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Abstract

A causal query will commonly not be identifiable from observed data, in which
case no estimator of the query can be contrived without further assumptions or mea-
sured variables, regardless of the amount or precision of the measurements of observed
variables. However, it may still be possible to derive symbolic bounds on the query
in terms of the distribution of observed variables. Bounds, numeric or symbolic,
can often be more valuable than a statistical estimator derived under implausible
assumptions. Symbolic bounds, however, provide a measure of uncertainty and in-
formation loss due to the lack of an identifiable estimand even in the absence of data.
We develop and describe a general approach for computation of symbolic bounds
and characterize a class of settings in which our method is guaranteed to provide
tight valid bounds. This expands the known settings in which tight causal bounds
are solutions to linear programs. We also prove that our method can provide valid
and possibly informative symbolic bounds that are not guaranteed to be tight in a
larger class of problems. We illustrate the use and interpretation of our algorithms
in three examples in which we derive novel symbolic bounds.
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1 Introduction

In many fields of research, a common goal is to determine causal relationships or mecha-

nistic pathways. This investigation is often complicated by common causes of the outcome

and either the exposure, or other variables of interest along the causal pathway from the

exposure to the outcome, causing confounding. When common causes are unmeasured, the

causal effect of interest is usually not identifiable. When the causal effect of interest, which

we will refer to as a causal query, cannot be identified, one can derive bounds, i.e., a range

of possible values for this quantity in terms of the observed data distribution.

In general, arbitrarily wide bounds are trivial to derive, but not informative in the sense

that they will not provide further insight into the magnitude of the effect. Deriving narrower

bounds that are still valid, i.e. containing all possible values of the true causal effect, can

be a complicated task, and in particular, deriving tight bounds, i.e., the narrowest possible

given all and only explicit assumptions, may be highly non-trivial. An approach to deriving

numeric tight bounds in quite general settings is given in Duarte et al. [2021]. A drawback

of the numeric approach, however, is the need for re-computation with each new data set.

Computing bounds symbolically, i.e., as closed form analytic expressions in terms of

known observable quantities, rather than numerically, may provide useful information with

which to draw conclusions about a study design or form of data collection in the absence

of data, in addition to their transparent ease of use in real data once derived. Symbolic

tight bounds on a causal query thus, in many ways, provide us with an ideal summary of

our effect of interest given our current state of knowledge and/or set of assumptions.

In 1994, in his PhD dissertation, Alexander Balke gave a method for translating a certain

type of causal theory, represented by a directed acyclic graph (DAG), and causal query into

a constrained optimization problem in terms of unmeasured response function variables

[Balke and Pearl, 1994a,b]. The causal query is expressed in terms of the distribution of

these variables and the DAG gives rise to linear relationships between this distribution and

that of the observed variables. In conjunction with standard probabilistic constraints, this

yields a bounded constrained optimization problem. If the problem is linear then a vertex

enumeration algorithm can be used to find the global extrema of the causal query in terms
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of the true probability distribution of the observed variables [Dantzig, 1963]. Balke and

Pearl [1994a] state that the resulting extrema give tight bounds for their causal query in

the instrumental variable setting.

The linear programming method proposed by Balke in his thesis has been used to derive

bounds for various causal parameters and scenarios. Balke and Pearl [1997] derived bounds

for the causal risk difference in scenarios where the exposure and outcome are confounded

and there is data on an unconfounded instrumental variable, and Cai et al. [2007] showed

how these bounds can be made tighter by using information on measured covariates. Kauf-

man et al. [2005] used linear programming to derive numeric bounds on the controlled

direct effect in scenarios where the mediator is confounded but the exposure is not, and

Cai et al. [2008] derived symbolic expressions for these bounds. Sjölander [2009] considered

the same scenario, and derived bounds on the natural direct effects. Kaufman and MacLe-

hose [2009] considered various causal effects in scenarios involving three measured variables,

and showed how the linear programming bounds in these scenarios can be made tighter

by certain monotonicity and no-interactions assumptions. Tian and Pearl [2000] derived

bounds on the probability of causation, and Imai and Yamamoto [2010] derived bounds on

the causal risk difference in the presence of differential measurement error. Sjölander et al.

[2014b] and Sjölander et al. [2014a] derived bounds for causal interactions in scenarios with

two unconfounded exposures. Gabriel et al. [2020] derived bounds for the causal risk differ-

ence in observational studies with outcome dependent sampling, and Gabriel et al. [2021]

derived bounds for the causal risk difference in randomized controlled trials with both im-

perfect compliance and nonignorable missingness in the outcome. MacLehose et al. [2005]

provided a gentle introduction to the linear programming method for epidemiologists.

Related theoretical results have been shown in specific settings that are extensions to the

binary instrumental variable problem [Ramsahai, 2012, Bonet, 2013, Heckman and Vytlacil,

2001]. To the knowledge of the authors, there has been no attempt in the literature to

characterize the set of causal problems that are always linear or an approach for determining

whether a problem is linear, given its DAG and target query. In this paper, we generalize

and extend Balke and Pearl’s approach for computation of bounds by characterizing a
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class of causal problems that always give rise to linear programs and describing a general

algorithm for constructing the objective and constraints based on the DAG and query. The

only input required is thus subject matter knowledge in the form of a causal DAG as well

as an effect of interest.

In Section 2, we introduce the transformation of a causal DAG over categorical vari-

ables with unmeasured causal influences into an equivalent one where those influences have

been discretized. In Section 3 we characterize a set of DAGs that have linear relations

between the distributions of their observed variables and unobserved influences, along with

an algorithm that extracts those relations from the DAG. Section 4 develops notation and

requirements for general forms of causal queries that are linear in the distribution of the

unmeasured discrete influences, and details an algorithm that constructs such relations

from a complex causal query expressed in terms of potential outcomes and observable

variables. Section 5 then states the final linear program, possible extensions of it and a

suitable optimization method. Finally, Section 6 details a few interesting examples using

this method. Proofs of the main propositions, notes on computational complexity of the

algorithms, and the details of a simulation study are given in the Supplementary Materials.

The algorithms described herein are implemented in an R [R Core Team, 2019] package

called causaloptim, available on the Comprehensive R Archive Network (CRAN), with a

user friendly interface.

2 Canonical partitions

Let the set of observed variables be denoted W = {W1, . . . ,Wn}, with corresponding vector

W = (W1, . . . ,Wn) and realized values represented by a vector w = (w1, . . . , wn). We

assume that all of these variables are categorical, and constitute the vertices of a DAG,

whose vertex set is thus W . Each variable of interest Wi ∈ W is affected by a set of

unmeasured variables UWi
as well as a subset of the remaining variables. Potential outcomes

will be denoted using brackets; e.g., W1(W2 = w2), and the probability that the variable

W1 would have value w1, if the variable W2 was intervened upon to have value w2 will be

denoted as p{W1(W2 = w2) = w1}. For any given random variable X, we let ν(X) denote
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its support, i.e., for discrete variables, the set of all values it can take on with positive

probability.

We are assuming the nonparametric structural equation framework, i.e., for each Wi ∈
W , we assume that there exists a function FWi

such that wi, the value of Wi is given

by wi = FWi
(paWi

, uWi
), where paWi

denotes the values of variables PaWi
in W that are

parents of Wi, and uWi
represents the values of UWi

, the unmeasured causes of Wi. We

make no assumptions about the unmeasured variables UWi
; they may, e.g., be continuous

or multivariate. Since all observed variables of interest in the graph are assumed to be

categorical, we can, without loss of generality, recode the assumptions by defining a series

of new categorical variables RWi
, one for each variable Wi ∈ W , which specifies how the

value of Wi is determined from those of its parents.

For each Wi ∈ W , we let RWi
be the variable corresponding to the canonical partition

of ν(UWi
) into finite states with respect to the given causal DAG, as stated formally in

Proposition 1.

Proposition 1 (Canonical partitions). Let G be a causal DAG, let W := V (G) be its

vertices and suppose that ∀W ∈ W , |ν(W )| < ∞ (i.e. each variable is categorical). Let

D := ν(PaW )× ν(RW ) if PaW 6= ∅ and ν(RW ) otherwise. Then there exists a categorical

variable RW (so |ν(Rw)| < ∞) and a mapping fW : D → ν(W ) such that for each value

uW ∈ ν(UW ) there exists a unique value rW ∈ ν(RW ) for which FW (·, uW ) = fW (·, rW ).

For proof, see Section S1 of the Supplementary Materials. The function fW : D → ν(W )

above is called the response function of W , and the variable RW is called its response

function variable.

Regardless of the characteristics of UWi
, we have

|ν(RWi
)| = |ν(Wi)||ν(PaWi

)| = |ν(Wi)|
∏

V ∈PaWi
|ν(V )|

< ∞,

since all variables in W are assumed categorical. Let cWi
:= |ν(Wi)|, so |ν(RWi

)| = c
|PaWi

|
Wi

,

where |PaWi
| =

∏
V ∈PaWi

cV , and note that without loss of generality we can assume

that ν(Wi) = {0, . . . , cWi
− 1} and enumerate ν(RWi

) as {0, . . . , c|PaWi
|

Wi
− 1}. Let R :=
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(RW1 , . . . , RWn) and ℵ := |ν(R)| = ∏n
i=1 |ν(RWi

)| = ∏n
i=1 c

|PaWi
|

Wi
. The joint distribution of

R together with the response functions fully characterize the probabilistic causal model.

For a given Wi ∈ W and fixed r ∈ ν(R), we define a procedure for determining its

value wi by recursively evaluating the corresponding functional expression. Using nested

subscripts, we let Wi1, . . . ,Wiki denote the parents of Wi that are in W . Then wi, the value

of Wi, can be obtained by recursively evaluating

wi = g∗Wi
(r) := fWi

(g∗Wi1
(r), . . . , g∗Wiki

(r), rWi
).

Any set of observed probabilities can be related to the distribution of response function

variables as follows:

p{W = w} = p{W1 = w1, . . . ,Wn = wn} =
∑

r∈ν(R):∀i∈{1,...,n},wi=g∗Wi
(r)

p{R = r}.

As an example, Figure 1 shows a simple setting with three binary variables of interest.

Figure 1a shows the DAG for a model in which variables W1 and W2 both directly affect an

outcome W3, with W1 also directly affecting W2. Figure 1b shows the equivalent DAG with

response function variables in place of the original unmeasured variables. The variables

that have an unmeasured common cause have response function variables that are depen-

dent, as indicated by the dashed ellipse that outlines the unmeasured causal influences of

W2 and W3. Since they both contain U , the common cause, their response function vari-

ables are dependent as indicated by an undirected edge. We can encode RW2 so the values

0, 1, 2, 3 of RW2 correspond to the response patterns w2 = fW2(paW2=w1, rW2=0) := 0, w2 =

fW2(paW2=w1, rW2=1) := w1, w2 = fW2(paW2=w1, rW2=2) := 1−w1, w2 = fW2(paW2=w1, rW2=3) :=

1, respectively. We encode RW1 taking values 0 and 1 according to w1 = fW1(rW1=0) := 0

and w1 = fW1(rW1=1) := 1, respectively. Under the model shown in Figure 1b, with e.g.

rW1 = 0, rW2 = 1, rW3 = 3, we can evaluate the function to determine w2:

w2 = g∗W2
(r=(0, 1, 3)) = fW2(fW1(rW1=0), rW2=1)) = fW2(0, 1) = 0.
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For W3, we need to enumerate the response patterns for each of the 22 possible com-

binations of values of (w1, w2), i.e., 222 = 16. Then, to evaluate the probability p{W1 =

1,W2 = 0,W3 = 1} in terms of R, we can follow the same procedure as above for all

21 · 22 · 24 = 128 possible combinations of r, keeping track of the resulting values w. It can

be shown that the variable value w = (1, 0, 1) is consistent with 16 values of r. Thus the

probability of this event is the sum over the set of these 16 values of the probability that R

equals them. See Balke and Pearl [1994a] or Pearl [2009], Chapter 8 for another example

and further interpretation.

W1

U

W2 W3

UW3UW1 UW2

(a)

W1

RW1 RW2 RW3

W2 W3

(b)

Figure 1: Example DAG to illustrate the concepts and notation. In this example, the
measured variables are W1, W2, and W3, and the remaining are unmeasured. Since the
measured variables are categorical, an equivalent representation of (a) is given in (b), where
RW1 , RW2 , RW2 are categorical response function variables.

Using this discretization, we can enumerate the relationships between the observable

probabilities and the distribution of the response function variables. If those relationships

are linear, then they define linear constraints in an optimization problem. Next, we describe

a general class of DAGs having linear relationships between their distributions of response

function variables and distributions of observable variables.

3 A Class of Linear DAGs

To characterize our class of linear problems, we first extract any measured variables that,

akin to instrumental variables, are known to share no common causes with another set

of variables. The set W is divided into two subsets W = {WL,WR}, where WL may be

empty. We assume without loss of generality that the indices of the variables are ordered

in such a way that L = {1, . . . , {ג and R = ,1+ג} . . . , n}, where ג may be 0 in which case

L is the empty set. We will denote the corresponding subdivisions of the vectors W and
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R by (WL,WR) and (RL,RR), respectively, and likewise for their lowercase value-vector

counterparts. L and R, connote left and right sides, where the causal paths flow from left

to right. We make this division because in our class of problems, the L-side variables share

no common causes with the R-side variables.

Let B := |ν(W)| = ∏n
i=1 |ν(Wi)| =

∏n
i=1 cWi

, and let {1, . . . , B} 3 b 7→ wb ∈ ν(W)

be an enumeration of ν(W) that preserves the ordering of the L-indices before the R-

indices such that ∀b ∈ {1, . . . , B}, wb,L := (wb)L and wb,R := (wb)R. Let p∗,p ∈ [0, 1]B

be given by ∀b ∈ {1, . . . , B}, p∗b := p{W = wb} = p{(WL,WR) = (wb,L,wb,R)} and

pb := p{WR = wb,R | WL = wb,L}. Thus, the vector p∗ represents the joint distribution

of all observed variables and the vector p contains the observed conditional distribution of

all variables in WR given all variables in WL. As shown in Proposition 2, we will only need

to observe the components of p.

We will focus on the response function variables of the R-side, and will provide them a

dedicated enumeration. Let

ℵR := |ν(RR)| =
n∏

i=1+ג

|ν(RWi
)| =

n∏

j=1+ג

c
|PaWj

|
Wj

.

Let {1, . . . ,ℵR} 3 γ 7→ rγ ∈ ν(RR) enumerate ν(RR) and q ∈ [0, 1]ℵR be given by

∀γ ∈ {1, . . . ,ℵR}, qγ := p{RR = rγ}. In particular, the vector q contains the joint

probability distribution of the response function variables RR. For i ∈ R and a fixed

value-vector wL ∈ ν(WL), we let

gWi
(wL, rγ) := fWi

(wi1, . . . , wili , g
∗
Wili+1

(rγ), . . . , g
∗
Wiki

(rγ), rWi
) = wi,

where wi1, . . . , wili are the values of the parents of Wi that are in WL, and Wili+1, . . . ,Wiki

are the parents of Wi that are in WR.

Proposition 2. Let G be a causal DAG satisfying the following Conditions:

1. Any edge that connects two variables WL ∈ WL and WR ∈ WR must be directed from

WL to WR.
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2. There exists no unmeasured variable U that has children in both WL and WR. That

is, the variables in WL and WR do not share a common cause.

3. There exists an unmeasured variable UL such that UL is a parent of Wi for all i ∈ L.

That is, all variables in L share an unmeasured common cause.

4. There exists an unmeasured variable UR such that UR is a parent of Wi for all i ∈ R.

That is, all variables in R share an unmeasured common cause,

Then there exist matrices P ∈ {0, 1}B×ℵR, P ∗ ∈ [0, 1]B×ℵR and Λ ∈ [0, 1]B×B such that

p = Pq, p∗ = P ∗q, Λ is diagonal with non-zero diagonal entries, ΛP = P ∗, p∗ = Λp, and

there are no other constraints on the distribution of response function variables that are

not redundant with these.

See Section S1 of the Supplementary Materials for proof. Conditions 1 and 2 imply that the

matrices and linear relations exist; thus, a causal model satisfying those conditions implies

those linear constraints. Conditions 1 and 2 together with Conditions 3 and 4 imply there

are no other non-redundant constraints implied by the causal model. As a counterexample,

removing e.g. an arc from UR to a variable in WR would violate Condition 4 and potentially

introduce a new, nonlinear constraint. Though Proposition 2 guarantees their existence, it

may not be trivial to construct these linear relations. Algorithm 1 below details a method

for constructing the matrices P , P ∗ and Λ.
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Result: Systems of linear equations relating p∗ and p to q

Initialize P as a B × ℵR matrix of 0s;

Initialize P ∗ as a B × ℵR matrix of 0s;

Initialize Λ as a B ×B matrix of 0s;

for b ∈ 1, . . . , B do

for γ ∈ 1, . . . ,ℵR do

Initialize ω as an empty vector of length |R| (= n− ;(ג

for i ∈ R do

Set ωi := gWi
(wb,L, rγ);

end

if ω = wb,R then

Pb,γ := 1;

Λb,b := p{WL = wb,L};

P ∗
b,γ := p{WL = wb,L};

end

end

end
Algorithm 1: An algorithm to determine a system of linear equations relating p and

p∗ to q.

4 Functional expressions incorporating interventions

In order to determine the values of variables of interest for potential outcomes that incor-

porate interventions, we must also define a procedure for evaluating a functional expression

that allows for variables to be externally forced to certain values. To illustrate, we consider

extended DAGs, which add additional nodes for potential outcomes of interest as in Balke

and Pearl [1994b]. These are called multi-networks in Shpitser and Pearl [2007]. Two ex-

amples are shown in Figure 2a and 2b. For each potential outcome of interest, nodes are

added such that the corresponding factual and potential outcome nodes share the same

response function variables. Edges that connect factual nodes to potential outcome nodes
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are labelled with letters that denote intervention sets indexed by the tail variable of that

edge and the path to the head of that edge sequence. These sets define the variables being

externally set, the values that they are being set to, and their indices indicate for which

edge sequences they apply.

W1 W2 W3

W3(W2(0), 1)W2(0)

RW2 RW3

RW1

aW1,W1→W2→W3
aW1,W1→W3

(a) Extended graph for evaluation of the potential outcome
W3(W2(W1 = 0),W1 = 1).

W1 W2 W3

W3(0, 1)

RW2 RW3RW1
a′W2,W2→W3

a′W1,W1→W3

(b) Extended graph for evaluation of the potential outcome W3(W2 =
0,W1 = 1).

Figure 2: Extended DAGs to illustrate that multiple intervention sets are needed to define
certain potential outcomes. In these two examples, the variables are binary.

Balke and Pearl [1994a] considered cases where we externally force a single subset of the

variables to some fixed values. This construction suffices for the examples they consider,

but not for defining and bounding effects like the natural direct effect of W1 in the graph

in Figure 2a whose first term is p{W3(W2(W1 = 0),W1 = 1) = 1}. In that expression, we

see that the variable W1, which is a parent of both W3 and W2, is simultaneously being set

to 0 and 1, the difference being which child is in question. As another example, the causal

query p{W3(W2(W1 = 0)) = 1,W2(W1 = 1) = 1} is a joint probability statement, and the

two events in question are under interventions on W1. Therefore, to be completely general,

the variables that one assign to values cannot be a single set; the values that variables are

being externally forced to may depend on which children are being considered and also on

the term of the probability statement. Thus we define an extended function expression,

which “remembers” the path of edges taken to get the value that is being determined at
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each call.

For i ∈ ג} + 1, . . . , n}, let Ai be a matrix that encodes the interventions and variables

on which to intervene, with rows indexed by l corresponding to the variables in W and the

columns indexed by j corresponding to all possible paths terminating at Wi; the entries in

row l are in ν(Wl)∪{∅}. The desired interventions within the causal query then define the

entries of Ai which are denoted alj. In our procedure for evaluating potential outcomes,

there is a distinct interventional matrix Ai corresponding to each outcome variable Wi used

in the causal query. We define the procedure for evaluating the interventional functional

expression for an outcome variable Wi as

wi = hAi
Wi

(
r,Wi

)
,

where for all l ∈ {1, . . . , n}, all r ∈ ν(R) and all strings j representing paths to Wi, we

define hAi
Wi
(r, j) recursively by

hAi
Wi
(r, j) :=





alj if alj 6= ∅

fWi
(rWi

) if alj = ∅ and PaWi
= ∅

fWi
(hAi

Wi1
(r,Wi1 → j), . . . , hAi

Wiki

(
r,Wiki → j), rWi

)
otherwise,

where ki := |PaWi
| and {Wi1, . . . ,Wiki} := PaWi

, and the notation i → j means that i →
is prepended to j. This notation allows us to trace the full path taken from the outcome

of interest to the variable being intervened upon.

For example, considering the DAG in Figure 2a and the causal query p{W3(W2(W1 =

0),W1 = 1) = 1}, we have the interventional matrix

A3 =




W1 → W2 → W3 W1 → W3 W2 → W3 W3

W1 0 1 ∅ ∅
W2 ∅ ∅ ∅ ∅
W3 ∅ ∅ ∅ ∅



.
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Thus, evaluating the functional expression w3 = hA3
W3

(r,W3) results (since W3 is not inter-

vened upon and PaW3 = {W1,W2}) in

w3 = hA3
W3

(r,W3) = fW3(w1=hA3
W1

(r,W1 → W3), w2=hA3
W2

(r,W2 → W3), rW3).

For the first argument of that function call we have w1 = hA3
W1

(r,W1 → W3) = a1,W1→W3 = 1.

Then for the second argument, a2,W2→W3 = ∅ and PaW2 = {W1}, so we recurse, giving

w2 = hA3
W2

(r,W2 → W3) = fW2(w1=hA3
W1

(r,W1 → W2 → W3), rW2).

Now, w1 = hA3
W1

(r,W1 → W2 → W3) = a1,W1→W2→W3 = 0, giving w2 = fW2(w1=0, rW2), so

we get w3 = fW3(w1=1, w2=fW2(w1=0, rW2), rW3).

For the DAG in Figure 2b and the first part of the causal query p{W3(W2 = 0,W1 =

1) = 1}, we have

A3 =




W1 → W2 → W3 W1 → W3 W2 → W3 W3

W1 ∅ 1 ∅ ∅
W2 ∅ ∅ 0 ∅
W3 ∅ ∅ ∅ ∅



.

Thus, evaluating the functional expression w3 = hA3
W3

(r,W3) results in

w3 = hA3
W3

(r,W3) = fW3(w1=hA3
W1

(r,W1 → W3), w2=hA3
W2

(r,W2 → W3), rW3).

For the first argument of that function call we have w1 = hA3
W1

(r,W1 → W3) =

a1,W1→W3 = 1. Then, for the second argument, w2 = hA3
W2

(r,W2 → W3) = a2,W2→W3 = 0,

giving the result w3 = fW3(w1=1, w2=0, rW3).

The procedures for evaluating the functions g and hAi are sufficient to translate any

combined factual and/or potential outcome joint probability statement into probability

statements involving only the response function variables R. Thus, using our response

function formulation, any potential outcome or factual joint probability statement can be
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written

Q := p{hAi1
Wi1

(R,Wi1) = wi1 , . . . , h
AiP
WiP

(R,WiP ) = wiP ,

gWj1
(R) = wj1 , . . . , gWjO

(R) = wjO}, (1)

where P = {i1, . . . , iP} denote the indices of potential outcomes, and O = {j1, . . . , jO} the

indices of the factual outcomes (and these sets may be overlapping). Given the functional

expressions we have defined and our procedures for evaluating them, we can therefore write

Q =
∑

r∈Γ(Q)

p{R = r}, where

Γ(Q) := {r ∈ ν(R) : ∀ip ∈ P , wip = h
Aip

Wip
(r,Wip) and ∀jo ∈ O, wjo = gWjo

(r)}.

We will call an expression of this form an atomic query. Their form is completely general,

and allows arbitrarily nested potential outcomes, and combinations with observational

quantities. We will combine atomic queries to obtain causal contrasts of interest, such as

the causal risk difference.

Proposition 3. Let G be a causal DAG satisfying Conditions 1 and 2, and let Q be an

atomic query satisfying the following Conditions:

5. Each atomic query is a probability as given in Equation (1) where

i1, . . . , iP , j1, . . . , jO ∈ R (i.e., all outcome variables must be in WR) and

6. if L 6= ∅ then: (i) none of the variables in WL that are intervened upon can have any

children in WL, (ii) all paths from WL to WR must be blocked by the intervention set

(here the intervention set refers to variables in the rows of the A matrices that are

not ∅), (iii) no observations are allowed, i.e, O = ∅.

Then there exists a constant binary vector α ∈ {0, 1}ℵR such that Q = α⊤q.

See Section S1 of the Supplementary Materials for proof. Note that we allow for observa-

tions to appear in the query. Some examples of causal queries that involve observations in
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addition to potential outcomes are the treatment effect on the treated [Angrist and Imbens,

1995], and the proportion factually helped by treatment: p{Y = 1, Y (X = 0) = 0}. A

procedure for construction of this α is detailed in Algorithm 2 which converts the atomic

query Q into a binary linear combination of probabilities of response function variables of

the R-side.

Result: Q expressed as a simple sum of a subset of the components of q.
Initialize α ∈ {0, 1}ℵR by ∀γ ∈ {1, . . . ,ℵR}, αγ := 1;
Let P ,O be the index sets as defined above corresponding to Q;
for γ ∈ 1, . . . ,ℵR do

for l ∈ P do
Construct Al according to l;
Compute ω := hAl

Wl
(rγ,Wl);

if ω 6= wl then
Set αγ := 0;
break;

end
end
if αγ = 0 then

break;
end
for l ∈ O do

Compute ω := gWl
(rγ);

if ω 6= wl then
Set αγ := 0;
break;

end
end

end
Algorithm 2: Converting Q to a binary linear combination of q.

The following corollary, which specifies the general form of a causal query, follows imme-

diately since linear combinations of linear combinations again are just linear combinations.

Corollary 1. Let Q∗ be any real linear combination of atomic queries (in particular, Q

may be a classic linear causal contrast such as a causal risk difference). Under conditions

1, 2, 5, and 6, there exists a constant vector α∗ ∈ RℵR such that Q∗ = α∗⊤q.

The algorithms are formulated so that bounds are derived in terms of the true proba-

bilities of the observed variables in WR conditional on the variables in WL. Provided one is
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not intervening on any of the variables in WL, Conditions 1 and 2 imply that the directions

of the edges within WL cannot influence the bounds. That is, the bounds are tight for

the equivalence class of DAGs that contains the set of DAGs for all possible directions

of edges among variables in WL. For example, the bounds computed for a query such as

p{Y (X = 1) = 1} are tight and equal for both of the DAGs in Figures 3 (a) and (b). In

either case, the knowledge of whether Z causes Z2 or vice versa does not influence the

bounds because both of those variables are conditioned upon in the algorithm.

Alternatively, if the desired query was p{Y (X(Z = 1)) = 1}, the DAGs in Figures 3 (a)

and (b) may not result in the same bounds, and in fact, the causal problem under Figure 3

(a) may not be linear. As required by Conditions 5 and 6, if we intervene upon a variable

in WL, then the direction of edges within WL matters, and in fact if the intervened upon

variable has a child also in WL, Condition 6 will not be met.

UL
Z2

Z

UR

X Y

(a)

UL
Z2

Z

UR

X Y

(b)

Figure 3: An equivalence class of DAGs defined by arbitrary connections in WL. Bounds
for causal queries that involve intervening on X that meet our conditions are equivalent
and tight for these two graphs in (a) and (b).

5 Optimization via vertex enumeration

After applying Algorithms 1 and 2, we have a linear objective and a system of linear

constraints. We also have the probabilistic constraints:

∀wL ∈ ν(WL),
∑

wR∈ν(WR)

p{WR = wR | WL = wL} = 1
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and

ℵR∑

γ=1

qγ =

ℵR∑

γ=1

p{RR = rγ} =
∑

rR∈ν(RR)

p{RR = rR} = 1.

Additional linear constraints on q can be optionally given as Bq ≥ d where B and d are

respectively a matrix and vector of real constants. These constraints can be used to encode

assumptions about the response functions that are not possible to encode in a DAG, for

example, restricting the probabilities of implausible response patterns. We thus arrive at

the following linear programming problem for the lower bound; the upper bound is given

by the corresponding maximization problem.

minimize Q = αTq

subject to Pq = p,

Bq ≥ d,

q ≥ 0, and 1Tq = 1.

Note that the constraint space constitutes a bounded (due to the probabilistic con-

straints) convex polytope. By the fundamental theorem of linear programming, the global

extrema must occur at one of the vertices of the polytope. We can thus solve this problem

symbolically by applying an efficient vertex enumeration algorithm, such as the double

description algorithm [Motzkin et al., 1953, Fukuda, 2018] to enumerate the vertices of the

polytope of the dual linear program. For instance, the dual of the minimization problem

above is given by

maximize
(
dT 1 pT

)
y

subject to


BT 1 P T

I 0


y ≤


α

0


 .
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So by the strong duality theorem, the optimum of the dual, and thus also of the pri-

mal problem, is of the form
(
dT 1 pT

)
ȳ where ȳ is a vertex of the polytope {y :


BT 1 P T

I 0


y ≤


α

0


}. This gives a lower bound on the causal effect of interest as the

maximum of a set of expressions involving only observable probabilities. Similarly, the up-

per bound is given by reversing the dual inequality and minimizing over the corresponding

polytope.

Proposition 4. Under conditions 1-6 and subject to any additional linear constraints of

the form Bq ≥ d, the procedure above yields valid and tight symbolic bounds for a causal

query that is a linear combination of atomic queries.

Corollary 2. If condition 4 does not hold, then the bounds derived using the above procedure

are still valid.

See the Supplementary Materials for proof. The conditions 3 and 4 represent a worst-

case scenario of confounding and ensure that the decompositions giving rise to the linear

constraints cannot be further factorized to yield more granular but non-linear constraints.

If however there is any known (partial) absence of such confounding, then these bounds

are still valid, and may be narrow enough to be informative, while not necessarily tight.

Such an absence of confounding on the R-side implies some independence among the RR

variables, and hence additional constraints on their distribution. Thus the true feasible

space may be smaller than the one considered in our algorithm, but completely contained

inside it.

6 Examples

The graphs in the following examples are divided into a left side, which corresponds to the

WL set, and a right side, which corresponds to the WR set, as in Figure 4a. The left side

is displayed as a violet (dark grey) box, and the right side a yellow (light grey) box.
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Figure 4: Simple confounded example and the equivalent response function variable graph.

6.1 Confounded exposure and outcome

The basic DAG with two variables that are confounded as shown in Figure 4a conforms

to our class of models. In this case, the variable X is the exposure of interest, and Y

the outcome of interest. X and Y have a common, unmeasured cause U which we make

no assumptions about. We specify X and Y to be ternary and binary respectively, so

X takes values in {0, 1, 2} and Y in {0, 1}. Our causal effects of interest are the risk

differences p{Y (X = 2) = 1} − P{Y (X = 0) = 1}, p{Y (X = 2) = 1} − P{Y (X = 1) =

1} and p{Y (X = 1) = 1} − P{Y (X = 0) = 1}, and we have no additional constraints to

specify.

Here we have two variables and therefore two response function variables. The response

function variable formulation of the graph in Figure 4b is an equivalent representation of

the causal model. The following tables define the values of the response functions and

variables:

x = fX(rX)

rX = 0 x = 0

rX = 1 x = 1

rX = 2 x = 2

y = fY (x, rY ) x = 0 x = 1 x = 2

rY = 0 y = 0 y = 0 y = 0

rY = 1 y = 1 y = 0 y = 0

rY = 2 y = 0 y = 1 y = 0

rY = 3 y = 1 y = 1 y = 0

rY = 4 y = 0 y = 0 y = 1

rY = 5 y = 1 y = 0 y = 1

rY = 6 y = 0 y = 1 y = 1

rY = 7 y = 1 y = 1 y = 1
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RX is a random variable that can take on 3 possible values, and RY is a random variable

that can take on 23 = 8 possible values. Thus, the joint distribution of (RX , RY ) is char-

acterized by 3 · 8 = 24 parameters, say qi,j, where i ∈ {0, 1, 2} and j ∈ {0, 1, 2, 3, 4, 5, 6, 7}.

Applying Algorithm 1, we can relate the 3 · 2 = 6 observed probabilities to the parameters

of the response function variable distribution as follows:

p0,0; := p{X = 0, Y = 0} = q0,0 + q0,2 + q0,4 + q0,6

p1,0; := p{X = 1, Y = 0} = q1,0 + q1,1 + q1,4 + q1,5

p2,0; := p{X = 2, Y = 0} = q2,0 + q2,1 + q2,2 + q2,3

p0,1; := p{X = 0, Y = 1} = q0,1 + q0,3 + q0,5 + q0,7

p1,1; := p{X = 1, Y = 1} = q1,2 + q1,3 + q1,6 + q1,7

p2,1; := p{X = 2, Y = 1} = q2,4 + q2,5 + q2,6 + q2,7.

We get

A =




X → Y Y

X a ∅
Y ∅ ∅


 , for p{Y (X = a) = 1}, a ∈ {0, 1, 2}

Applying Algorithm 2, we get

p{Y (X = 0) = 1} = q0,1 + q0,3 + q0,5 + q0,7 + q1,1 + q1,3 + q1,5 + q1,7 + q2,1 + q2,3 + q2,5 + q2,7,

p{Y (X = 1) = 1} = q0,2 + q0,3 + q0,6 + q0,7 + q1,2 + q1,3 + q1,6 + q1,7 + q2,2 + q2,3 + q2,6 + q2,7,

p{Y (X = 2) = 1} = q0,4 + q0,5 + q0,6 + q0,7 + q1,4 + q1,5 + q1,6 + q1,7 + q2,4 + q2,5 + q2,6 + q2,7,

from which the contrasts of interest are easily derived.

Together with the probabilistic constraints, we then have the fully specified linear pro-
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gramming problem. The bounds are, after some algebra on the output from the program,

p{X = x1, Y = 1}+ p{X = x2, Y = 0} − 1

≤ p{Y (X = x1) = 1} − p{Y (X = x2) = 1} ≤
1− p{X = x1, Y = 0} − p{X = x2, Y = 1}

,

for (x1, x2) ∈ {(1, 0), (2, 0), (2, 1)}.

Note that these expressions are not unique and may be reparameterized using that

conditional probabilities sum to 1.

6.2 Two instruments

Our next example is shown in the DAG in Figure 5. This extends the instrumental variable

example to the case where there are two binary variables on the left side that may be

associated with each other and that both have a direct effect on X, but no direct effect on

Y . This situation may arise in Mendelian randomization studies, wherein multiple genes

may be known to cause changes in an exposure but not directly on the outcome.

Z1

Z2

X Y

Ur

Ul

Figure 5: Two instrumental variables example with binary variables

The bounds on risk difference p{Y (X = 1)} − p{Y (X = 0)} under this DAG can

be computed using our method. In this problem, there are 16 constraints involving the

conditional probabilities, the distribution of the response function variables of the R-side

has 64 parameters, and the causal query is a function of 32 of these parameters. The

bounds are the extrema over 112 vertices, and are therefore too long to be presented

simply, but code to reproduce them, as well as details about the simulation, is included in

the Supplementary Material.
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To illustrate these bounds, we computed them for specific values of observed probabili-

ties generated from a model (described fully in Section S2 of the Supplementary Materials)

which satisfies the DAG in Figure 5. Using these simulations, we compare our bounds to

the classic IV bounds from Balke and Pearl [1997] for a single binary instrument and to

bounds derived using our method for a single but 4-level categorical instrument.

The the widths of the classic IV bounds and the dual binary instruments are compared

for a subsample of the simulations in Figure 6. The bounds with two instruments are never

wider than the classic IV bounds with a single binary instrument. The simulations also

verify that a single four level instrument yields exactly the same bounds as two binary ones.

Details and R code for these simulations are provided in the Supplementary Material.
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Figure 6: Under a DAG with two instruments, the left panel is a comparison of the width
of the bounds intervals for the causal risk difference assuming only one of the instruments is
observed to the width of the bounds assuming both are observed. The right panel compares
the values of the upper and lower bounds for each replicate for two binary instruments
versus a single 4-level instrument.
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6.3 Measurement error in the outcome

Our final example illustrates some additional features of our method. In Figure 7, we

have a binary variable X affecting a binary variable Y , but Y is not observed. Instead,

the binary variable Y 2 which is a child of Y is observed, and the effect of the true Y

on the measured Y 2 is confounded. Additionally, we would like to include a constraint

that Y 2(Y = 1) ≥ Y 2(Y = 0), which is often called the monotonicity constraint. This

constraint encodes the assumption that the outcome measured with error would not be

equal to 0 unless the true unobserved outcome is also equal to 0. In terms of the response

functions, this constraint removes the case where fY 2(y, rY 2) = 1− y, thereby reducing the

number of possible values that rY 2 can take by 1.

The fact that Y is unobserved implies that we have 4 possible conditional proba-

bilities to work with; p{Y 2 = y2|X = x}, for y2, x ∈ {0, 1}. There are 12 parame-

ters that characterize the distribution of the response function variables of the R-side,

and 4 constraints involving conditional probabilities. The bounds for the risk difference

p{Y (X = 1) = 1} − p{Y (X = 0) = 1} derived using our method are given by

max{−1, 2 p{Y 2 = 0|X = 0} − 2 p{Y 2 = 0|X = 1} − 1}

≤ p{Y (X = 1) = 1} − p{Y (X = 0) = 1} ≤

min{1, 2 p{Y 2 = 0|X = 0} − 2 p{Y 2 = 0|X = 1}+ 1}.

Except in cases where p{Y 2 = 0|X = 0} = p{Y 2 = 0|X = 1}, these bounds are informa-

tive; meaning they give an interval that is shorter than the a priori interval [−1, 1].

7 Conclusion and Discussion

We have described a general method for the symbolic computation of bounds on causal

queries that are not identified from the true probability distribution of the observed vari-

ables. For this method, we give two algorithms for deriving the needed constraints and
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Figure 7: Example with measurement error in the outcome. Dashed circles indicate unob-
served variables.

objective to construct such bounds. We describe a class of causal graphs and queries that

will always define a linear program, for which we have shown the derived symbolic bounds

will always be both valid and tight. We also show that under a broader class of problems

our method will provide valid and possibly informative bounds that are not guaranteed to

be tight.

Our approach is useful in several novel scenarios, as illustrated in the examples above.

Other practical settings covered by our class of problems include Mendelian randomization,

using categorical genotypes as instruments on the left side [Didelez and Sheehan, 2007], and

many applied research problems that are given in terms of categorical measured variables

(e.g. finitely many dosage levels for exposures and discrete health states for outcomes), but

without making any assumptions about the unmeasured confounding. Additional applica-

tions of this method to unsolved problems in causal inference are now much more accessible

to researchers as a class of problems for which linear programming can always be used is

well-defined and clear algorithms exist for translating DAGs plus causal queries into linear

programs. Our representation of causal estimands as arbitrarily nested counterfactuals

and our procedure for translating them into functional expressions provides a significant

advance over previous methods. This allows for bounding of cross-world counterfactual

quantities which are highly relevant in mediation settings. The generality yet accessibility

of the method all but guarantees that practitioners will find novel applications that we have

not forseen. We note that throughout this paper and in the implementation we have used

the graphical representations of causal models as suggested by Pearl [2009] and Shpitser

24



and Pearl [2007], namely causal DAGs and multi-networks. However, as our method only

relies on the nonparametric structural equations framework, it may be possible to use other

graphical representations, such as single world interventional graphs [Richardson, 2013].

Although our class of problems and method from deriving bounds puts no limit of

the number of variables or categories for a given variable, in practice attention must be

paid to computational complexity. Since we have |ν(RWi
)| = ∏n

i=1 c
|PaWi

|
Wi

for each variable

Wi, the cardinalities of the domains of the response function variables grow exponentially

with the those of other variables in the DAG. The exact growth pattern will of course

depend on the DAG and its connectivity as well as the number of categorical levels of

select influential variables. Thus, the number of variables or levels may be limited by

computing power. More detail on the computational complexity is available in Section S3

of the Supplementary Material.

It should be noted that our conditions for a class of problems to be linear are sufficient,

but not required. Thus, we cannot rule out that there exist problems outside of our class

that can be stated as linear. It may be possible to identify a broader class of problems or a

different algorithm that may apply on a case-by-case basis. For example, nonlinear causal

queries such as the relative risk or odds ratio yield nonlinear optimization problems yet in

some cases it may be possible to translate them to equivalent linear problems.

We have shown that we can apply our methods in settings where all variables may

have arbitrarily many categorical levels, expanding considerably the usually binary settings

previously considered. This also provides opportunity for reasonable approximation via

discretization of continuous variables, although the amount and impact of information lost

due to such discretization on bounds has not been well studied. Extensions and insights

into discretization would be useful and are areas of future research for the authors.

Supplemental material

Supplementary Material available online includes proofs of the propositions, details on

the simulation for the instrumental variable example, and discussion of computational

complexity. The R package causaloptim: An Interface to Specify Causal Graphs and

25



Compute Bounds on Causal Effects, is available from CRAN, and from Github at https://

sachsmc.github.io/causaloptim, with additional documentation and examples. The file

example-code.R contains the R code used to run the examples and simulations presented

in the main text.
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S1 Proofs

Proof of Proposition 1. For each W ∈ W , if ϕW : ν(UW ) → {h : ν(PaW ) → ν(W )} is given

by uW 7→ huW
, where the response function huW

is given by paW 7→ FW (paW , uW ), then

let the set of values of the response function variable RW corresponding to W , ν(RW ) :=

ν(UW )/ϕW be the partition of ν(UW ) induced by the equivalence relation u1 ∼ u2 : ⇐⇒
ϕW (u1) = ϕW (u2). ϕW maps ν(UW ) bijectively to the finite set {h : ν(PaW ) → ν(W )} of

response functions. Thus, for each uW ∈ ν(UW ) there exists a unique rW ∈ ν(RW ) and

fW (·, rW ) ∈ {h : ν(PaW ) → ν(W )} such that FW (·, uW ) = fW (·, rW ). We will henceforth

refer to fW (·, rW ) as the response function and RW the response function variable. Note

that the set {h : ν(PaW ) → ν(W )} is finite with cardinality |ν(W )||ν(Paw)| since |ν(W )|
and |ν(Paw)| are both finite.

Proof of Proposition 2. Conditions 1 and 2 are depicted in Figure S1. Note that this il-

lustrates the setting at a macro-level only, and indicates only the independence relations
∗The authors report there are no competing interests to declare. MCS and GJ are partially supported

by Swedish Research Council grant 2019-00227, EEG by Swedish Research Council grant 2017-01898, and
AS by Swedish Research Council grant 2016-01267.
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Figure S1: A birds-eye view of G in Proposition 2. G yields the Bayesian decomposition
p{WL = wL,WR = wR,RL = rL,RR = rR} = p{WL = wL | RL = rL}p{RL =
rL}p{WR = wR | WL = wL,RR = rR}p{RR = rR}.

between the vector-valued variables WL,WR,RL and RR at this level. The internal de-

pendencies among the component variables of WL and WR are further given by the actual

”fine-grained” DAG G. Regarding the internal dependencies among the component vari-

ables of the latent RL and RR, we make no assumptions whatsoever, which amounts to

assuming potential mutual dependency among all component variables within RL and RR,

respectively (i.e. potential mutual confounding among all variables internal to WL and WR,

respectively). We have, ∀r ∈ ν(R), ∀w ∈ ν(W) (so in particular, p{RL = rL}, p{RR =

rR}, p{WL = wL}, p{WL = wL,RR = rR} = p{WL = wL}p{RR = rR} > 0),

p{W = w,R = r} = p{WL = wL,WR = wR,RL = rL,RR = rR}

= p{WL = wL | RL = rL}p{RL = rL}

p{WR = wR | WL = wL,RR = rR}p{RR = rR}.
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So ∀w ∈ ν(W),

p{W = w} =
∑

r∈ν(R)

p{W = w,R = r}

=
∑

r∈ν(R)

p{WL = wL | RL = rL}p{RL = rL}

p{WR = wR | WL = wL,RR = rR}p{RR = rR}

=
∑

rL∈ν(RL)

∑

rR∈ν(RR)

p{WL = wL | RL = rL}p{RL = rL}

p{WR = wR | WL = wL,RR = rR}p{RR = rR}

=
∑

rL∈ν(RL)

p{WL = wL | RL = rL}p{RL = rL}

∑

rR∈ν(RR)

p{WR = wR | WL = wL,RR = rR}p{RR = rR}

= p{WL = wL}
∑

rR∈ν(RR)

p{WR = wR | WL = wL,RR = rR}p{RR = rR}.

Hence, ∀b ∈ {1, . . . , B},

pb = P{WR = wb,R | WL = wb,L}

=
p{WL = wb,L,WR = wb,R}

p{WL = wb,L}

=
p{W = wb}

p{WL = wb,L}

=
p{WL = wb,L}

∑ℵR
γ=1 p{WR = wb,R | WL = wb,L,RR = rγ}p{RR = rγ}

p{WL = wb,L}

=

ℵR∑

γ=1

p{WR = wb,R | WL = wb,L,RR = rγ}p{RR = rγ}

=

ℵR∑

γ=1

Pbγqγ
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where P ∈ {0, 1}B×ℵR is given by ∀b ∈ {1, . . . , B}, γ ∈ {1, . . . ,ℵR},

Pbγ := p{WR = wb,R | WL = wb,L,RR = rγ}

=




1 if ∀i ∈ R, wi = gWi

(wb,L, rγ)

0 otherwise
.

Moreover, ∀b ∈ {1, . . . , B},

p∗b = p{W = wb}

= p{WL = wb,L,WR = wb,R}

= p{WL = wb,L}p{WR = wb,R | WL = wb,L}

= p{WL = wb,L}pb

= p{WL = wb,L}
ℵR∑

γ=1

Pbγqγ

= P ∗
bγqγ
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where P ∗ ∈ [0, 1]B×ℵR is given by ∀b ∈ {1, . . . , B}, γ ∈ {1, . . . ,ℵR},

P ∗
bγ := p{W = wb | RR = rγ}

= p{WL = wb,L,WR = wb,R | RR = rγ}

= p{WR = wb,R | WL = wb,L,RR = rγ}p{WL = wb,L | RR = rγ}

= p{WL = wb,L}p{WR = wb,R | WL = wb,L,RR = rγ}

= p{WL = wb,L}Pbγ

=




p{WL = wb,L} if ∀i ∈ R, wi = gWi

(wb,L, rγ)

0 otherwise
.

Since ∀b ∈ {1, . . . , B}, p∗b = p{WL = wb,L}pb, we have p∗ = Λp, where Λ ∈ [0, 1]B×B

is given by, ∀b, c ∈ {1, . . . , B},

Λbc :=




p{WL = wb,L} if b = c

0 otherwise

Note that ∀b ∈ {1, . . . , B},∀γ ∈ {1, . . . ,ℵR},
∑B

c=1 ΛbcPcγ = ΛbbPbγ = p{WL =

wb,L}Pbγ = P ∗
bγ, so ΛP = P ∗. Note further that the diagonal entries of Λ all are non-zero

(since ∀b ∈ {1, . . . , B}, wb,L ∈ ν(WL)), so Λ is invertible and hence bijectively maps be-

tween the conditional probability vector p = Pq ∈ [0, 1]B and the corresponding marginal

one p∗ = P ∗q ∈ [0, 1]B. Consequently, p = Pq ⇐⇒ Λp = ΛPq ⇐⇒ p∗ = P ∗q.

Since the distribution of the unmeasured influences U , or equivalently the response func-

tion variables R, is independent of the DAG, the DAG cannot encode any quantitative con-

straints in the form of relationships between these variables. Thus, the structural equations

encoded by the DAG can only imply constraints (ignoring the distinction between the left

and right sides, since this can be considered within each of those sets) based on the following

types of independence relations: (i) Wi ⊥⊥ U for some i, (ii) Wi ⊥⊥ U |WB for some i and set

of observed variables WB, (iii) Wi ⊥⊥ Wj for some i, j, (iv) Wi ⊥⊥ Wj|WA for some i, j and set
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of observed variables WA or (v) Wi ⊥⊥ Wj|U for some i, j. Cases (i) and (ii) imply that U is

not a parent of Wi, in violation of Condition 3 or 4. Cases (iii) and (iv) imply that U is either

not a parent of Wi or not of Wj, again in violation of Condition 3 or 4. Case (v) implies

that for i, j, we have p{Wi,Wj} =
∑

R p{Wi,Wj|R}p{R} =
∑

R p{Wi|R}p{Wj|R}p{R}
which is still linear in q.

Now relating this last point to the enumeration of constraints above, note the vector p∗

enumerates all joint probabilities of all observed variables in the DAG. Hence, constraints

relating linear combinations of q to joint, conditional, or marginal probabilities of subsets

of W can be directly obtained as transformations among rows of the existing constraints

p∗ = P ∗q. The addition of those are clearly redundant. In other words, the matrix P

contains complete information about any and all relationships between the observed joint

distribution and the joint distribution of the response function variables of the R-side that

are possible under our conditions. By the above, the complete set of constraints on observed

probabilities is equivalent to a system that is linear in q.

Proof of Proposition 3. Let again P = {i1, . . . , iP} and O = {j1, . . . , jO} be respectively

the indices of the potential and factual outcomes in Q, and Γ(Q) = {r ∈ ν(R) : wi1 =

h
Ai1
Wi1

(r,Wi1), . . . , wiP = h
AiP
WiP

(r,WiP ), wj1 = gWj1
(r), . . . , wjO = gWjO

(r)}. We have (RL ⊥
⊥ RR)G and, by condition 5, P ∪ O ⊂ R and if L 6= ∅, Γ(Q) = ν(RL) × ΓR(Q),

where ΓR(Q) := {rR ∈ ν(RR) : wi1 = h
Ai1
Wi1

(rR,Wi1), . . . , wiP = h
AiP
WiP

(rR,WiP ), wj1 =

gWj1
(rR), . . . , wjO = gWjO

(rR)}. Condition 6 ensures that, if L is not empty, then all paths

from the potential outcomes in Q to any variables in L must pass through the intervention

set, thus negating any influence of RL on any of the variables in Q. Hence, if L = ∅, then

Q = p{hAi1
Wi1

(R,Wi1) = wi1 , . . . , h
AiP
WiP

(R,WiP ) = wiP , gWj1
(R) = wj1 , . . . , gWjO

(R) = wjO}

=
∑

r∈Γ(Q)

p{R = r}

=

ℵR∑

γ=1

IΓ(Q)(rγ)qγ = α⊤q,
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where I(·) is the indicator function and α ∈ {0, 1}ℵR is given by

∀γ ∈ {1, . . . ,ℵR}, αγ :=




1 if rγ ∈ Γ(Q)

0 otherwise
.

If L 6= ∅, we have

Q = p{hAi1
Wi1

(R,Wi1) = wi1 , . . . , h
AiP
WiP

(R,WiP ) = wiP }

=
∑

r∈Γ(Q)

p{R = r}

=
∑

r∈Γ(Q)

p{RL = rL,RR = rR}

=
∑

r∈Γ(Q)

p{RL = rL}p{RR = rR}

=
∑

(rL,rR)∈ν(RL)×ΓR(Q)

p{RL = rL}p{RR = rR}

=
∑

rL∈ν(RL)

∑

rR∈ΓR(Q)

p{RL = rL}p{RR = rR}

=
∑

rL∈ν(RL)

p{RL = rL}
∑

rR∈ΓR(Q)

p{RR = rR}

=
∑

rR∈ΓR(Q)

p{RR = rR}

=

ℵR∑

γ=1

IΓR(Q)(rγ)qγ = α⊤q,

where α ∈ {0, 1}ℵR is given by ∀γ ∈ {1, . . . ,ℵR}, αγ :=




1 if rγ ∈ ΓR(Q)

0 otherwise
.

Proof of Proposition 4. Proposition 2 ensures that the linear constraints p∗ = P ∗q are

necessary and sufficient for the probability distribution to be compatible with the causal

model. Solving the optimization problem with these constraints is equivalent to solving it

with the constraints p = Pq because the relation is obtained by multiplying both sides
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of the equation by an invertible constant matrix. Proposition 3 demonstrates that the

objective function is linear in q. The constraint space is closed and non-empty, and is

bounded by the probabilistic constraints. Subject to any additional linear constraints

specified in the form of equalities or non-strict inequalities, the constraint space is closed

and bounded, hence compact, so by the extreme value theorem and the fact that the

objective is linear, hence continuous, the primal problem has an optimal feasible solution.

By the strong duality theorem, the dual problem has a global optimum coinciding with that

of the primal, and again has a bounded constraint space, so by the fundamental theorem

of linear programming, it can be found in terms of p via vertex enumeration.

S2 Instrumental Variables Simulation

Z1

Z2

X Y

Ur

Ul

Figure S2: Two instrumental variables example with binary variables

For each of 50,000 simulations, we generated values pul and pul of probabilities of

the latent influences Ul and Ur from the standard uniform distribution, and each of 12

parameters α1, α2, α3, α4, α5, β1, β2, β3, β4, γ1, γ2, γ3 from the normal distribution with mean

0 and standard deviation 2. Assuming that the conditional distributions of the observed

variables follow probit models, we can derive, by Bayesian decomposition according to

the diagram in Figure S2, the joint distribution of p(Ul, Ur, Z1, Z2, X, Y ). From that, we

marginalize out the variables Ul and Ur to get p{Z1, Z2, X, Y } and finally compute and

divide this by the marginal joint probability p{Z1, Z2} of the instruments Z1 and Z2, to

get the conditional probability distribution p{X,Y |Z1, Z2} that goes into the symbolic
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expressions of the tight bounds. We do a similar marginalization of Z2 in order to get

conditional probabilities p{X,Y |Z1} for computation of the single binary IV bounds. In

each simulation, we create values of probabilities p{Z3 = z3}, z3 ∈ {0, 1, 2, 3} of a 4-level

instrument Z3 from probabilities p{Z1 = z1, Z2 = z2}, z1, z2 ∈ {0, 1} to get appropriate

input for the expressions of the tight bound computed in the single 4-level instrument

setting.

p{Ul = 1} ∼ Unif(0, 1)

p{Ur = 1} ∼ Unif(0, 1)

p{Z2 = 1|Ul} = Φ(α1 + α2Ul)

p{Z1 = 1|Ul, Z2} = Φ(α3 + α4Ul + α5Z2)

p{X = 1|Ur, Z1, Z2} = Φ(β1 + β2Ur + β3Z1 + β4Z2)

p{Y = 1|Ur, X} = Φ(γ1 + γ2Ur + γ3X)

(α1, α2, α3, α4, α5, β1, β2, β3, β4, γ1, γ2, γ3) ∼ N(0, 4)

(1)

To illustrate these bounds, we computed them for specific values of observed probabil-

ities generated from the model in Equation (1) which satisfies the DAG in Figure S2.

See the accompanying R code for a reproducible implementation.

S3 Computational Complexity

Algorithm 1 runs in O(B · ℵR · R), where B = |ν(W)| = ∏
W∈W cW =

∏n
i=1 |ν(Wi)| is the

product of the cardinalities of all n variables in W , R = |WR| = n − ג is the number of

R-side variables, and the factor ℵR = |ν(RR)| =
∏n

j=1+ג |ν(RWj
)| = ∏n

j=1+ג c
|PaWj

|
Wj

, i.e.,

the total number of R-side response functions, has the largest impact on computational

complexity. The operation performed at each step involved the evaluation of response

functions and comparison of the results to fixed values.

Algorithm 2 runs in O(ℵR · (1+P ·A+O)) ≈ O(ℵR ·P ·A), where ℵR is as before, P is

the number of potential outcome variables in the target causal query Q, O is the number

of factual variables in Q (and may in general be neglected), and A is the complexity of
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constructing all interventional paths to a given potential outcome variable in Q, which

amounts to enumerating all topological orderings of W ending at the given variable, and

is NP-hard.

Once the linear program has been constructed, things are brighter complexity-wise,

since linear programs are solvable in (at most weakly) polynomial time. In contrast, poly-

nomial programs (as utilized in Duarte et al. [2021]), e.g., are NP-hard.

Regarding memory usage, we have space complexity O(B · (ℵR +B) +R) ≈ O(B · ℵR)

for Algorithm 1 and O(ℵR +A) for Algorithm 2. Note that the interventional matrices do

not severely impact space complexity, since only one matrix needs to be cached at any given

time. Note however, that the response functions themselves, not just their number, also

increase in size with with increasingly complex DAGs, which also affects memory usage.
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