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Abstract

We introduce the UPG package for highly efficient Bayesian inference in probit, logit,
multinomial logit and binomial logit models. UPG offers a convenient estimation frame-
work for balanced and imbalanced data settings where sampling efficiency is ensured
through MCMC boosting methods. These convenient theoretical properties are combined
with a speedy implementation using Rcpp. In addition, UPG offers several methods for
fast production of output tables and summary plots that are easily accessible to a broad
range of users.
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1. Introduction

Modeling binary and categorical data is one of the most commonly encountered tasks of
applied statisticians and econometricians. Probit and logit models are widely used to model
binary outcomes while their extensions to multinomial and binomial regression models also
have a permanent place in the toolbox of applied statistics. In this article, we present UPG,
a new and comprehensive package for Bayesian analysis of well-known binary and categorical
data models. UPG is based on a number of highly efficient ’Ultimate Pólya Gamma’ MCMC
algorithms that have been developed in Frühwirth-Schnatter, Zens, and Wagner (2020). The
package features a speedy implementation as well as a number of ’plug&play’ solutions to
facilitate analysis and communicating results for researchers in a broad range of fields.

In principle, estimation of probit, logit and binomial regression models in R is readily avail-
able via glm in stats (R Core Team 2018). However, due to the immense popularity and
broad range of applications of these models, it comes as no surprise that a large number
of R packages offer several extensions and modifications. For instance, regularized logistic
regression is implemented in several packages such as CDLasso (Grant, Lange, and Wu 2013),
clogitL1 (Reid and Tibshirani 2014), clogitLasso (Avalos, Pouyes, Kwemou, and Xu 2018),
enetLTS (Kurnaz, Hoffmann, and Filzmoser 2018), gren (Münch, Peeters, van der Vaart, and
van de Wiel 2018) or stepPlr (Park and Hastie 2018). In addition, some rather specialized
applications of logistic regression have been released. These include high dimensional fixed
effect models (FEprovideR; He and Wu 2019), logistic regression trees (glmtree; Ehrhardt
2019), logistic PCA (logisticPCA; Landgraf and Lee 2015) and mixtures of logistic regres-
sions (morpheus; Auder and Loum 2020). Similarly, a variety of probit modifications may be
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found, for instance in the context of instrumental variable analysis (ivprobit; Taha 2018) or
spatial econometrics (spatialprobit; Wilhelm and de Matos 2015).

While most of these packages implement some variant of maximum likelihood estimation,
several packages using Bayesian estimation algorithms are available. For example, HTLR
(Li and Yao 2018) implements Bayesian logit models with heavy-tailed priors, MHTrajecto-
ryR (Marbac and Sedki 2016) may be used for model selection in logit models, OncoBayes2
(Weber, Widmer, and Bean 2020) implements Bayesian logit models suited for oncology re-
search and reglogit (Gramacy 2018) uses Gibbs sampling to simulate from the posterior of
regularized logistic regression models. A related, ’pseudo-Bayesian’ approach is taken in the
arm package (Gelman, Su, Yajima, Hill, Pittau, Kerman, Zheng, and Dorie 2020) that im-
plements an approximate EM algorithm for several Bayesian generalized linear models in
command bayesglm. binomlogit (Fussl 2014) allows the user to estimate a binomial logistic
regression model using data augmentation (Fussl, Frühwirth-Schnatter, and Frühwirth 2013),
offering one of the extremely few models dealing with binomial logits and the only Bayesian
one available so far.

Contrary to probit, logit and binomial logit models, no estimation method for multinomial
logit models is available in stats. Hence, the user has to rely on externally provided software
packages to estimate multinomial logistic regression models in R. Naturally, this has given
rise to a number of packages including standard multinomial logit analysis, such as VGAM
(Yee 2010), nnet (Venables and Ripley 2002) or mlogit (Croissant 2020). In addition, certain
specialized solutions are also available for dealing with multinomial outcomes. These include,
among others, mnlogit (Hasan, Wang, and Mahani 2016) for fast estimation in large scale set-
tings, mlogitBMA (Sevcikova and Raftery 2013) for Bayesian model averaging of multinomial
logits as well as gmnl (Sarrias and Daziano 2017) for multinomial logits with random coeffi-
cients. A more robust version of the multinomial logit model that deals with overdispersed
data can be found in multinomRob (Mebane, Jr., and Sekhon 2013).

This (certainly non-exhaustive) review of available packages is convincing evidence of the
large demand for readily available software solutions when it comes to modeling of binary
and categorical data. Aforementioned packages cover a broad set of applications and provide
useful specialized tools for many settings. However, a number of shortcomings remain that we
seek to tackle through releasing UPG. First, UPG allows for comprehensive analysis of the four
most commonly encountered models for binary and categorical data in one simple, unified
framework. This solves the problem that, at the moment, researchers may have to switch
between packages for different tasks where functionality and usability may vary substantially.
In addition, a comprehensive and streamlined coding framework allows to easily extend the
basic Bayesian regression framework outlined in this article to include e.g. additional prior
settings or more involved model setups in the future. Second, UPG is especially well suited
for analysis of imbalanced data, where the implemented algorithms make extremely efficient
posterior simulation possible. Bayesian analysis of imbalanced data has so far not been the
focus of any package released in R (or any other programming language) while being a highly
relevant problem in applied statistics (Johndrow, Smith, Pillai, and Dunson 2019; Frühwirth-
Schnatter et al. 2020). Finally, no Bayesian multinomial logistic regression framework is
currently available on CRAN1, a gap that we are aiming to fill with UPG.

1The former package bayesCL has been recently removed from CRAN. BayesLogit (Polson, Scott, and
Windle 2013a) included multinomial logistic regression in previous versions that have also been removed from
CRAN. The updated, currently available version of BayesLogit has been reduced to a random number generator
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In general, the Bayesian paradigm has a number of pronounced benefits when it comes to
estimation of binary and categorical data models. Besides the usual conveniences of Bayesian
uncertainty quantification and easy implementation of model extensions, it is well known
that Bayesian methods are useful to resolve the issue of perfect separation. This phenomenon
occurs when a given covariate (quasi-)perfectly separates the outcome variable of interest.
To avoid that parameters drift off to ±∞ in such scenarios, frequentist statistics suggests for
instance penalized likelihood methods (Heinze and Schemper 2002). In a Bayesian context,
the combination of a potentially ’problematic’ likelihood with a weakly informative prior
with finite support automatically resolves the issue of perfect separation (Gelman, Jakulin,
Pittau, Su et al. 2008; Rainey 2016). Tightly related to the occurence of perfect separation
are scenarios where certain outcome categories are observed only very rarely or not at all. For
similar reasons as outlined above, Bayesian inference helps researchers to avoid implausible
parameter estimates in these cases. In fact, UPG is especially well suited for estimation
in such imbalanced data scenarios, as the implemented algorithms will offer a high level of
efficiency even for extremely imbalanced data sets (Frühwirth-Schnatter et al. 2020).

Apart from the practical and methodological benefits raised above, UPG aims to provide
a wide range of functionality in order to be appealing to different groups of R users. First,
researchers that are already familiar with Bayesian statistical analysis can easily introduce the
underlying MCMC algorithms in UPG as an additional sampling block to pre-existing Gibbs
sampling algorithms using a few lines of code. This may prove useful in several applications,
including mixture-of-experts models (Gormley and Frühwirth-Schnatter 2019) or analysis of
Markov switching models (Frühwirth-Schnatter 2006). Second, for a much broader group of
users, the package implements several methods for easy and fast production of tables and
plots from the estimation output provided. This facilitates analysis also for users that are not
commonly working within the Bayesian paradigm.

UPG is licensed under the GNU General Public License 3 and is openly available on the
Comprehensive R Archive Network (CRAN, https://cran.r-project.org/package=UPG).

The remainder of this article is structured as follows. Section 2 provides a short overview of
the methodology behind UPG. Section 3 gives a brief introduction to the package, intended as
a quick-start guide. Section 4 presents an extended illustration of the functionality of UPG.
Finally, Section 5 concludes.

2. Brief methodological overview

This section provides a brief summary of the key insights relevant to understand the inner
workings of the models implemented in UPG. Most of the contents and ideas are directly
taken from Frühwirth-Schnatter et al. (2020) where the authors develop the methodology
underlying UPG. This is also where the reader is refered to for more information and details.

2.1. Binary regression

Binary regression models for a set of N binary data y = (y1, . . . , yN ) are defined by

Pr(yi = 1|xi,β) = Fε(xiβ). (1)

for Pólya Gamma variables.
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Choosing the cdf Fε(ε) = Φ(ε) of the standard normal distribution leads to the probit model
Pr(yi = 1|xi,β) = Φ(xiβ), whereas the cdf Fε(ε) = eε/(1 + eε) of the logistic distribution
leads to the logit model

Pr(yi = 1|xi,β) = exiβ/(1 + exiβ).

A latent variable representation of model (1) involving the latent utility zi is given by:

yi = I{zi > 0}, zi = xiβ + εi, εi ∼ fε(εi), (2)

where fε(ε) = F ′ε(ε) = φ(ε) is equal to the standard normal pdf for a probit model and equal
to fε(ε) = eε/(1 + eε)2 for a logit model.

While MCMC estimation based on (2) is straightforward for the probit model using one
level of data augmentation involving the latent utilities (z1, . . . , zN ) (Albert and Chib 1993),
for the logit model a second level of data augmentation is required in addition to zi, based
on a mixture representation of the logistic distribution. In UPG, we apply the mixture
representation of the logistic distribution from Frühwirth-Schnatter et al. (2020),

fε(ε) = eε/(1 + eε)2 =
1

4

∫
e−ω ε2/2p(ω)dω, (3)

where ω ∼ PG (2, 0) follows a Pólya-Gamma distribution (Polson, Scott, and Windle 2013b)
with parameter b = 2 and κ = 0. Most conveniently, ωi|εi again follows a Pólya-Gamma
distribution which is easy to sample from. Hence, setting up a Gibbs sampling scheme is
straightforward.

2.2. Multinomial logistic regression

Let {yi} be a sequence of categorical data, i = 1, . . . , N , where yi is equal to one of at least
three unordered categories. The categories are labeled by L = {0, . . . ,m}. We assume that
the observations are mutually independent and that for each k ∈ L the probability of yi taking
the value k depends on covariates xi in the following way:

P(yi = k|β0, . . . ,βm) = πki(β0, . . . ,βm) =
exp(xiβk)
m∑

l=0

exp(xiβl)

, (4)

where β0, . . . ,βm are category specific unknown parameters of dimension d. To make the
model identifiable, the parameter βk0 of a baseline category k0 is set equal to 0: βk0 = 0.
Thus the parameter βk is in terms of the change in log-odds relative to the baseline category
k0. In the following, we assume without loss of generality that k0 = 0.

UPG uses the aggregated random utility model (aRUM) representation from Frühwirth-
Schnatter et al. (2020) for estimation. To sample the category specific parameter βk, the
data is reduced to three categories: category k, the baseline category, and a category which
collapses the remaining categories in A = {l ∈ L|l 6= {k, 0}}. Let uki denote the latent utility
of observation i when choosing category k. For all categories in A, we define an aggregated
utility ua,i = maxl∈A uli as the maximal utility in A.
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For each specific category k = 1, . . . ,m, it is possible to derive the following aRUM represen-
tation based on the latent utilities (uki, u0i, ua,i):

uki = xiβk + εki, (5)

u0i = ε0i,

ua,i = xiβa + εa,i, (6)

yi =





k, uki ≥ max(u0i, ua,i),
0, u0i ≥ max(uki, ua,i),
a ∈ A, ua,i ≥ max(uki, u0i),

(7)

where the errors εki, ε0i, εa,i are iid from the extreme value distribution.

To derive an efficient sampler to estimate the category specific parameters βk conditional on
ua,i, it is useful to rewrite (5) in the following way:

uki − u0i = xiβk + εki, (8)

where εki ∼ LO follows a logistic distribution, independent of εa,i, and the choice equation is
the same as in (7). The mixture representation from (3) can then be used to represent the
logistic distribution of εki, which finally results in a Gibbs sampling scheme for the multinomial
logit model that is easy to implement.

2.3. Binomial logistic regression

Finally, UPG can handle regression models with binomial outcomes, i.e. models of the form

yi ∼ BiNom (Ni, πi) , logitπi = xiβ, i = 1, . . . , N, (9)

where yi can be interpreted as the number of successes out of Ni trials of individual i. As
shown in Frühwirth-Schnatter et al. (2020), the binomial model has following random utility
representation for 0 < yi < Ni:

wi = xiβ + εw,i, εw,i ∼ GLII (k), (10)

vi = xiβ + εv,i, εv,i ∼ GLI (Ni − k),

yi = k ⇔ wi > 0, vi < 0,

where GLI (ν) and GLII (ν) are, respectively, the generalized logistic distributions of type I
and type II. For yi = 0, the model reduces to

vi = xiβ + εv,i, εv,i ∼ GLI (Ni), yi = 0⇔ vi < 0.

For yi = Ni, the model reduces to

wi = xiβ + εw,i, εw,i ∼ GLII (Ni), yi = Ni ⇔ wi > 0.

For Ni = 1, the logistic model results, as both GLI (ν) and GLII (ν) reduce to a logistic
distribution for ν = 1. For yi = 0, zi = vi, whereas for yi = 1, zi = wi, and the choice
equation reduces to yi = I{zi > 0}. To estimate β in this framework, it is possible to derive
mixture representations similar to (3) for the GLI (ν) and GLII (ν) error distributions, see
Frühwirth-Schnatter et al. (2020) for details.



6 UPG: Efficient Bayesian Models for Binary and Categorical data

2.4. Increasing sampling efficiency through MCMC boosting

It is well known that Bayesian estimation of binary and categorical data models using data
augmentation may result in inefficient sampling behavior, especially in settings with imbal-
anced data (Johndrow et al. 2019). The samplers that are outlined in the previous subsections
are, in principle, no exemption from this rule. To tackle this issue, UPG implements boosted
MCMC algorithms that have been developed in Frühwirth-Schnatter et al. (2020) to enable
highly efficient posterior sampling in a broad range of settings. These MCMC boosting meth-
ods are similar in spirit to previous work on MCMC sampling efficiency, see for instance
Kastner and Frühwirth-Schnatter (2014) or Kastner, Frühwirth-Schnatter, and Lopes (2017)
for MCMC boosting in the context of (factor) stochastic volatility models. A general intuition
on MCMC boosting is provided in Yu and Meng (2011) for the case of Bayesian multi-level
models that allow for competing parametrizations.2

The MCMC boosting methods implemented in UPG use marginal data augmentation (van
Dyk and Meng 2001) to increase sampling efficiency. The boosting strategy involves expand-
ing the latent variable representations from the previous subsections into an unidentified space
where efficient sampling of the regression coefficients becomes possible. Applying this strat-
egy resolves two issues that are directly related to sampling inefficiency in data augmentation
based samplers. First, the posterior distribution of the coefficients and the posterior distri-
bution of the latent utilities are heavily dependent on each other. In order to decrease this
dependency, we re-scale the latent utilities using an unidentified working parameter in the
spirit of Imai and van Dyk (2005). Second, when dealing with imbalanced data, the latent
utilities will become large in absolute terms. As a result, they will often be located in regions
of the respective link function that are extremely insensitive to changes in the latent utilities,
furthermore increasing autocorrelation in the posterior samples. To tackle this issue, a second
unidentified working parameter that re-centers the latent utilities is introduced during MCMC
sampling. Re-scaling and re-centering the latent utilities allows for efficient simulation from
the posterior distribution in a wide range of settings, making UPG the preferable choice for
Bayesian estimation of binary and categorical data models in cases where data is imbalanced.

While this subsection serves as a first intuition of the mechanics behind our boosting strat-
egy, the reader is referred to Frühwirth-Schnatter et al. (2020) for a proper methodological
introduction to the implemented algorithms. In addition, the report features a number of
large-scale simulation studies illustrating the gains in sampling efficiency that can be achieved
by using UPG for estimation.

2.5. Further details

Estimation of above-mentioned models is based on simulating from conditional posterior dis-
tributions in a Gibbs sampling framework. Estimation of binary, multinomial and binomial
logit models requires simulating from a Pólya Gamma distribution. This is accomplished
using an implementation in C that is taken from pgdraw (Makalic and Schmidt 2016).

The (marginal) prior on β reads β ∼ Nd

(
0, A0I +G0ede

>
d

)
where ed =

(
01×(d−1) 1

)>
and

d is the index of the intercept term included in xi. That is, the prior variance for the intercept
G0 +A0 and the prior variance for the remaining coefficients A0 are specified separately.

2Note that MCMC boosting as outlined in this article is not to be confused with boosting in the sense of a
meta-algorithm in supervised learning problems as pioneered in Schapire (1990).
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Estimation Command Model
UPG(y, X, type = "probit") Probit
UPG(y, X, type = "logit") Logit
UPG(y, X, type = "mnl") Multinomial Logit
UPG(y, X, Ni, type = "binomial") Binomial Logit

Table 1: Estimation commands for the models included in UPG

3. UPG Basics

The UPG package provides efficient sampling algorithms for Bayesian analysis of the probit,
logit, multinomial logit and binomial logit model. This section covers the basics of the package,
including data requirements, estimation as well as the methods included in UPG.

In terms of inputs, the minimum requirement for probit, logit and multinomial logit models
is a suitable N × 1 dependent vector y and a N × d design matrix X. An additional N × 1
vector of total number of trials Ni is necessary to estimate a binomial logit model. For
probit and logit models, y is supposed to be binary. For multinomial logit models, y is a
categorical vector containing one realized category out of the set L = {0, . . . ,m} for each
observation. The baseline category k0 can be freely chosen by the user through parameter
baseline. If no baseline is provided, the most frequently observed category is used as baseline.
For binomial logits, y contains the number of successes of each observation. Inputs of class
integer, numeric, matrix and data.frame are accepted. Estimation of multinomial logits
additionally accepts character and factor types as dependent vector. Depending on the
specified model type, UPG will use a variety of data checks to ensure proper estimation.

All necessary tools for efficient estimation of discrete choice models in a Gibbs sampling
framework are wrapped into a single estimation function UPG() to facilitate use and keep
the user interface as minimal and intuitive as possible. The samplers are written in C++,
implemented via Rcpp (Eddelbuettel and François 2011) and RcppArmadillo (Eddelbuettel
and Sanderson 2014). Hence, the provided estimation framework combines sampling efficiency
through MCMC boosting with a speedy implementation. The four different models included
in UPG can be called using the type parameter as shown in Table 1. An illustration of
the estimation process and the most important posterior analysis methods using UPG are
discussed in the next section.

In terms of output, UPG will return one out of four S3 objects, depending on the estimated
model specified using type. The possible classes are UPG.Probit, UPG.Logit, UPG.MNL and
UPG.Binomial. These objects hold the full posterior distribution for all parameters and
latent variables involved during estimation. In addition, all user inputs are duplicated into
the output object for further analysis. Several S3 methods that can be applied to any of
these objects. The main task of these methods is to conveniently summarize the generated
posterior samples. The methods themselves are summarized in Table 2 and will be discussed
in further detail in the subsequent section using extensive examples.

4. Analyzing binary and categorical data using UPG

This section provides information on the data sets that are included in UPG and uses these
data sets as running examples to demonstrate the functionality of the package.
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S3 Method Usage
print Object overview
summary Summary of posterior estimates as well table output
plot Plot coefficient point estimates and credible intervals
predict Predict probabilities for new data or input data
coef Extract posterior means and credible intervals of coefficients
logLik Extract log-likelihood based on posterior mean

Table 2: S3 methods included in UPG

4.1. Bayesian binary regression: Probit and Logit

To demonstrate how to estimate and analyze Bayesian probit and logit models using UPG, a
microeconomic data set on female labor force particpation from the US Panel Study of Income
Dynamics is included. It features a binary variable indicating labor force status as well as a
number of additional covariates for 753 women:

R> data("lfp", package = "UPG")

R> head(lfp, 5)

lfp intercept k5 k618 age wc hc lwg inc

1 1 1 1 0 -1.3053889 0 0 1.2101647 10.91

2 1 1 0 2 -1.5531414 0 0 0.3285041 19.50

3 1 1 1 3 -0.9337602 0 0 1.5141279 12.04

4 1 1 0 3 -1.0576365 0 0 0.0921151 6.80

5 1 1 1 2 -1.4292651 1 0 1.5242802 20.10

The binary dependent variable lfp takes the value of 1 if the woman is participating in the
labor force. k5 gives the number of children under the age of 5, k618 indicates the number
of children between 6 and 8 years, age is a standardized age index and wc as well as hc

are binary indicators capturing whether a college degree was obtained by the wife and the
husband, respectively. In addition, two income related predictors are included, where lwg

describes the expected log wage of the woman and inc gives the logarithm of family income
exclusive of the income of the woman. This data set comes from the carData package and
has been originally analyzed in Mroz (1987).

Model estimation

To construct a suitable design matrix X and a binary dependent vector y for probit and logit
models, it suffices to split the data set as follows:

R> y <- lfp[, 1]

R> X <- lfp[, -1]

In order to estimate a Bayesian logit model, one line of code is sufficient:

R> results.logit <- UPG(y = y, X = X, type = "logit")



Gregor Zens, Sylvia Frühwirth-Schnatter, Helga Wagner 9

Checking data & inputs ...

Initializing Gibbs Sampler ...

Simulating from posterior distribution ...

0% 10 20 30 40 50 60 70 80 90 100%

[----|----|----|----|----|----|----|----|----|----|

**************************************************|

Sampling succesful!

Saving output ...

Finished! Sampling took 2.52 CPU seconds.

In the remainder of this subsection, it is assumed that the goal is to estimate and analyze
a logit model using type = ’logit’. Changing the type parameter to type = ’probit’

allows to estimate a probit model. The discussion below holds for both types of models.

Tabulating results

Applying summary to the output object results in a quick overview of the regression results
in the form of tabulated parameter estimates. Continuing the running example, it is easy to
generate a table with posterior means and standard deviations as well as credible intervals:

R> summary(results.logit)

--- Bayesian Logit Results ---

N = 753

Analysis based on 1000 posterior draws after a burn-in period of 1000 iterations.

MCMC sampling took a total of 2.52 CPU seconds.

| | Mean| SD| Q2.5| Q97.5| 95% CI excl. 0 |

|:---------|-----:|----:|-----:|-----:|:--------------:|

|intercept | 0.50| 0.24| 0.05| 1.01| * |

|k5 | -1.44| 0.18| -1.80| -1.11| * |

|k618 | -0.06| 0.07| -0.19| 0.07| |

|age | -0.50| 0.10| -0.70| -0.30| * |

|wc | 0.76| 0.22| 0.33| 1.19| * |

|hc | 0.13| 0.21| -0.27| 0.53| |

|lwg | 0.60| 0.15| 0.31| 0.90| * |

|inc | -0.03| 0.01| -0.05| -0.02| * |

In terms of interpretation, it is for instance visible that women with a college degree (wc)
are more likely to participate in the labor force compared to women with no formal tertiary
education, holding everything else constant. On the contrary, women who have small children
under the age of 5 (k5) are ceteris paribus less likely to be active in the labor force compared
to women without young children.

A number of possibilities for exporting summary tables to LATEX, HTML or Microsoft Word
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using summary(obj, type = c("html","latex","pandoc")) is available.3 The user can
choose from a number of different options to customize the table output directly, including
the upper and lower bounds for the credible intervals based on posterior quantiles specified
using q, the names of the variables using names, the number of significant digits using digits,
the subset of variables to be used in the table using include and the table caption using cap.
Further customizations are easy to implement as summary returns a knitr_kable object that
can be further modified using the kable package. More details can be found in the package
documentation.

Visualizing results

In case a more visual representation of the model output is desired, the plot function can be
used to generate publication-ready coefficient plots for all four available models using ggplot2
(Wickham 2016). Similar to the summary function, plot allows the user to customize a number
of pre-specified parameters such as axis labels (xlab, ylab), coefficient names (names), the
width of the credible intervals (q), and the set of included variables (include). plot will
return a ggplot2 object that can be further modified using the complete arsenal of tools from
the ggplot2 universe.

Continuing the logit example from above, we can generate a simple coefficient plot using

R> plot(results.logit)

inc

lwg

hc

wc

age

k618

k5

intercept

−1 0 1
Posterior Estimate

These plots provide point estimates as well as credible intervals for each covariate by default.
The variables may be sorted by estimated effect size using sort = TRUE. Otherwise, they
appear in the same order as in X.

Predicting probabilities

In several situations, applied researchers are not necessarily interested in examining the esti-
mated coefficients, but in using these estimates to generate predictions. For these scenarios,
predict may be used to produce point estimates and credible intervals of predicted proba-
bilities based on the estimated model. These predictions can be generated using either the

3If a LaTeX table is desired, the ’booktabs’ package has to be included in the preambel of the LaTeX
document.
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data provided for model estimation or new, external data provided by the user. Continuing
the running example,

R> predict(results.logit)

will return a list containing the posterior mean as well as the 97.5% and 2.5% posterior
quantile of the predicted probabilities for the data used to estimate the model. In case the
user wants to predict probabilities from external data, a suitable explanatory matrix X.new

with the same number of columns and same variable ordering must be provided to compute
valid predictions. The syntax in that case is

R> predict(results.logit, newdata = X.new).

Similar to the other available S3 methods in UPG, the credible intervals can be specified by
the user using the parameter q.

Log-likelihood

In case the user is interested in the log-likelihood of the data given the parameters, a logLik

method is available. Applying this method to the output will extract the log-likelihood
evaluated at the posterior mean of the parameters:

R> logLik(results.logit)

'log Lik.' -452.666 (df=8)

This log-likelihood object holds information on the number of observations as well as the
number of estimated parameters.

4.2. Bayesian binomial logistic regression

To demonstrate how to estimate binomial logit model using UPG, aggregated individual
passenger data of the RMS Titanic is included as an example data set:

R> data("titanic", package = "UPG")

R> head(titanic, 5)

survived total intercept pclass female age.group

1 0 1 1 1 1 5

2 5 5 1 2 1 5

3 12 17 1 3 1 5

4 2 2 1 1 0 5

5 8 8 1 2 0 5

The passengers have been split into several groups that are based on passenger class (pclass),
five year age groups (age.group) and gender (female). For each group, total passenger counts
(total) and the number of passengers that survived the disaster (survived) are provided.
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The data set is an aggregate version of the well-known titanic data set (Hilbe 2007, Table
6.11) that has for instance been previously analyzed in Frühwirth-Schnatter, Frühwirth, Held,
and Rue (2009) and is often used in machine learning competitions.4

Model estimation

In this case, the dependent vector of successes is survived whereas the number of total trials
corresponds to total. Both vectors have to be provided in addition to some explanatory
variables to be able to estimate a binomial logit model using UPG. Hence, the data needs to
be split into three parts parts prior to estimation:

R> y <- titanic[,1]

R> Ni <- titanic[,2]

R> X <- titanic[,-c(1,2)]

R> results.binomial <- UPG(y = y, X = X, Ni = Ni, type = "binomial")

Checking data & inputs ...

Initializing Gibbs Sampler ...

Simulating from posterior distribution ...

0% 10 20 30 40 50 60 70 80 90 100%

[----|----|----|----|----|----|----|----|----|----|

**************************************************|

Sampling succesful!

Saving output ...

Finished! Sampling took 2.06 CPU seconds.

All further steps of analysis are similar to the directions given in the previous subsection on
probit and logit models. As an example, assume we would like to tabulate the data using a
credible interval based on the 10% and 90% posterior quantiles:

R> summary(results.binomial, q = c(0.1, 0.9))

--- Bayesian Binomial Logit Results ---

N = 78

Analysis based on 1000 posterior draws after a burn-in period of 1000 iterations.

MCMC sampling took a total of 2.06 CPU seconds.

| | Mean| SD| Q10| Q90| 80% CI excl. 0 |

|:---------|-----:|----:|-----:|-----:|:--------------:|

|intercept | 2.30| 0.40| 1.77| 2.81| * |

|pclass | -1.20| 0.12| -1.35| -1.05| * |

|female | 2.51| 0.18| 2.27| 2.74| * |

|age.group | -0.03| 0.01| -0.04| -0.03| * |

4See https://www.kaggle.com/c/titanic/ for more details.
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In terms of interpreting these results, we can for instance see that female passengers have had
a much higher survival probability compared to their male counterparts on MS Titanic. A
higher passenger class (corresponding to cheaper tickets) is associated with higher mortality.
Finally, the log-odds of survival decrease with increasing age.

To demonstrate how to change the credible intervals that should be plotted, the estimation
output is visualized using q = c(0.1, 0.9). This results in a 80% credible interval based on
the 0.1 and 0.9 quantiles of the posterior distribution. In addition, custom variable names are
provided and sort = TRUE ensures that the variables are ordered based on estimated effect
size:

R> plot(results.binomial,

R> sort = TRUE,

R> q = c(0.1, 0.9),

R> names = c("Intercept", "Passenger Class", "Female", "Age Group"))

Passenger Class

Age Group

Intercept

Female

−1 0 1 2 3
Posterior Estimate

4.3. Bayesian multinomial logistic regression

For the multinomial logit model, a data set on 200 high school students and their program
choice (general, vocational or academic) is included together with a binary variable taking
the value of 1 for female students (female), a categorical variable indicating socio-economic
status (ses) and standardized results of a writing test (write):

R> data("program",package="UPG")

R> head(program,5)

program intercept female ses write

1 vocation 1 1 1 -1.875280

2 general 1 0 2 -2.086282

3 vocation 1 0 3 -1.453276

4 vocation 1 0 1 -1.664278

5 vocation 1 0 2 -2.297284

This data set is also known as the hsbdemo data set and is provided online by the University of
California, Los Angeles Statistical Consulting Group. It is widely used in several R packages
and in other software tools as example data for multinomial logistic regression.5

5See for instance https://stats.idre.ucla.edu/stata/dae/multinomiallogistic-regression/ for us-
age of the data in Stata.
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Model estimation

As mentioned above, dependent variables for multinomial logit estimation have to be provided
as a categorical vector. By default, the category that occurs most often is chosen as baseline
category. An alternative baseline category may be specified using baseline. In the example
data set, academic is chosen 105 times out of 200 observations and will thus serve as baseline
category. The code to create y and X is quite similar to the probit and logit case:

R> y <- program[,1]

R> X <- program[,-1]

To estimate a multinomial logit model, type = ’mnl’ has to be specified when using the UPG

command:

R> results.mnl <- UPG(y = y, X = X, type = 'mnl', verbose = FALSE)

where we have set verbose = FALSE to suppress any output during estimation for illustration
purposes. Handling the resulting UPG.MNL object is similar to the cases outlined above and is
thus only discussed briefly. Tabulation of the results is based on a grouped representation of
the model output:

R> summary(results.mnl,

R> names = c("Intercept", "Female", "SES", "Writing Score"))

--- Bayesian Multinomial Logit Results ---

N = 200

Analysis based on 1000 posterior draws after a burn-in period of 1000 iterations.

MCMC sampling took a total of 1.58 CPU seconds.

Category 'academic' is the baseline category.

| | Mean| SD| Q2.5| Q97.5| 95% CI excl. 0 |

|:-------------------|-----:|----:|-----:|-----:|:--------------:|

|Category 'general' | | | | | |

|Intercept | 0.32| 0.58| -0.87| 1.42| |

|Female | 0.06| 0.36| -0.65| 0.76| |

|SES | -0.57| 0.25| -1.06| -0.07| * |

|Writing Score | -0.57| 0.19| -0.93| -0.19| * |

| | | | | | |

|Category 'vocation' | | | | | |

|Intercept | -0.42| 0.65| -1.67| 1.02| |

|Female | 0.47| 0.38| -0.24| 1.23| |

|SES | -0.36| 0.28| -0.96| 0.16| |

|Writing Score | -1.14| 0.23| -1.58| -0.68| * |
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From the output, it becomes obvious that in the observed sample higher scores on a writing
test decrease the probability of choosing a general or vocational program compared to the
baseline of choosing an academic program. Similar conclusions can be drawn from a coefficient
plot that will automatically be grouped by outcome in case of the multinomial logit model:

plot(results.mnl,

names = c("Intercept", "Female", "SES", "Writing Score"))

Writing Score

SES

Female

Intercept

−1 0 1
Posterior Estimate

general vocation

4.4. UPG-within-Gibbs

In certain applications, more advanced users might desire to use UPG as a single sampling
block within a pre-existing Gibbs sampler. Examples where this might be useful include
mixture-of-experts models, where a multinomial logit prior might be implemented (see e.g.
Gormley and Frühwirth-Schnatter 2019). Similarly, probits, logits and multinomial logits do
often serve as prior models in Bayesian Markov switching frameworks (Frühwirth-Schnatter
2006).

To implement ’UPG-within-Gibbs’ it suffices to set up the estimation command UPG such that
it generates only a single draw from the posterior distribution conditional on the inputs. Con-
sider the example of a binary logit model. Assuming a suitable starting value for beta.draw
is given, it suffices to use

results.logit <- UPG(y = y,

X = X,

type = "logit",

draws = 1,

burnin = 0,

beta.start = beta.draw,

verbose = F)

beta.draw <- results.logit$posterior$beta.post

as sampling block in an existing Gibbs sampler. In this example, draws is set to 1 and burnin

is set to 0 to generate exactly one posterior sample without burn-in period. verbose = F
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suppresses all console output and parameter beta.start is used to provide the current value
of beta.draw as starting value. Iterating over this code M times and saving the resulting
posterior draws of beta gives equivalent results to generating M posterior draws from UPG

directly.

However, note that this will, in general, be slower than generating M samples from UPG

directly. This is due to the substantial overhead that results from repeated function calls
in R. Specifically, generating M posterior samples from UPG directly results in exactly one
function call, while ’UPG-within-Gibbs’ will amount to M function calls. However, even in this
’slow’ scenario, UPG allows for rather fast sampling. For instance, the ’within-Gibbs’ logistic
regression model outlined above samples more than 270 posterior draws per second using the
example data with N = 753 and eight covariates on an Intel i7 CPU @ 2.40GHz. A more
detailed picture on sampling efficiency and sampling speed is provided in the next subsection.

4.5. Sampling efficiency and sampling speed

In order to shed some light on the performance of the implemented models in specific ap-
plications, the user can compute several MCMC diagnostic measures using the command
UPG.Diag. Specifically, a call to UPG.Diag will return the effective sample size (ESS) for
each coefficient derived using effectiveSize from coda (Plummer, Best, Cowles, and Vines
2006).6 In addition, inefficiency factors (IE; given by the number of saved draws divided by
the effective sample size) and the effective sampling rate (ESR; given by the effective sample
size divided by the running time of the sampler in seconds) are returned. To allow for a
more convenient ’quick check’ of the behavior of the Markov chain, UPG.Diag also returns the
minimum, maximum and median across all coefficients as summary statistics of these three
diagnostic measures.

To provide some performance measures and to give a sense of magnitude in terms of expected
computation time, we summarize ESS, IE and ESR for probit as well as binary, binomial and
multinomial logit models using the example data sets that come with UPG. For each model,
10,000 posterior draws are sampled after an initial burn-in period of 1,000 iterations. All
simulations have been run on an Intel i7 CPU @ 2.40GHz. The results of this exercise are
shown in Table 3. While the table shows that the MCMC algorithms in UPG exhibit rather
efficient sampling behavior, a pronounced drop in sampling speed is visible when comparing
the probit regression framework to the remaining models. This is due to the increased com-
putational effort that results from sampling Pólya Gamma random variables. While these are
not needed in the MCMC scheme of the probit model, they are necessary for all logit models
in UPG, increasing computation time in each sweep of the sampler. Nevertheless, due to high
levels of sampling efficiency, an effective posterior sample size that is sufficient for inference
can be generated in a speedy fashion in the logit frameworks as well. In general, adding a
few thousand more effective posterior samples in medium-sized data sets will be possible in
significantly less than a minute.

5. Conclusion

In this article, the R package UPG is introduced as a software tool for Bayesian estimation of

6Effective sample sizes in coda are derived from the spectral density at 0 which is estimated based on fitting
an autoregressive process to the posterior draws.
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Table 3: Sampling efficiency and sampling speed of the implemented models. Results are
based on 10,000 saved draws after an initial burn-in period of 1,000 iterations using example
data sets as input.

Probit Binary Logit Multinomial Logit Binomial Logit

N 753 753 200 78
d 8 8 4 4∑

iNi 887

ESS Min. 3051 2692 1719 3288
Median 3755 3002 2068 3487
Max. 4064 3239 2215 4379

IE Min. 2.46 3.09 4.52 2.28
Median 2.66 3.33 4.84 2.87
Max. 3.28 3.71 5.82 3.04

ESR Min. 1185 165 162 255
Median 1458 184 195 271
Max. 1578 198 209 340

Time (in sec.) 2.57 16.36 10.60 12.87

probit, logit, multinomial and binomial logit models. In addition to an implementation that
enables highly efficient estimation through boosted MCMC algorithms, the package is designed
to provide easy access to Bayesian models for binary and categorical data for researchers that
might not be familiar with the Bayesian paradigm. For statisticians that are used to working
with Bayesian models, the package allows for a range of customizations and for convenient
integration into existing Gibbs samplers.

The package includes a variety of functions that may be used to quickly produce tables
and plots that summarize the estimation output. These methods have been introduced and
illustrated through applied examples using data sets that come with the package in order to
provide some guidance on how to apply the package. In terms of implementation, the MCMC
algorithms in UPG are written in C++, resulting in highly efficient and speedy Bayesian
estimation methods for binary and categorical data models that are easily accessible for a
broad range of users.
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MCMC for possibly imbalanced binary and categorical data.” arXiv Preprint. 2011.06898.

Fussl A (2014). binomlogit: Efficient MCMC for Binomial Logit Models. R package version 1.2, URL
https://CRAN.R-project.org/package=binomlogit.
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