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This article contains a short introduction to the R package StepSignalMargiLike for estimating

change-points in stepwise signals. In the first section, we will outline the theoretical framework of

the marginal Likelihood estimator as formulated in Du, Kao and Kou (2015). The second section

contains a brief introduction of the R-implementation of this method as seen in package StepSignal-

MargiLike. In the third section, we will demonstrate this package with a walk-through example.

1 Theoretical Framework of the Marginal Likelihood Estimator

Problems We define the stepwise signal as a series of observations x = {x1, x2, · · · , xn}, measured

at successive times (or spatial locations) t = {t1, t2, . . . , tn}, t1 < t2 < · · · < tn. The probability

distribution of the observations are determined by parameter θ ∈ Θ through a family of densities

f(x|θ). The signal appears to be stepwise due to the fact that θ is a step function of time whose

transitions are determined by m− 1 change-points τ1:(m−1) = {τ1, · · · , τm−1}:

θ(t) = θj if t ∈ (τj−1, τj ], (1.1)

where τj ∈ [t1, tn] for all j ∈ {1, · · · ,m − 1}. The m − 1 change-points split the signal into m

segments. We refer θ1:m = {θj}mj=1 as the segment parameters and further assume that the adjacent

θj ’s are distinguishable.

Given the change-points τ1:(m−1) and the associated segment parameters θ1:m, the observations

are assumed to be independently distributed:

P (x|τ1:(m−1),θ1:m) =

m∏
j=1

∏
ti∈(τj−1,τj ]

f(xi|θj). (1.2)

The observations up to time τ1 have density f(·|θ1); the distribution of observations after time τ1

but up to τ2 has parameter θ2; . . . ; the observations after time τm−1 are characterized by parameter
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θm. Please note that we set τ0 ≡ 0 and τm ≡ tn for notational ease. We further assume that the

change-points can only take discrete values from the set {ti}ni=1, that is, τj ∈ {t1, · · · , tn−1} for

j ∈ {1, · · · ,m− 1}.
The main goal of our estimator is to determine the number m and positions {τj}m−1

1 of the

change-points in the stepwise signal {xi}ni=1. With the change-points determined, the segment

parameters θ1:m can often be estimated with relative ease.

Marginal Likelihood Estimator Our method utilizing the marginal likelihood in which θ1:m are

integrated out (Chib, 1998; Yang and Kuo, 2001; Fearnhead, 2005). Given the set of change-points

τ1:(m−1), we assume that the segment parameters θ1:m are independently and identically drawn

from a prior distribution π(·|α) with pre-determined hyperparameter(s) α. Then we can express the

conditional marginal likelihood given the set of change-points, as

P (x|τ1:(m−1)) =

m∏
j=1

∫
θj

∏
ti∈(τj−1,τj ]

f(xi|θj)π(θj |α)dθj

:=

m∏
j=1

D(x(τj−1,τj ]|α), (1.3)

where, in general, D(x(a,b]|α) denotes the probability of obtaining the observations during the period

(a, b] with no change-point in between. A closed form of D(x(a,b]|α) can be obtained if conjugate

priors are used. Otherwise, D(x(a,b]|α) can be calculated by numerical methods.

We estimate the set of change-points as the maximizer of P (x|τ1:(m−1)) over all the feasible

combinations of change-points, restricted by an upper bound M ≤ n on the number of segments. In

the extreme case of M = n, every observation ti can be a segment itself.

Computation We handle the computational burden with a dynamic programming algorithm

(Bellman and Roth, 1969; Bement and Waterman, 1977; Auger and Lawrence, 1989). Suppose

that M ≤ n is an upper bound for the number of segments, we suggest the following algorithm.

Define

H(x1, · · · , xi|m) = max
τ1:(m−1)⊆{t1,··· ,ti−1}

P (x1, · · · , xi|τ1:(m−1)).

Step 1 For 1 ≤ i ≤ n: H(x1, · · · , xi|1) = D(x1, · · · , xi|α)
...

Step m For m ≤ i ≤ n: H(x1, · · · , xi|m) = max
m−1≤j≤i−1

H(x1, · · · , xj |m− 1)D(xj+1, · · · , xi|α)

...
Step M For M ≤ i ≤ n: H(x1, · · · , xi|M) = max

M−1≤j≤i−1
H(x1, · · · , xj |M − 1)D(xj+1, · · · , xi|α)
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Using the above recursive functions, we can obtain the following estimators with computational

cost O(n2M) and storage O(nM):

• the maximum marginal likelihood estimator τ̂1:(m−1) with exactly m segments (m ≤M)

τ̂1:(m−1) = arg max
τ1:(m−1)

P (x|τ1:(m−1)), (1.4)

• the maximum marginal likelihood estimator τ̂M with up to M segments

τ̂M = arg max
τ1:(m−1), 1≤m≤M

P (x|τ1:(m−1)). (1.5)

Jackson et al. (2005) developed another more efficient but less flexible algorithm in which the

unrestrictive (with up to n segments) maximum marginal likelihood estimator τ̂ can be computed

with computational cost O(n2) and storage O(n). This algorithm is based on the following recursive

functions.

Define

G(x1, · · · , xi) = max
τ⊆{t1,··· ,ti−1}

P (x1, · · · , xi|τ ).

Step 1 G(x1) = D(x1|α)
...

Step i G(x1, · · · , xi) = max
1≤j≤i−1

G(x1, · · · , xj)D(xj+1, · · · , xi|α)

...
Step n G(x1, · · · , xn) = max

1≤j≤n−1
G(x1, · · · , xj)D(xj+1, · · · , xn|α)

Generally speaking, for a large value of M , we expect that τ̂M from the first algorithm is identical

to τ̂ from the second algorithm. Thus, the second algorithm is the algorithm of choice for large M .

On the other hand, if there is a strong restriction on the number of segments M or one needs to

compare models with different number of change-points, the first algorithm should be used.

Choice of hyperparameters α The performance marginal likelihood estimator depends on the

choice of prior distribution π(·|α), represented by the particular choice of hyperparameters α. So

long as the prior used is relatively consistent with the data, our estimator is quite robust and there is

some flexibility in choosing a good prior. Still, a strong prior tends to over-fit the data, yielding too

many change-points, while a weak prior tends to under-fit the data, missing the real change-points.

A reasonable choice of hyperparameters α can be chosen based on expert knowledge (Chib, 1998;

Fearnhead, 2005, 2006). However, such choice is often ambiguous and may not always be practical. In

contrast, our formulation uses an empirical Bayes approach to set the hyperparameters, as explained

in the following guidelines:
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1) Derive the expectation and variance of a single observation as functions of α, the hyperpa-

rameter: E(x|α) and V ar(x|α).

2) Set the value of α so that E(x|α) = µ̂, the sample average, and that V ar(x|α) is a large

multiple of σ̂2, the sample variance.

In particular, for normal and Poisson data, we recommend the following priors:

Normal Data: For normal data xi|(µj , σ2
j ) ∼ N(µj , σ

2
j ), we use the conjugate prior: σ2

j |m ∼
scaled Inv-χ2(ν0, σ

2
0), µj |(σ2

j ,m) ∼ N(µ0, σ
2
j /κ0).

(a) When the variability of the segment means µj is low or moderate (for example, if it is known

that the range of µj is moderate), we recommend two conjugate priors with hyperparameters:

Norm-A : µ0 = x̄, σ2
0 = σ̂2, κ0 =

1

2
, ν0 = 3; (1.6)

Norm-B : µ0 = x̄, σ2
0 = 2.5σ̂2, κ0 =

1

2
, ν0 = 3 (1.7)

The prior Norm-A is good at locating short segments, but may over fit the data when outliers

are common. The Norm-B prior is a more conservative choice. In practice, it is recommended to

apply the Norm-A prior first. If the resulting step function appears to be over-fitting, then Norm-B

prior can be applied to re-analyze the data. The final decision should be made based on the scientific

understanding of the applied problem.

(b) When the variability of the segment means µj is large (for example, if the range of µj is

large), we recommend the following conjugate prior:

Norm-C: µ0 = x̄, σ2
0 =

3

5
τ̂2, κ0 =

5

12

τ̂2

σ̂2
, ν0 = 3, (1.8)

where τ̂2 is the average within-segment sample variance based on the change-points estimator ob-

tained through prior Norm-A (i.e., τ̂2 is the average of σ̂2
j , where σ̂2

j is the sample variance within

the jth segment identified by first applying the prior Norm-A).

Remark 1. Under the conjugate prior, which has density

π(µj , σ
2
j |µ0, κ0, ν0, σ

2
0) =

(σ2
0ν0/2)ν0/2(σ2

j )
−(ν0/2+1)

Γ(ν0/2)(2πσ2
j /κ0)1/2

exp(− 1

2σ2
j

(
κ0(µj − µ0)2 + ν0σ

2
0

)
),

the marginal likelihood has a closed form in that

D(x(τj−1,τj ]|µ0, κ0, ν0, σ
2
0) ∝ (σ2

0ν0)ν0/2
Γ(

ν0+nj
2 )

Γ(ν0/2)

√
κ0

κ0 + nj

×
(
ν0σ

2
0 +

∑
x2
i −

1

nj
(
∑

xi)
2 +

κ0(
∑
xi − njµ0)2

nj(κ0 + nj)

)−(ν0+nj)/2

,
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where all the sums are over the set {i : ti ∈ (τj−1, τj ]}, and nj represents the number of observations

within the interval (τj−1, τj ].

Poisson Data: When the data consist of counts, such as fluorescence or photon counts from

biological or chemical experiments, modeling them as Poisson, xi|λj ∼ Poisson(λj), is more appro-

priate. We use the conjugate prior λj |α, β ∼ Γ(α, β). We recommend the following choice of the

hyperparameters

Pois-P: α = x̄β, β =
1

2σ̂2
. (1.9)

With this prior we have E(x|α, β) = x̄ and V ar(x|α, β) = x̄(1 + 2σ̂2).

Remark 2. Under the conjugate prior λj |α, β ∼ Γ(α, β), which has density π(λj |α, β) =
βα

Γ(α)λ
α−1
j e−βλj , the marginal likelihood has a closed form in that

D(x(τj−1,τj ]|α, β) ∝ Γ(
∑
xi + α)

Γ(α)
βα/(nj + β)α+

∑
xi ,

where the sums are over {i : ti ∈ (τj−1, τj ]}, and nj is the number of observations within (τj−1, τj ].

2 R Implementation

In our current implementation, the general function for estimating change-points in a given stepwise

signal using the aforementioned method is:

est.changepoints(data.x, model, prior, max.segs, logH, logMD)

This function requires the stepwise signals x, the log-marginal likelihood function log(D(x(a,b]|α))

(Distribution families including univariate Normal and Poisson are implemented in the current ver-

sion. For other cases, users need to supplant specific log-marginal likelihood functions), the hyper

parameters α as well as an upper bound M (optional) on the number of change-points. It returns

the maximum marginal likelihood estimator τ̂M as in equation 1.5, a matrix that contains the log

value of the H matrix used in the algorithm and an index matrix that records the j that maximizes

the marginal likelihood in each step. Note that in our current implementation, the time series t only

functions as label, so the convention that ti = i for i ∈ {1, 2, · · · , n} is used. The arguments used in

this function are explained in detail below:
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data.x Observed data x in vector or matrix form. When the data is in matrix form,
each column should represent a single observation.

model The specified distributional assumption. Currently we have implemented two
arguments: ‘normal’ (data follows one dimensional Normal distribution with
unknown mean and variance) and ‘poisson’ (data follows Poisson distribution
with unknown intensity). A third argument ‘user’ is also accepted, given that
the prior, upper bound on the number of change-points and the log marginal
likelihood function are specified in the arguments prior, max.segs and logMD.

prior The hyperparameter(s)α, which are used for calculating log marginal likeli-
hood.

max.segs Optional argument. The upper bound M on the number of change-points,
which must be a positive integer greater then 1. If missing, the function
would process using the algorithm by Jackson et al.(2005).

logH Optional argument. If TRUE, in addition to the estimated set of change
points, the function also returns the log of the matrix H and a index matrix
that records the j that maximizes the marginal likelihood in each step . Default
is FALSE.

logMD Optional argument. Log marginal likelihood function log(D(x(a,b]|α)), which
takes two arguments, the observed signal and the hyperparameters.

When the optional argument logH is set to be FALSE (default value), this function returns a

vector that represents the set of estimated change-points. Each element in the vector represents

the index of the end point of a segment. If the result is no change-points, the function returns

NULL. When the optional argument logH is set to be TRUE, this function returns a list with three

components:

changePTs A vector that represents the set of estimated change-points. Each element in
the vector represents the index of the end point of a segment. If the result is
no change-points, an empty vector is returned.

log.H The log value for the H matrix used in the algorithm, where log.H(m,i) =
logH(x1, x2, ..., xi|m). In case that the optional argument max.segs is unspec-
ified, this argument instead returns the log value for the G vector used in the
algorithm by Jackson et al.(2005), where log.H(i) = logG(x1, x2, ..., xi|m).

max.j An index matrix (vector if optional argument max.segs is unspecified) which
records the j that maximizes the marginal likelihood in each step.

The estimation results can be visualized using the following supplement function:

PlotChangePoints(data.x, data.t, index.ChPTs, est.mean, ...)
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data.t The one-dimensional array t, serves as label.
index.ChPTs The set of the index of change-points in an ascending array, which is the result

of est.changepoints.
est.mean The array of estimated segment means, whose length must be one plus the

length of index.ChPTs.

The plot function also allow the following optional variables for customized plotting:

type.data The line type for the data. Options are the same as in plot() argument.
Default is "l".

col.data The line color for the data. Options are the same as in plot() argument.
Default is "red".

col.est The line color for the estimated stepwise signal. Options are the same as in
plot() argument. Default is "blue".

main.plot The overall title used in the plot, which is like the main in plot(). Default is
NULL.

sub.plot The sub title used in the plot, which is like the main in plot(). Default is
NULL.

xlab.plot The title for the x axis used in the plot, which is like the main in plot().
Default is "data.t".

ylab.plot The title for the y axis used in the plot, which is like the main in plot().
Default is "data.x".

Functions for estimating the posterior segmental means in Normal and Poisson distributed sig-

nals.

est.mean.norm(data.x, index.ChPTs, prior)

est.mean.pois(data.x, index.ChPT, prior)

Functions for calculating the hyperparameters α with the empirical Bayesian method outlined

in the pervious section. These functions can be used to calculated the Norm-A, Norm-B, Norm-C

and Pois-P hyperparameters, respectively.

prior.norm.A(data.x)

prior.norm.B(data.x)

prior.norm.C(data.x)

prior.pois(data.x)

3 A walk-through example: Array CGH data

Background Locating the aberration regions in a genomic DNA sequence is important for un-

derstanding the pathogenesis of cancer and many other diseases. Array Comparative Genomic Hy-
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bridization (CGH) is a technique developed for such a purpose. A typical array CGH data sequence

consists of the log-ratios of normalized intensities from disease versus control samples, indexed by

the genome numbers. The regions of concentrated high or low log-ratios departing from 0 indicate

amplification or loss of chromosomal segments. Thus, the central question in analyzing array CGH

data is to detect those abnormal regions.

Example Here we will use our marginal likelihood method to study one sample of array CGH data

analyzed in Lai et al. (2005). The data are normalized based on the raw glimoa data from Bredel

et al. (2005), which concerns primary glioblastoma multiforme (GBM), a malignant type of brain

tumor. In particular, this sample represents chromosome 13 in GBM29. The normalized data in

xls format is available at http://compbio.med.harvard.edu/Supplements/Bioinformatics05b.

html.

The following codes can be used to estimate the change-points in this sample. Both Norm-A

and Norm-B priors are used to analyze the data.

library(StepSignalMargiLike)

data(Chrom_13_GBM29)

data.x<-Chrom_13_GBM29

#### Extract the normalized log-ratios intensity sequence.

data.t <- 1:length(data.x)

#### Set the time sequence.

max.segs <- 10

#### This signal only contains a few segments, so the maximum number

#### of segments is set to 10.

prior.A <- prior.norm.A(data.x)

index.ChangePTs.A <- est.changepoints(data.x, model="normal", prior.A, max.segs)
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#### Estimate the change-points using Norm-A prior.

prior.B <- prior.norm.B(data.x)

index.ChangePTs.B <- est.changepoints(data.x, model="normal", prior.B, max.segs)

#### Estimate the change-points using Norm-B prior.

par(mfrow=c(2,1))

est.mu.A <- est.mean.norm(data.x, index.ChangePTs.A, prior.A)

PlotChangePoints(data.x, data.t, index.ChangePTs.A, est.mu.A)

est.mu.B <- est.mean.norm(data.x, index.ChangePTs.B, prior.B)

PlotChangePoints(data.x, data.t, index.ChangePTs.B, est.mu.B)

#### Estimate and draw the step functions of the means.

The estimated step functions along with the CGH data are shown in Figure 1 for sample GBM29.

In sample GBM29, three regions of high amplitude amplifications exist and have been well

studied. Based on Figure 1, both estimators successfully identify these three high amplifications even

though the first two regions are separated only by four probes. The estimator based on the Norm-A

prior identified a single-probe outlier, which could be a real local aberration or an experimental

error.
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Figure 1: Array CGH data of GBM29, with the estimated step functions based on Norm-A and
Norm-B priors.
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