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Abstract. The R package bvpSolve for the numerical solution of Boundary Value Problems
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1. INTRODUCTION

In this paper we present the R package bvpSolve for the numerical solution of Bound-
ary Value Problems (BVPs). The package includes solvers for Boundary Value Prob-
lems (BVPs) of Ordinary Differential Equations and Differential Algebraic Equations.

A generic two-point boundary value problem for ordinary differential equations
is a system of ordinary differential equations whose solution is subject to conditions
posed at two distinct points in the range of integration. It is possible to have higher
order equations with boundary conditions posed at more than two distinct points.

The generic problem is:

y′′(x) = f(x, y, y′), a ≤ x ≤ b, (1.1)
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where y ∈ R
m, f : R× R

m × R
m → R

m, with boundary conditions,

g(y(a), y(b)) = 0.

This general form for the boundary conditions allows both separated and
non-separated conditions to be specified.

Two point BVPs originate in a number of areas including fluid flow, shock waves,
epidemiology and geophysical models, see [2] and [32] for more examples.

Apart from the engineers and scientists who are acquainted with working with
compiled languages such as Fortran or C there are many scientists who prefer to solve
their problems in high-level problem solving environments (PSEs). Until now, the
most often used PSEs for solving differential equations are commercial packages such
as Matlab [22], Mathematica [39] or Maple [28], or open-source software such as Scilab
[30] or Octave [16].

One of the emerging PSEs whose use is expanding very rapidly, especially in uni-
versities and academia, is the open source software R [29]. Although still mainly known
as software for visualisation and statistics, R has recently been extended to also pro-
vide powerful methods for solving differential equations [32] by a number of extension
packages. The R packages deSolve [37] and deTestSet [34] provide solution methods
and test problems for initial value problems of ODEs, DDEs, PDEs and DAEs. The R
packages rootSolve [31] and ReacTran [35] provide more solution methods for PDEs.

Most of the BVP solvers are written in Fortran and based on advanced numerical
techniques for differential equations. The new package bvpSolve has implemented
these well known Fortran codes for the solution of BVPs and provides an interface to
these codes.

The available Fortran codes are twpbvp.f [15], twpbvpl.f [6] and acdc.f [14],
their variant based on conditioning called twpbvpc.f [11] and twpbvplc.f [12] and
acdcc.f, and the collocation codes colsys.f [1], colnew.f [5], colmod.f [14] and
coldae [4].

We recall that there are other important codes that are not yet included in the R

package bvpSolve. The are the Fortran codes such as mirkdc.f [17] and BVP_M-2.f90,
based on MIRK methods, and the Matlab code TOM [24–26].

We note that the Matlab code bvptwp [10] is based on the same Fortran codes as
implemented in bvpSolve, but the Matlab version of these codes consists of an efficient
translation of the Fortran codes, whereas the R version provides an interface to the
Fortran codes.

This paper is structured as follows. First, in Section 2, we define the classes of
problems that we can solve using new R package. Section 3 introduces the integration
routines available in the package bvpSolve, while Section 4 gives some information
about the conditioning parameters used by bvptwp. Section 5 gives some examples
of implementation in R with numerical benchmarks of computational performance.
Finally some concluding remarks are given in Section 6. The package bvpSolve is
available from the Comprehensive R Archive Network at http://CRAN.R-project.
org/package=bvpSolve. New versions of the package, still under development, are
available at http://r-forge.r-project.org/ [38].
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2. CLASSES OF PROBLEMS

The test problems that can be solved using the R package bvpSolve can be categorized
into the following classes:

– systems of first order and higher order two point Boundary Value Problems
(BVPs),

– singularly perturbed Boundary Value Problems (SPBVPs) and
– Differential Algebraic Boundary Value Problems (DABVP).

We call a problem a multipoint mixed order BVP if it has the form

yrii = fi(x, z(y(x))), i = 1, d, a ≤ x ≤ b,
y, f ∈ R

d, z(y(x)) = (y(x)1, y(x)
′
1, . . . , y(x)

r1
1 , . . . , y(x)d, y(x)

′
d, . . . , y(x)

rd
d ),

gj(z(y(xj))) given, a ≤ xj ≤ b, j = 1, . . . ,
∑d

i=1 ri,

(2.1)

where ri is the order of the i-th differential equation.
A multipoint mixed order SPBVP is of the form:

yrii = fi(x, z(y(x)), ǫ), i = 1, d, a ≤ x ≤ b,
y, f ∈ R

d, z(y(x)) = (y(x)1, y(x)
′
1, . . . , y(x)

r1
1 , . . . , y(x)d, y(x)

′
d, . . . , y(x)

rd
d ),

gj(z(y(xj))) given, a ≤ xj ≤ b, j = 1, . . . ,
∑d

i=1 ri,

(2.2)

where ǫ is a small parameter ǫ > 0.
A problem is called a multipoint mixed order DABVP if it is of the form:

yrii = fi(x, z(y(x)), u(x)), i = 1, d, a ≤ x ≤ b,
0 = fi(x, z(y(x)), u(x)), i = d+ 1, l, a ≤ x ≤ b,
y, f ∈ R

d, u ∈ R
l, z(y(x)) = (y(x)1, y(x)

′
1, . . . , y(x)

r1
1 , . . . , y(x)d, y(x)

′
d, . . . , y(x)

rd
d ),

gj(z(y(xj))) given, a ≤ xj ≤ b, j = 1, . . . ,
∑d

i=1 ri.
(2.3)

Problems described by (2.1), (2.2) and (2.3) include the class of two point first
order problems, where the boundary conditions are given only at a and b.

Only a few available codes can solve mixed order BVPs directly, i.e. without re-
ducing the problem to first order form or can handle multipoint boundary conditions.

However, such problems can easily be transformed in their first order form with two
point separated boundary conditions. This form can be handled by all the available
codes:

y(x)′ = f(x, y(x)), a ≤ x ≤ b,
y, f ∈ R

d,
Bay(a) +Bby(b) given, Ba, Bb ∈ Rd×d.

(2.4)

3. THE INTEGRATION ROUTINES

The R package bvpSolve [33] is closely related to the packages deSolve [37] and deTest-

Set [34]. In practice, the Fortran codes are implemented in R via a wrapper, written
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in C, that forms the interface between the Fortran and the R codes. Thus, whereas the
underlying Fortran codes have quite different calling interfaces, the R interface is the
same for the different classes of solvers. Hence, once a problem is implemented in R,
it is simple to invoke each of the solvers, in order to select the most efficient one.

3.1. FINITE DIFFERENCE SOLVERS

One finite difference solver, available in bvpSolve provides an interface to the Fortran

codes twpbvpc.f [11], twpbvplc.f [12], twpbvp.f [15], and twpbvpl.f [6].
The code twpbvpc.f uses a deferred correction scheme based on Mono-Implicit

Runge-Kutta methods (MIRK) [18]; the other code uses a deferred correction scheme
based on Lobatto formulas. They are an improved implementation of the codes twp-
bvp.f and twpbvpl.f which monitors the conditioning.

The R function that calls the interfaces to these codes is bvptwp. On changing
some input parameters, the various codes are invoked.

The simplest calling sequence for solving a BVP in R using a finite difference solver
is:

bvptwp(yini, x, yend, func, parms, ...)

where x holds the sequence of the independent varaiable at which output is wanted,
yini holds the initial conditions, yend holds the final conditions, func is the R function
that describes the differential equations, and parms contains the parameter values (or
is NULL).

The default integration solver for the function bvptwp is twpbvp. To solve a prob-
lem using the other methods we should specify some input parameters. For example
to use the code twpbvpl.f we must set lobatto = TRUE, to use the version of the
codes that use the mesh selection based on conditioning we must set cond = TRUE.

If we type ?bvptwp a help page that contains a list of all options that can be
changed is opened. As most of these options have a default value, we are not obliged
to assign a value to them, as long as we are content with the default.

The full set of arguments to bvptwp is:

function (yini = NULL, x, func, yend = NULL, parms = NULL,

order = NULL, ynames = NULL, xguess = NULL, yguess = NULL,

jacfunc = NULL, bound = NULL, jacbound = NULL, leftbc = NULL,

posbound = NULL, islin = FALSE, nmax = 1000, ncomp = NULL,

atol = 1e-08, cond = FALSE, lobatto = FALSE, allpoints = TRUE,

dllname = NULL, initfunc = dllname, rpar = NULL, ipar = NULL,

nout = 0, forcings = NULL, initforc = NULL, fcontrol = NULL,

verbose = FALSE, epsini = NULL, eps = epsini,

...)

NULL

Many additional inputs can be provided, e.g. the error tolerances (defaults atol =

1e-8), initial guesses of x and y (xguess, yguess), etc... Note that a more complex
interface, as required in all underlying codes can also be provided, by the arguments
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bound (function that defines the boundary conditions), jacbound (function with the
Jacobian of the boundary conditions), jacfunc (function that calculates the Jaco-
bian of the problem definition). Also note that, in accordance to the IVP integration
methods in deSolve, the BVP problem can also be implemented in compiled code
(argument dllname) (see below).

3.2. COLLOCATION SOLVERS

The collocation solvers available in the package bvpSolve are colsys [1], colnew [5]
and coldae [4].

The codes colsys.f/colnew.f are based on the approximation of the solution of
the differential equation by a piecewise polynomial and it uses collocation at Gauss
points to define this polynomial uniquely. The error control in colsys.f/colnew.f is
based on an estimate of the discretization error and an estimate of the global error of
a continuous solution approximation. The code coldae is a generalization of colnew
for the solution of Differential Algebraic Equations (DAEs) [4].

The R function that calls the interface is bvpcol. The simplest calling sequence
for solving BVPs with these methods is the same as for the finite difference solvers:

bvpcol(yini, x, func, yend, parms, ...)

This calls the code colnew.
To call colsys we need to set the parameter bspline=TRUE, to call coldae we

need to give as input a list containing the index of the problem and the number of
algebraic equations l in (2.3), in this case the function defining the problem includes
the algebraic equations.

The full set of arguments of bvpcol is:

function (yini = NULL, x, func, yend = NULL, parms = NULL,

order = NULL, ynames = NULL, xguess = NULL, yguess = NULL,

jacfunc = NULL, bound = NULL, jacbound = NULL, leftbc = NULL,

posbound = NULL, islin = FALSE, nmax = 1000, ncomp = NULL,

atol = 1e-08, colp = NULL, bspline = FALSE, fullOut = TRUE,

dllname = NULL, initfunc = dllname, rpar = NULL, ipar = NULL,

nout = 0, forcings = NULL, initforc = NULL, fcontrol = NULL,

verbose = FALSE, epsini = NULL, eps = epsini, dae = NULL, ...)

NULL

3.3. AUTOMATIC CONTINUATION SOLVERS

The automatic continuation solvers available in the package bvpSolve are the codes
colmod.f and acdcc.f. The first one is based on the continuation code colnew.f

and is implemented in the R function bvpcol, the second one is based on the finite
difference code twpbvpl.f and is implemented in the R function bvptwp.

To use these methods the problem should depend on a small parameter ǫ. This
should be an input parameter and the first parameter in parms.
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The simpler calling sequence for solving BVPs with colmod.f is

parms <- eps bvpcol(yini, x, func, yend, parms, eps = parms, ...)

To use acdcc.f the calling sequence is

parms <- eps bvptwp(yini, x, func, yend, parms, eps = parms, ...)

3.4. A SHOOTING SOLVER

The R function bvpshoot is an R implementation of the single shooting method. This
combines the integration routines from the package deSolve [37] with root-finding
methods from package rootSolve [31]. The simpler calling sequence of bvpshoot is
the same as bvpcol and bvptwp

library(bvpSolve) bvpshoot(yini, x, func, yend, parms, ...)

4. CONDITIONING PARAMETERS

The R function bvptwp gives as output information about the conditioning parame-
ters. We recall that the concept of stability, which is usually applied to initial value
problems for differential equations, is referred to as conditioning for boundary value
problems. Conditioning relates to the effect small changes in equation (2.1), either in
the function f , or in the boundary conditions g(y(a), y(b)), have on the solution. It is
very important to obtain an estimate of the conditioning parameters when computing
a solution of a BVP, since a small local error does not necessarily give rise to a small
global error.

In order to obtain a more precise feeling for the concept of a stable boundary value
problem, we refer the reader to [32] and [3].

In particular, if we consider the following linear boundary value problem:

dy

dx
= A(x)y(x) + q(x), a ≤ x ≤ b, Bay(a) +Bby(b) = β, β ∈ R

m, (4.1)

and a perturbed equation:

du

dx
= A(x)u(x) + q(x) + δ(x), a ≤ x ≤ b, Bau(a) +Bbu(b) = β + δβ. (4.2)

(here δ(x) and δβ are small perturbations of the data) the output given by the codes
is an approximation of the parameters κ, κ1, κ2, γ1 and σ defined below:

κ1 = max
a≤x≤b

‖Y (x)Q−1‖, κ2 = sup
x

b
∫

a

‖G(x, t)‖dt, (4.3)



Solving boundary value problems in the open source software R: package bvpSolve 393

and

κ = max
a≤x≤b

(

‖Y (x)Q−1‖+
b

∫

a

‖G(x, t)‖dt
)

. (4.4)

Here Y (x) is a fundamental solution, Q = BaY (a) + BbY (b) is non singular and
G(x, t) is the Greens’ function. These parameters are a bound of the absolute error
using the ∞-norm:

max
a≤x≤b

‖u(x)− y(x)‖ ≤ κ1‖δβ‖+ κ2 max
a≤x≤b

‖δ(x)‖, (4.5)

and

max
a≤x≤b

‖u(x)− y(x)‖ ≤ κmax(‖δβ‖, max
a≤x≤b

‖δ(x)‖), (4.6)

Using the 1-norm we obtain the corresponding conditioning parameters called γ1,
γ2 and γ. Another important parameter is σ, which is called the “stiffness ratio”. It is
defined for linear problems (4.1) as

σ = max
δβ

maxa≤x≤b ‖u(x)− y(x)‖
∫ b

a
‖u(x)− y(x)‖dx

(b− a)

. (4.7)

where u(x) is the solution of the perturbed equation with δ(x) ≡ 0 (see [13,23,27]). If
σ is large we are dealing with problems possessing different time scales for which the
growth or decay rates of some fundamental solution modes are very rapid compared
to others, see [7, 8, 21,23] for details.

5. THE R IMPLEMENTATION OF A TEST PROBLEM

We now describe one example in detail, so the user can learn how to solve a BVP
problem using R . The reader is referred to [32] for more examples. We choose the first
test problem called bvpT1 from the testset in [9] It is defined by the following second
order differential equation:

ǫy′′ − y = 0, y(0) = 1, y(1) = 0, (5.1)

where ǫ is a parameter, the solution has a boundary layer of width O(
√
ǫ) at x = 0.

The FORTRAN codes used in bvptwp allow the solution of a first order system only.
Although in the R implementation, a higher order problem is automatically converted
to a system of first order problems, this is not very efficient in general.

Hence we have implemented for this test both the first order and the second order
form of the problem. We convert (5.1) into a first order system of ODEs by adding
an extra variable, representing the first order derivative:

y′1 = y2,

y′2 = y1/ǫ.
(5.2)
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Singularly perturbed problems are obtained for small ǫ. We ran the model for
ǫ = 1e-4, with relative and absolute tolerances atol=1e-4. We can implement this
problem in R by using the simplest calling sequence in the following way:

yini <- c(1, NA)

yend <- c(NA, 0)

feval <- function(x, y, eps)

return(list(c(y[2],

y[1]/eps)))

Here NA denotes that the boundary condition is not available. The values of the
independent variable, where we want to inspect output are:

x <- seq(from = 0, to = 1, by = 0.1)

After specifying the parameter ǫ, a solution is obtained by invoking the solver:

eps <- 1e-4

sol <- bvptwp(yini = yini, x = x, func = feval, yend = yend,

parms = eps, atol=1e-4)

The function diagnostics prints important information about the numerical so-
lution, such as the value of the output flag that informs us if the computation has
been succesfull, the number of function evaluations, the conditioning parameters and
so on.

diagnostics(sol)

--------------------

solved with bvptwp

--------------------

Integration was successful.

1 The return code : 0

2 The number of function evaluations : 3377

3 The number of jacobian evaluations : 404

4 The number of boundary evaluations : 42

5 The number of boundary jacobian evaluations : 16

6 The number of steps : 33

7 The number of mesh resets : 1

8 The maximal number of mesh points : 1000

9 The actual number of mesh points : 30

10 The size of the real work array : 56108

11 The size of the integer work array : 6006

--------------------

conditioning pars

--------------------
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1 kappa1 : 100

2 gamma1 : 1.488746

3 sigma : 74.32533

4 kappa : 101.01

5 kappa2 : 1.01

To plot the solution we write:

plot(sol, lwd = 2)

This simple statement plots all 2 dependent variables constituting the bvpT1 problem
at once, using a line width twice the size of the default (lwd).

Fig. 1. Numerical solution of the bvpT1 problem. See text for the R code.

If we would like to use instead the code twpbvplc we add some input parameters
and the input sequence will be:

eps <- 1e-4

sol2 <- bvptwp(yini = yini, x = x, func = feval, yend = yend,

parms = eps, atol = 1e-4, lobatto = TRUE, cond = TRUE)

We can also use the default collocation method:

sol3 <- bvpcol(yini = yini, x = x, func = feval, yend = yend,

parms = eps, atol = 1e-4)

diagnostics(sol3)

--------------------

solved with bvpcol

--------------------
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Integration was successful.

1 The return code : 1

2 The number of function evaluations : 1661

3 The number of jacobian evaluations : 280

4 The number of boundary evaluations : 40

5 The number of boundary jacobian evaluations : 14

6 The number of steps : 20

7 The actual number of mesh points : 18

8 The number of collocation points per subinterval : 4

9 The number of equations : 2

10 The number of components (variables) : 2

Note that we have not used the default value of the tolerance because we want to
stress the importance of this parameter to the users.

Using the parameter ǫ = 10−4 the code bvpshoot is not able to give a solution.
Indeed, for singularly perturbed problems, we should use preferentially bvptwp and
bvpcol, preferably with automatic continuation toggled on (we will calls the codes
acdcc and colmod). To use automatic continuation, the users need only to add to the
calling sequence, the parameter eps

eps <- 1e-8

sol5 <- bvptwp(yini = yini, x = x, func = feval, yend = yend,

parms = eps, eps = eps, atol = 1e-4)

sol6 <- bvpcol(yini = yini, x = x, func = feval, yend = yend,

parms = eps, eps = eps, atol = 1e-4)

We observe that, for some difficult singular perturbation problems, the automatic
continuation codes are able to give a solution whereas the other codes fail.

5.1. THE BOUNDARY CONDITIONS

An important input parameter for all the underlying BVP codes is the function bound

and jacbound that allow to give as input more complicated boundary conditions,
including multipoint boundary conditions.

In order for the R functions to also solve these more complex problems, it is also
possible to define the boundary conditions using a similar interface, instead of via
arguments yini and yend.

The function bound should have the following structure:

bound <- function(i, y, parms, ...) { }

The output is the j-th boundary condition as defined in (2.1). It is also possible,
but not mandatory to use a function that calculates the jacobian with respect to
the boundaries. If it is not given, then the R functions will estimate a numerical
approximation.

For the problem bvpT1 the bound function is
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bound <- function(i, y, eps) {

if (i == 1) return(y[1]-1)

if (i == 2) return(y[1])

}

When bound is used, it becomes necessary to specify the number of equations (ncomp),
and the number of left boundary conditions (leftbc), and the calling sequence be-
comes:

eps <- 1e-4

solbound <- bvptwp( x = x, func = feval, bound=bound, ncomp=2,

leftbc=1, parms=eps, atol=1e-4)

Observe that now we do not need to give as input yini and yend.

5.2. THE ANALYTIC JACOBIANS

When using the simplified (standard) interface, the R functions bvptwp and bvpcol

computate a numerical Jacobian of both the functions f and g in (2.1), (2.2), or (2.3).
For many problems, it may be much more efficient to explicitly provide the analytic

Jacobian of both f and g. This as possible giving in input the function jacfunc and
jacbound.

The function jacfunc has the following calling sequence:

jacfunc = function(x,y,parms, ...){ }

and gives as output the matrix with the Jacobian. The function jacbound has the
following calling sequence

jacbound = function(i, y, parms, ...){ }

and gives as output the vector with ∂gi(y)/∂yj , j = 1, d.
For the problem bvpT1 we have the following functions:

jacfunc = function(x, y, eps){

dfy <- matrix(nrow = 2, ncol = 2, byrow = TRUE,

data = c(0, 1,

1/eps, 0))

return(dfy)

}

jacbound <- function(i, y, eps) {

if (i == 1) return(c(1, 0))

if (i == 2) return(c(1, 0))

}

The calling sequence that uses both analytic Jacobians is

eps <- 1e-4

solajac <- bvpcol( x = x, func = feval, bound = bound, ncomp = 2,

leftbc = 1, jacfunc = jacfunc, jacbound=jacbound,

parms = eps, atol = 1e-4)
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5.3. MIXED ERROR SIGNIFICANT DIGITS

All the codes in bvpSolve implement an error estimate, but it is not assured that the
error will be of the same order of magnitude as the prescribed tolerances, which by
default are 1e-8.

A common way to compare codes is to use the so-called work precision diagrams
using the mixed error significant digits, mescd, defined by

mescd := − log10(max(|absolute error/(atol/rtol + |ytrue|)|)), (5.3)

where the absolute error is computed at all the mesh points at which output is wanted,
atol and rtol are the input absolute and relative tolerances, ytrue is the exact solution
or a more accurate solution computed using the same solver with smaller relative and
absolute input tolerances and where (/, + and max) are element by element operators.

We will use this quantity for comparing the efficiency of the different implemen-
tations.

5.4. PERFORMANCE AND COMPARISON

To compare the solver’s efficiencies, for every solver, a range of input tolerances was
used to produce plots of the resulting mescd values against the number of CPU seconds
needed for a run. We took the average of the elapsed CPU times of 4 runs. The
format of these diagrams is as in [19, 20, pp. 166–167, 324–325]. As an example we
report in Figure 2 (on the left) the work precision diagrams for the methods twpbvpc,
twpbvplc, colnew, colmod, acdcc. running the bvpT1 problem written using the
analytical Jacobians with ǫ = 1e − 5. The range of tolerances used is, for all codes,
rtol = 10−4−j(3/8) with j = 0, . . . , 16, all the other parameters are the default.

We wish to emphasize that the reader should be careful when using these dia-
grams for a mutual comparison of the solvers. The diagrams just show the result
of runs with the prescribed input on the specified computer. A more sophisticated
setting of the input parameters, another computer or compiler, as well as another
range of tolerances, or even another choice of the input vector times may change the
diagrams considerably. We used a Personal Computer with Intel(R) Core(TM)2 Duo
CPU (U9400 1.40GHz, 2,80 GB of RAM) and MICROSOFT WINDOWS XP.

Since it is possible to use the second order formulation, we report in Figure 2
(on the right) the work precision diagram implementing the problem using the higher
order formulation, which is automatically converted to first order when using bvptwp.
We observe that the second order formulation reduces the time for the codes col-

sys/colnew/colmod but the execution time for the other codes is higher.
For the bvpT1 problem for ǫ = 1e− 5 twpbvpc is the most efficient code (Fig. 2),

while for the second order implementation the codes colsys/colnew require the least
computational effort to compute a solution with a similar number of mescd (Fig. 2,
on the right).

One very useful facility of using R for solving differential equations, is that it is
possible to write the problem using a compiled language such us Fortran, C or C++.
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Fig. 2. Work precision diagrams for the bvpT1.R problem, ǫ = 1e − 5, first order system
(on the left) second order implementation (on the right)

Fig. 3. Work precision diagrams for the bvpT1.f problem, ǫ = 1e− 5, first order system (on
the left) second order implementation (on the right)

For problems that require a high number of function evaluations, implementing it
in compiled code significantly reduces the execution time. See [36] for a description
on how to write an IVP problem using a compiled language. How to implement a
BVP problem in compiled code is presented in the bvpSolve package vignette. Typing
vignette("bvpSolve") will open this vignette.
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We now run the code using the test problem written in Fortran. We observe that,
the behaviour of the solvers changes using the two different implementations see Fig-
ure 3 (on the left) for the first order implementation and Figure 3 (on the right)
for the second order one. In particular the execution time of the collocation codes is
considerable higher compared to the finite difference codes. The collocation codes, in
fact, use a number of function evaluations that is considerably smaller with respect to
the one used by the finite difference codes, this explains the difference in time using
the compiled version of the problem.

6. FINAL REMARKS

The package bvpSolve provides some efficient integration codes for the solution of
Boundary Value Problems.

Potential users of the new R package are scientists and engineers who either need
to solve differential equations or need to simulate, on a computer, scientific problems
based on differential equations. Teachers may also find both the code and problem
data bases useful when organizing courses concerning the numerical simulation on
newly emerging fields of experimental mathematics.
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