
Design Considerations in Conjoint Analysis

William Hughes

May 29, 2013

Abstract

The package was inspired by a conjoint analysis survey that I was
asked to help analyze. While the results were available, the original design
justification was not. In particular we did not know which cases were
meant to be ”holdouts”.

Note that I am considering the problem of using conjoint analysis to
assess preferences. If the goal is different (e.g. finding optimal machine
settings) the interpretation of things like “noise” is different, and there
may be different design criteria.

1 Design

1.1 intro

It is usually noted that the design chosen for a conjoint analysis is very im-
portant. However, aside from some remarks on the minimum number of cards
that need to be chosen from the full factorial design, and the unhelpful advice
that this number should be made larger to account for noise, most summaries
written for the practitioner tell you very little (And most stuff written for the
Statistician either tells you nothing, or assumes that you already know the ba-
sics.)

In practice, the design is chosen by deciding on a number of cards, then
asking some computer program for a design with about that number of cards.
Indeed, if the number of cards chosen is reasonable, the default settings of most
packages will result in a good model. However, this does not allow for trade
offs (e.g. exact orthogonality vs size), nor is “The Computer told me” a very
satisfying answer if someone asks “Why did you choose this model?”

I will try to give some indication of why certain design criteria are important
by considering a simple example.

Suppose we are studying factors that managers use to hire people. We look
at four factors, university attended, Prestige, Excellent, Good; sex, male or
female; Dress, smart or messy; and hair, long or short.

The managers are all the same. They will pick first by university, Prestige,
Excellent, Good in that order, within a university they will first pick a male over

1

a female, and finally they will pick a smartly dressed candidate over a messily
dressed candidate. The managers do not care about hair length

We can get R to produce the full factorial set of cards.

> experiment = expand.grid(

+ University=c("Prestige","Excellent","Good"),

+ Sex=c("Male","Female"),

+ Dress =c("smart","messy"),

+ Hair=c("long","short"))

> print(experiment)

University Sex Dress Hair

1 Prestige Male smart long

2 Excellent Male smart long

3 Good Male smart long

4 Prestige Female smart long

5 Excellent Female smart long

6 Good Female smart long

7 Prestige Male messy long

8 Excellent Male messy long

9 Good Male messy long

10 Prestige Female messy long

11 Excellent Female messy long

12 Good Female messy long

13 Prestige Male smart short

14 Excellent Male smart short

15 Good Male smart short

16 Prestige Female smart short

17 Excellent Female smart short

18 Good Female smart short

19 Prestige Male messy short

20 Excellent Male messy short

21 Good Male messy short

22 Prestige Female messy short

23 Excellent Female messy short

24 Good Female messy short

In this simple case we have 24 cards. It might be practical to use all possible
cards (usually it is not) but we will consider a subset of the cards anyway.

We will use a simple model.

r = β11X11 + β12X12 + β2X2 + β3X3 + β4X4 + d (1)

Where r is the rank, βi are the coefficients to be estimated, the Xi are the
variables, University (coded as two variables), Sex, Well Dressed and Hair, and
d is the intercept.

Note that this model does not directly reflect how the managers make deci-
sions. We hope that it can come close enough.

2

In matrix form we have
R = Xβ + d (2)

This is a bit ugly, so we absorb the intercept by prepending a column of ones
to X and adding a β0 obtaining

R = Xβ (3)

We are assuming that there are no significant cross terms (e.g. that there
are no managers that like short hair on males and long hair on females).

We note that there are 6 parameters to be estimated, so we will need at least
6 cards (this leaves nothing for noise, but we can reasonably assume that noise
is low. More significant is the fact that the model does not fit perfectly with
real life, and we do not have any extra stuff to take care of this “noise”.)

The solution is

β = (XTX)−1XR (4)

So the minimum requirement is that the “information matrix” XTX be in-
vertible.

1.2 Orthogonality

We start by taking the first six lines.

> first.six = experiment[c(1,2,3,4,5,6),]

> print(first.six)

University Sex Dress Hair

1 Prestige Male smart long

2 Excellent Male smart long

3 Good Male smart long

4 Prestige Female smart long

5 Excellent Female smart long

6 Good Female smart long

A glance at this tells us that it is not very good. For one thing we only
have cases for long hair. How are we supposed to tell whether managers are
interested in hair length if we never ask about it?

Indeed, the information matrix (when augmented) will be singular. Lets set
up an analysis anyway. Let us take ranks from worst to best, so positive utility
is good. We can get the ranks with a bit of R magic. Note that we take the
ranks of all cases, not just the first six lines

> ranks <- function(mat) ((NROW(mat)+1)-order(do.call(order, lapply(1:(NCOL(mat)-1), function(i) as.matrix(mat[,i])))))

> rnks = ranks(data.matrix(experiment))

> print(rnks)

[1] 24 16 8 20 12 4 22 14 6 18 10 2 23 15 7 19 11 3 21 13 5 17 9 1

3

(It is a fun R exercise to figure out why the ranks function works, but it is
easy to check by hand.)

(The package can work out the ranks that would be produced if we only
have the first six lines)

> despack=NULL

> despack$designs[[1]]=first.six

> M.Conjoint(despack,rnks)

and the output is

Error in `contrasts<-`(`*tmp*`, value = contr.funs[1 + isOF[nn]]) :

contrasts can be applied only to factors with 2 or more levels

Not the most user friendly error message but the package thinks there is a
problem. We pick a new set of 11 cases.

> design.two=experiment[c(1,3,18,7,16,17,8,22,23,10,24),]

> print(design.two)

University Sex Dress Hair

1 Prestige Male smart long

3 Good Male smart long

18 Good Female smart short

7 Prestige Male messy long

16 Prestige Female smart short

17 Excellent Female smart short

8 Excellent Male messy long

22 Prestige Female messy short

23 Excellent Female messy short

10 Prestige Female messy long

24 Good Female messy short

The ranks are

> rns = ranks(data.matrix(design.two))

> print(rns)

[1] 11 3 2 10 9 5 6 8 4 7 1

Note that to get the ranks for cases 8 and 10 the manager had to flip a coin.

> rnks1=rnks

> rnks1[10]=17

> rnks1[22]=18

> despack=NULL

> despack$designs=NULL

> despack$designs[[1]]=design.two

> M.Conjoint(despack,rnks1)

4

Average values are output

They may or may not be meaningful

Utilities

intercept 5.690

Prestige 3.810

Excellent -0.262

Good -3.548

Male 1.464

Female -1.464

smart 0.429

messy -0.429

long -0.607

short 0.607

Importances

University 0.59537572

Sex 0.23699422

Dress 0.06936416

Hair 0.09826590

The program has incorrectly assigned an importance to hair length, more
than the importance of being well dressed. What went wrong?

Well, lets check the correlation of the variables

> cor(data.matrix(design.two))

University Sex Dress Hair

University 1.00000000 0.06185896 -0.19920477 0.2390457

Sex 0.06185896 1.00000000 0.06900656 0.8280787

Dress -0.19920477 0.06900656 1.00000000 -0.1000000

Hair 0.23904572 0.82807867 -0.10000000 1.0000000

The chosen design is not orthogonal, that is the variables are not pairwise
uncorrelated Indeed we note that the correlation between Sex and Hair is high
(>.8).

Now there is no perfectly orthogonal design that uses 11 cards, but we can
do much better

> design.three=experiment[c(1,3,4,8,11,14,17,18,19,21,22),]

> print(design.three)

University Sex Dress Hair

1 Prestige Male smart long

3 Good Male smart long

5

4 Prestige Female smart long

8 Excellent Male messy long

11 Excellent Female messy long

14 Excellent Male smart short

17 Excellent Female smart short

18 Good Female smart short

19 Prestige Male messy short

21 Good Male messy short

22 Prestige Female messy short

> print(cor(data.matrix(design.three)))

University Sex Dress Hair

University 1.0000000 -0.1256562 -0.1256562 0.1256562

Sex -0.1256562 1.0000000 -0.1000000 0.1000000

Dress -0.1256562 -0.1000000 1.0000000 0.1000000

Hair 0.1256562 0.1000000 0.1000000 1.0000000

(I will explain below how I got this model) We note that the cross correlations
are all about .1

The ranks for the new design are

> rnk = ranks(data.matrix(design.three))

> print(rnk)

[1] 11 3 9 6 4 7 5 1 10 2 8

> despack=NULL

> despack$designs=NULL

> despack$designs[[1]]=design.three

> M.Conjoint(despack,rnks)

Average values are output

They may or may not be meaningful

Utilities

intercept 5.5

Prestige 4.0

Excellent 0.0

Good -4.0

Male 1.0

Female -1.0

smart 0.5

messy -0.5

long 0.0

short 0.0

6

Importances

University 7.272727e-01

Sex 1.818182e-01

Dress 9.090909e-02

Hair 1.376224e-17

And we see that for this design we (correctly) have that hair has no effect.
Thus when we chose a design we have to make sure that no unimportant

effects are correlated with an important effect. Since we do not know what
effects are important (that is what we are trying to find out) we need to choose
a design that has no large correlations. This leads immediately, to an orthogonal
design in which all the correlations are zero. Unfortunately, orthogonal designs
do not always exist. Practically, however, an almost orthogonal design is fine.

1.3 Balance

Now consider the design

> design.four=experiment[c(1,4,7,10,13,16,18,20),]

> print(design.four)

University Sex Dress Hair

1 Prestige Male smart long

4 Prestige Female smart long

7 Prestige Male messy long

10 Prestige Female messy long

13 Prestige Male smart short

16 Prestige Female smart short

18 Good Female smart short

20 Excellent Male messy short

We note the university is almost always Prestige. Do a conjoint analysis.

> despack=NULL

> despack$designs=NULL

> despack$designs[[1]]=design.four

> M.Conjoint(despack,rnks)

Average values are output

They may or may not be meaningful

Utilities

intercept 3.0

Prestige 2.0

7

Excellent -1.0

Good -1.0

Male 1.5

Female -1.5

smart 1.0

messy -1.0

long 0.5

short -0.5

Importances

University 0.3333333

Sex 0.3333333

Dress 0.2222222

Hair 0.1111111

Not a very good result. The importance of university is badly underesti-
mated. And according to the utilities, there is no difference between an excellent
university and a good university.

Let us simulate some “noise” by assuming one pair of cards (the last pair
corresponding to lines 18 and 20) was misranked

> rnks1=rnks

> rnks1[c(18,20)]= c(13,3)

> despack=NULL

> despack$designs=NULL

> despack$designs[[1]]=design.four

> M.Conjoint(despack,rnks1)

Average values are output

They may or may not be meaningful

Utilities

intercept 3.0

Prestige 2.0

Excellent -2.0

Good 0.0

Male 1.5

Female -1.5

smart 1.0

messy -1.0

long 0.5

short -0.5

Importances

8

University 0.4

Sex 0.3

Dress 0.2

Hair 0.1

Now an excellent university is a lot worse than a good university.
So pick a new model

> design.five=experiment[c(2,5,7,12,15,16,20,23),]

> print(design.five)

University Sex Dress Hair

2 Excellent Male smart long

5 Excellent Female smart long

7 Prestige Male messy long

12 Good Female messy long

15 Good Male smart short

16 Prestige Female smart short

20 Excellent Male messy short

23 Excellent Female messy short

We note that the universities are much better distributed. Do the analysis

> despack=NULL

> despack$designs=NULL

> despack$designs[[1]]=design.five

> M.Conjoint(despack,rnks)

Average values are output

They may or may not be meaningful

Utilities

intercept 4.50

Prestige 3.00

Excellent 0.00

Good -3.00

Male 0.75

Female -0.75

smart 0.25

messy -0.25

long 0.25

short -0.25

Importances

University 0.70588235

9

Sex 0.17647059

Dress 0.05882353

Hair 0.05882353

>

Note that the relative importance of university is much better and that an
excellent university is much better than a good university. Simulate some“noise”

> rnks1=rnks

> rnks1[c(15,23)]= c(9,7)

> despack=NULL

> despack$designs=NULL

> despack$designs[[1]]=design.five

> M.Conjoint(despack,rnks1)

Average values are output

They may or may not be meaningful

Utilities

intercept 4.583

Prestige 2.917

Excellent -0.333

Good -2.583

Male 1.000

Female -1.000

smart 0.500

messy -0.500

long 0.250

short -0.250

Importances

University 0.61111111

Sex 0.22222222

Dress 0.11111111

Hair 0.05555556

Things have not changed very much. In particular an excellent university
still has a much higher utility than a good university.

Thus we see that having a good“balance”of universities is useful. In general,
“balance”, having close to equal numbers of each level for a variable, is a good
thing. The resulting design tends to give better results and is more resistant to
noise.

10

1.4 Finding a Design

1.4.1 Classical Designs

So how can we get such designs. One way is to take a so called “classical” design.
These go under a number of names, e.g. “fractional factorial”. Classical designs
are both orthogonal and well balanced. Usually a classical design will only work
for a given number of factors and levels, and for a given number of cards. In
practice, you find a classical design which fits your problem (number of factors
and levels) and look for a number of cards close to what you want. This does
not always work. There may be no known classical design of the type you want
for the problem you have. Even if there is, the number of cards may be wrong.
One set of classical designs, the “fractional factorial” designs exist for a wide
range of problems. So one trick is to specify a fractional factorial design, and
give a minimum number of cards. A design will be produced, but may have a
lot more cards than the specified minimum.

1.4.2 Computer Search

Another method is too keep searching through designs till you find a good one.
This would be ridiculously tedious by hand, but is quite doable by computer.

Of course we will need a way to tell the computer how to recognize a good
design (it is impractical to check all designs by hand). We can simply ask
that the design be non singular, approximately balanced and has no “large”
correlations. A number of definitions of large could be used, one obvious one
is the maximum value of the cross correlations. Smaller numbers of cards have
fewer designs with very low correlations. With eight cards correlations up to .3
have to be accepted to get a reasonable number of designs. For larger numbers
of cards this can be reduced to .2 or even .1.

A simple R program can check 1,000,000 designs in a couple of hours. Beware
that there are often many fewer designs available. For example, there are only
10,626 designs available if we choose 20 cards from the 24 cards in our full
design.

A simple strategy is to take the average values of importance from a number
of “good” designs. This will guard against having a single design that gives
outlying values.

To get some idea of how things might work, I did some simple calculations us-
ing the sample experiment First I used mc.good.design which looks for “good”
designs. I then calculated the importances of the factors for each design.

The first experiment was done with the minimum number of cards possible,
6. For this small a number of cards, no valid designs were found for cross
correlations below 0.15. This was changed to 0.28. Even so, 100000 designs had
to be checked to get a reasonable number, 300, of valid designs. A histogram of
the importances follows.

11

Six Card 'Good' Designs
D

en
si

ty

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10 University

Sex
Dress
Hair

As can be noted, the most important factor “university” is well separated.
The other factors are not well distinguished. Nor is it always clear that “hair”
is less important than “dress”.

If we increase the number of cards to 9 things start to look a bit better.
We can now reduce the maximum cross correlation to 0.15. We need to look at
170000 designs to get 300 valid designs.

12

Nine Card 'Good' Designs
D

en
si

ty

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20 University
Sex
Dress
Hair

The other factors are now separated (especially “sex” which only has a small
overlap with the other two factors).

The advantage to using a “good” design can be seen in a simulation where
any design that could be used (non singular, at least one of every level) was

13

used.

ALL Nine Card Designs

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

12 University
Sex
Dress
Hair

While the most important factor“university” is well separated, there is still a
little overlap and the other factors are not very well separated. The factor “sex”
is seen as the third or fourth most important factor almost 14% of the time,
while with the “good” designs “sex” was the third or fourth most important
factor about 4% of the time.

1.4.3 Optimization

Instead of looking for a number of “good” designs we can instead look for the
“best” design. The standard way to do this is to check the information matrix.
Indeed we can show that the variances/co-variances of the β coefficients are
proportional to the inverse of the information matrix, Y = (XTX)−1. One
popular criterion, the “D” criterion, is to minimize the determinant of Y (that
is maximize the determinant of the information matrix). You can also use the
A criterion, minimize the trace of Y or the In practice the different criteria tend
to produce similar models.

You might not that by optimizing the information matrix you are not insur-
ing a low correlation, well balanced design. True, but most optimal designs are
low correlation and well balanced.

Many software packages are capable of producing“optimal”designs according
to one of the above criteria (note: the designs chosen may not be truly optimal as
the search routines normally used tend to land at local extrema, but in practice
this is not a problem) In R, you can use the AlgDesign package

14

You need to choose the number of cases/cards (see below), n. Then ask for
this many cards from the full design. Exact syntax (n = 11) is

> set.seed(123) #only added for consistency reasons

> des.11 = optFederov(~., experiment, nTrials = 11)$design

> print(des.11)

University Sex Dress Hair

1 Prestige Male smart long

3 Good Male smart long

4 Prestige Female smart long

8 Excellent Male messy long

11 Excellent Female messy long

14 Excellent Male smart short

17 Excellent Female smart short

18 Good Female smart short

19 Prestige Male messy short

21 Good Male messy short

22 Prestige Female messy short

(Note this will use the “D” criterion) This was how design.three was ob-
tained.

1.5 Holdouts

It is traditional with Conjoint Analysis to add a number of extra cards to a
design. These cards will be ranked during the survey, but will no be used in the
initial analysis. They are used to check the model produced by the Conjoint
analysis, either on globally or case by case.

One problem is that there is no agreed on way of using the holdouts. One
commonly used method is to use the Conjoint Model to predict the ranking of
the holdout cards and then compare this ranking to the ranking obtained from
the survey. In the simplest case of two holdouts the question is simply whether
the model is right or wrong. If a larger number of holdouts is used the total
rankings can be compared (e.g. Kendall’s tau) or partial comparisons (e.g. the
highest ranked card).

Another problem is that there is no agreed way to use the information. One
possible approach is to use only those subjects for which the Conjoint model
predicts correctly. Another is to scrap the analysis if the fit is too bad. The
question is what to do then. Do you try a different type of analysis? If you
suggest to your boss that the (very expensive) data set is useless, then it is you,
not the data set, that will be discarded.

I suggest a simple alternate approach. Rather than use the holdout cards to
check the analysis, one can create extra ”good” designs. So given n cards and
m holdouts, we can look for ”good” designs from the (n + m) choose n n card
designs that can be extracted from the set of (n + m) cards. The importances
and utilities can be calculated as averages over all the ”good” designs.

15

Since, under this scheme there is no real distinction between holdout and
non holdout cards, one method is to select a set of m cards that maximizes the
number of n card good design subsets. A simpler scheme is to obtain one ”very
good” n card design, either by searching or using an optimization scheme, then
adding m− n cards which maximize the number of ”good” designs.

1.6 Sample Size

The question of sample size in conjoint analysis is a bit complicated as there are
two questions

� How many questions to ask each subject

� How many subjects

These questions are not unrelated, but it is perhaps best to initially treat
them as if they were.

Note the information we want from each subject is “How important are each
of these factors in making your decision”. If we could ask this question directly
we would. However, we know that if we ask the question in this form we will
not get a very good answer. So, instead, we ask the subject to rank a number
of “cards” and attempt to determine the answer from these ranks. One way of
doing this (there are others) is to perform a linear fit. If the linear model fit
perfectly, then we would only need enough cards for the information matrix to
be non-singular; for each variable one less than the number of levels and one for
the constant. This is the minimum number of cards we need. Under the perfect
fit assumption, there is no noise, and no p-values. We are merely performing an
algebraic manipulation.

However, we know that a linear model is not a perfect way of describing how
people make decisions. So strictly speaking, using the linear model to answer
“How important are each of these factors in making your decision?” does not
work! The question is “How well does it work?”. In practice, the answer is “well
enough”. Does increasing the number of cards make the method work better?
The answer would seem to be yes. A rule of thumb is to take three more cards
than the minimum required.

If we treat the answers to the first question as noiseless, then our second
question is straightforward sampling theory. The rule of thumb is that your
error is about

√
number of samples. So to get answers correct to 10% use

100 subjects, to get answers correct to 3% use 1000 subjects. (Here we are
contemplating such questions as “what percentage of the population prefers
factor 1?”)

However, neither of these really addresses the question you will have. You
are given the average utilities, and the average importances. To what extent
can you trust these? The problem is that the uncertainties in these numbers
are influenced by a combination of the number of cards used and the number of
subjects asked. Furthermore, the way things vary may depend on factors you
do not know. For example, if everyone is the same, using more subjects will

16

not reduce the error. On the other hand, if there are many differences, using
lots of subjects is necessary, and using more subjects will give better answers
(although the model error may be correlated and will not decrease), but in this
case the averages (especially average utilities) may be meaningless.

So now you are saying, enough already, how large a sample do I need. The
problem is that there is no good single answer, nor any good rule of thumb.
Something that is worth doing is to histogram the importances and utilities by
subject (Note that despack$utils and despack$imps are what is needed here.)
In this simple example there was only one subject (all subjects were assumed to
be identical), however, usually the subjects will not be identical. You can look
for evidence that there is more than one importance peak (e.g that some subjects
give a factor a different importance.) Similarly for utilities. In particular look
for some subjects giving a factor a positive utility, while other subject give the
same factor a negative utility.

17

