). The data are in the data.frame

foster

R> data("foster", package = "HSAUR2")

We can derive the two analyses of variance tables for the foster feeding
example by applying the R code

R> summary(aov(weight ~ litgen * motgen, data = foster))

to give

Df Sum Sq Mean Sq F value Pr(>F)
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litgen 3 60 20.1 0.37 0.7752

motgen 3 775 258.4 4.76 0.0057

litgen:motgen 9 824 91.6 1.69 0.1201

Residuals 45 2441 54.2

and then the code

R> summary(aov(weight ~ motgen * litgen, data = foster))

to give

Df Sum Sq Mean Sq F value Pr(>F)

motgen 3 772 257.2 4.74 0.0059

litgen 3 64 21.2 0.39 0.7600

motgen:litgen 9 824 91.6 1.69 0.1201

Residuals 45 2441 54.2

There are (small) differences in the sum of squares for the two main effects
and, consequently, in the associated F -tests and p-values. This would not be
true if in the previous example in Subsection 5.3.1 we had used the code

R> summary(aov(weightgain ~ type * source, data = weightgain))

instead of the code which produced Figure 5.2 (readers should confirm that
this is the case).

We can investigate the effect of genotype B on litter weight in more detail by
the use of multiple comparison procedures (see Everitt, 1996, and Chapter 14).
Such procedures allow a comparison of all pairs of levels of a factor whilst
maintaining the nominal significance level at its specified value and producing
adjusted confidence intervals for mean differences. One such procedure is called
Tukey honest significant differences suggested by Tukey (1953); see Hochberg
and Tamhane (1987) also. Here, we are interested in simultaneous confidence
intervals for the weight differences between all four genotypes of the mother.
First, an ANOVA model is fitted

R> foster_aov <- aov(weight ~ litgen * motgen, data = foster)

which serves as the basis of the multiple comparisons, here with all pair-wise
differences by

R> foster_hsd <- TukeyHSD(foster_aov, "motgen")

R> foster_hsd

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = weight ~ litgen * motgen, data = foster)

$motgen

diff lwr upr p adj

B-A 3.33 -3.86 10.520 0.608

I-A -1.90 -8.84 5.051 0.885

J-A -6.57 -13.63 0.495 0.077

I-B -5.23 -12.42 1.964 0.227

J-B -9.90 -17.20 -2.595 0.004

J-I -4.67 -11.73 2.391 0.304
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R> plot(foster_hsd)
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Figure 5.5 Graphical presentation of multiple comparison results for the foster

feeding data.

A convenient plot method exists for this object and we can get a graphical
representation of the multiple confidence intervals as shown in Figure 5.5. It
appears that there is only evidence for a difference in the B and J genotypes.
Note that the particular method implemented in TukeyHSD is applicable only
to balanced and mildly unbalanced designs (which is the case here). Alterna-
tive approaches, applicable to unbalanced designs and more general research
questions, will be introduced and discussed in Chapter 14.

5.3.3 Water Hardness and Mortality

The water hardness and mortality data for 61 large towns in England and
Wales (see Table 2.3) was analysed in Chapter 3 and here we will extend the
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analysis by an assessment of the differences of both hardness and mortality
in the North or South. The hypothesis that the two-dimensional mean-vector
of water hardness and mortality is the same for cities in the North and the
South can be tested by Hotelling-Lawley test in a multivariate analysis of
variance framework. The R function manova can be used to fit such a model
and the corresponding summary method performs the test specified by the
test argument

R> data("water", package = "HSAUR2")

R> summary(manova(cbind(hardness, mortality) ~ location,

+ data = water), test = "Hotelling-Lawley")

Df Hotelling-Lawley approx F num Df den Df Pr(>F)

location 1 0.9 26.1 2 58 8.2e-09

Residuals 59

The cbind statement in the left hand side of the formula indicates that a
multivariate response variable is to be modelled. The p-value associated with
the Hotelling-Lawley statistic is very small and there is strong evidence that
the mean vectors of the two variables are not the same in the two regions.
Looking at the sample means

R> tapply(water$hardness, water$location, mean)

North South

30.4 69.8

R> tapply(water$mortality, water$location, mean)

North South

1634 1377

we see large differences in the two regions both in water hardness and mortal-
ity, where low mortality is associated with hard water in the South and high
mortality with soft water in the North (see Figure ?? also).

5.3.4 Male Egyptian Skulls

We can begin by looking at a table of mean values for the four measure-
ments within each of the five epochs. The measurements are available in the
data.frame skulls and we can compute the means over all epochs by

R> data("skulls", package = "HSAUR2")

R> means <- aggregate(skulls[,c("mb", "bh", "bl", "nh")],

+ list(epoch = skulls$epoch), mean)

R> means

epoch mb bh bl nh

1 c4000BC 131 134 99.2 50.5

2 c3300BC 132 133 99.1 50.2

3 c1850BC 134 134 96.0 50.6

4 c200BC 136 132 94.5 52.0

5 cAD150 136 130 93.5 51.4
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R> pairs(means[,-1],

+ panel = function(x, y) {

+ textplot(x, y, levels(skulls$epoch), new = FALSE, cex = 0.8)

+ })
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Figure 5.6 Scatterplot matrix of epoch means for Egyptian skulls data.

It may also be useful to look at these means graphically and this could be
done in a variety of ways. Here we construct a scatterplot matrix of the means
using the code attached to Figure 5.6.
There appear to be quite large differences between the epoch means, at

least on some of the four measurements. We can now test for a difference
more formally by using MANOVA with the following R code to apply each of
the four possible test criteria mentioned earlier;

R> skulls_manova <- manova(cbind(mb, bh, bl, nh) ~ epoch,

+ data = skulls)

R> summary(skulls_manova, test = "Pillai")
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Df Pillai approx F num Df den Df Pr(>F)

epoch 4 0.353 3.51 16 580 4.7e-06

Residuals 145

R> summary(skulls_manova, test = "Wilks")

Df Wilks approx F num Df den Df Pr(>F)

epoch 4 0.664 3.9 16 434 7e-07

Residuals 145

R> summary(skulls_manova, test = "Hotelling-Lawley")

Df Hotelling-Lawley approx F num Df den Df Pr(>F)

epoch 4 0.482 4.23 16 562 8.3e-08

Residuals 145

R> summary(skulls_manova, test = "Roy")

Df Roy approx F num Df den Df Pr(>F)

epoch 4 0.425 15.4 4 145 1.6e-10

Residuals 145

The p-value associated with each four test criteria is very small and there is
strong evidence that the skull measurements differ between the five epochs. We
might now move on to investigate which epochs differ and on which variables.
We can look at the univariate F -tests for each of the four variables by using
the code

R> summary.aov(skulls_manova)

Response mb :

Df Sum Sq Mean Sq F value Pr(>F)

epoch 4 503 125.7 5.95 0.00018

Residuals 145 3061 21.1

Response bh :

Df Sum Sq Mean Sq F value Pr(>F)

epoch 4 230 57.5 2.45 0.049

Residuals 145 3405 23.5

Response bl :

Df Sum Sq Mean Sq F value Pr(>F)

epoch 4 803 200.8 8.31 4.6e-06

Residuals 145 3506 24.2

Response nh :

Df Sum Sq Mean Sq F value Pr(>F)

epoch 4 61 15.3 1.51 0.2

Residuals 145 1472 10.2

We see that the results for the maximum breadths (mb) and basialiveolar length
(bl) are highly significant, with those for the other two variables, in particular
for nasal heights (nh), suggesting little evidence of a difference. To look at the
pairwise multivariate tests (any of the four test criteria are equivalent in the
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case of a one-way layout with two levels only) we can use the summary method
and manova function as follows:

R> summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls,

+ subset = epoch %in% c("c4000BC", "c3300BC")))

Df Pillai approx F num Df den Df Pr(>F)

epoch 1 0.0277 0.391 4 55 0.81

Residuals 58

R> summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls,

+ subset = epoch %in% c("c4000BC", "c1850BC")))

Df Pillai approx F num Df den Df Pr(>F)

epoch 1 0.188 3.17 4 55 0.02

Residuals 58

R> summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls,

+ subset = epoch %in% c("c4000BC", "c200BC")))

Df Pillai approx F num Df den Df Pr(>F)

epoch 1 0.303 5.98 4 55 0.00046

Residuals 58

R> summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls,

+ subset = epoch %in% c("c4000BC", "cAD150")))

Df Pillai approx F num Df den Df Pr(>F)

epoch 1 0.362 7.8 4 55 4.7e-05

Residuals 58

To keep the overall significance level for the set of all pairwise multivariate
tests under some control (and still maintain a reasonable power), Stevens
(2001) recommends setting the nominal level α = 0.15 and carrying out each
test at the α/m level where m is the number of tests performed. The results
of the four pairwise tests suggest that as the epochs become further separated
in time the four skull measurements become increasingly distinct.
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