
Summarise and analyse clinical trial information

Ralf Herold

2021-05-08

General information on the ctrdata package is available here: https://github.com/rfhb/ctrdata.

Remember to respect the registersŠ terms and conditions (see ctrOpenSearchPagesInBrowser(copyright

= TRUE)). Please cite this package in any publication as follows: Ralf Herold (2021). ctrdata: Retrieve and
Analyze Clinical Trials in Public Registers. R package version 1.8.0. https://cran.r-project.org/package=
ctrdata

Preparations

Here using MongoDB, which is faster than SQLite, can handle credentials, provides access to remote servers
and can directly retrieve nested elements from paths. See README.md and Retrieve clinical trial informa-
tion for examples using SQLite.

db <- nodbi::src_mongo(

url = "mongodb://localhost",

db = "my_database_name",

collection = "my_collection_name")

db

MongoDB 4.0.22 (uptime: 531852s)

URL: laptop.home/my_database_name

Collection: my_collection_name

See Retrieve clinical trial information for more details.

library(ctrdata)

These two queries are similar, for completed interventional (drug)

trials with children with a neuroblastoma from either register

ctrLoadQueryIntoDb(

using queryterm and register ...

queryterm = "query=neuroblastoma&age=under-18&status=completed",

register = "EUCTR",

euctrresults = TRUE,

con = db

)

ctrLoadQueryIntoDb(

or using full URL of search results

queryterm =

"https://clinicaltrials.gov/ct2/results?cond=neuroblastoma&recrs=e&age=0&intr=Drug",

con = db

)

1

https://github.com/rfhb/ctrdata
https://cran.r-project.org/package=ctrdata
https://cran.r-project.org/package=ctrdata
../README.md
ctrdata_retrieve.Rmd
ctrdata_retrieve.Rmd
ctrdata_retrieve.Rmd

dbQueryHistory(con = db)

query-timestamp query-register query-records query-term

1 2021-11-20 22:48:18 EUCTR 146 query=neuroblastoma&age=under-18&status=completed

2 2021-11-20 22:48:26 CTGOV 196 cond=neuroblastoma&recrs=e&age=0&intr=Drug

Find fields / variables of interest

Specify a part of the name of a variable of interest; all variables including deeply nested variable names are
searched.

dbFindFields(namepart = "date", con = db)

Finding fields in database (may take some time)

Field names cached for this session.

[1] "completion_date"

[2] "e231_full_title_date_and_version_of_each_substudy_and_their_related_objectives"

[3] "e231_full_title_date_and_version_of_each_substudy_and_their_related_objectives_es"

[4] "last_update_posted"

[5] "last_update_submitted"

[6] "last_update_submitted_qc"

[7] "n_date_of_competent_authority_decision"

[8] "n_date_of_ethics_committee_opinion"

[9] "p_date_of_the_global_end_of_the_trial"

[10] "primary_completion_date"

[11] "provided_document_section.provided_document.document_date"

[12] "required_header.download_date"

[13] "start_date"

[14] "trialChanges.globalAmendments.globalAmendment.date"

[15] "trialChanges.globalInterruptions.globalInterruption.date"

[16] "trialChanges.globalInterruptions.globalInterruption.restartDate"

[17] "trialInformation.analysisStageDate"

[18] "trialInformation.globalEndOfTrialDate"

[19] "trialInformation.primaryCompletionDate"

[20] "trialInformation.recruitmentStartDate"

[21] "verification_date"

[22] "x6_date_on_which_this_record_was_first_entered_in_the_eudract_database"

The search for Ąelds is cached and thus accelerated during the R session, as long as no new
ctrLoadQueryIntoDb() is executed.

Data frame from database

The Ąelds of interest can be obtained from the database and are represented in an R data.frame:

result <- dbGetFieldsIntoDf(

c("f41_in_the_member_state",

"f422_in_the_whole_clinical_trial",

"a1_member_state_concerned",

"p_end_of_trial_status",

"n_date_of_competent_authority_decision",

"a2_eudract_number",

"overall_status",

2

"start_date",

"primary_completion_date"),

con = db)

Metadata from data frame

The objects returned by functions of this package include attributes with metadata to indicate from which
database, table / collection and query details. Metadata can be reused in R.

attributes(result)

[...]

$`ctrdata-dbname`

[1] "my_database_name"

#

$`ctrdata-table`

[1] "my_collection_name"

#

$`ctrdata-dbqueryhistory`

query-timestamp query-register query-records query-term

1 2021-11-20 22:48:18 EUCTR 146 query=neuroblastoma&age=under-18&status=completed

2 2021-11-20 22:48:26 CTGOV 196 cond=neuroblastoma&recrs=e&age=0&intr=Drug

In the database, the variable Ş_idŤ is the unique index for a record. This Ş_idŤ is the NCT number for
CTGOV records (e.g., ŞNCT00002560Ť), and it is the EudraCT number for EUCTR records including the
postĄx identifying the EU Member State (e.g., Ş2008-001436-12-NLŤ).

It is relevant to de-duplicate records because a trial can be registered in both CTGOV and EUCTR, and
can have records by involved country in EUCTR.

De-duplication is done at the analysis stage because this enables to select if a trial record should be taken
from one or the other register, and from one or the other EU Member State.

The basis of de-duplication is the recording of additional trial identiĄers in supplementary Ąelds (variables),
which are checked and reported when using function dbFindIdsUniqueTrials():

Obtain de-duplicate trial record ids

ids <- dbFindIdsUniqueTrials(

preferregister = "EUCTR",

con = db

)

Searching for duplicate trials...

- Getting trial ids, 328 found in collection

- Finding duplicates among registers' and sponsor ids...

- 98 EUCTR _id were not preferred EU Member State record for 38 trials

- Keeping 180 / 37 records from CTGOV / EUCTR

= Returning keys (_id) of 217 records in collection "my_collection_name"

The unique ids can be used like this to de-duplicate the data.frame created above:

Eliminate duplicate trials records:

result <- result[result[["_id"]] %in% ids,]

#

nrow(result)

[1] 223

3

Simple analysis - dates

In a data.frame generated with dbGetFieldsIntoDf(), Ąelds are typed as dates, logical and numbers.

str(result)

'data.frame': 217 obs. of 10 variables:

$ _id : chr "2004-004386-15-GB" ...

$ f41_in_the_member_state : int NA 15 5 37 NA 24 100 NA 600 24 ...

$ f422_in_the_whole_clinical_trial : int 230 63 12 67 70 NA 100 156 2230 NA ...

$ a1_member_state_concerned : chr "UK - MHRA" "Italy - Italian Medicines Agency" ...

$ p_end_of_trial_status : chr "Completed" "Completed" "Completed" "Completed" ...

$ n_date_of_competent_authority_decision: Date, format: "2005-06-02" "2005-09-06" ...

$ a2_eudract_number : chr "2004-004386-15" "2005-000915-80" ...

$ overall_status : chr "" "" "" "" ...

$ start_date : Date, format: NA NA ...

$ primary_completion_date : Date, format: NA NA

This facilitates using the respective type of data for analysis, for example of dates with base R graphics:

Open file for saving

png("vignettes/nb1.png")

Visualise trial start date

hist(

result[["n_date_of_competent_authority_decision"]],

breaks = "years")

box()

dev.off()

Merge corresponding fields from registers

However, the Ąeld Şn_date_of_competent_authority_decisionŤ used above exists only in EUCTR, and it
corresponds to the Ąeld Şstart_dateŤ in CTGOV. Thus, to provide a wider picture, the two Ąelds can be
merged for analysis, using the convenience function dfMergeTwoVariablesRelevel() in ctrdata package:

Merge two variables into a new variable:

result$trialstart <- dfMergeTwoVariablesRelevel(

result,

colnames = c(

"n_date_of_competent_authority_decision",

"start_date"))

Unique values returned (first three): 2005-07-08, 2005-11-15, 2005-06-02

Plot from both registers

png("vignettes/nb2.png")

hist(

result[["trialstart"]],

breaks = "years")

box()

dev.off()

In a more sophisticated use of dfMergeTwoVariablesRelevel(), values of the original variables can be
mapped into new values of the merged variable, as follows:

4

Figure 1: Histogram1

5

Figure 2: Histogram2

6

First, define how values of the new, merged variable

(e.g., "ongoing") will result from values of the

original variable (e.g, "Recruiting):

mapped_values <- list(

"ongoing" = c("Recruiting", "Active", "Ongoing",

"Active, not recruiting",

"Enrolling by invitation", "Restarted"),

"completed" = c("Completed", "Prematurely Ended", "Terminated"),

"other" = c("Withdrawn", "Suspended", "No longer available",

"Not yet recruiting", "Temporarily Halted",

"Unknown status", "GB - no longer in EU/EEA"))

Secondly, use the list of mapped

values when merging two variable:

tmp <- dfMergeTwoVariablesRelevel(

result,

colnames = c("overall_status",

"p_end_of_trial_status"),

levelslist = mapped_values)

Unique values returned: completed, other, ongoing

table(tmp)

completed ongoing other

217 1 6

Annotations made by user

The Ąelds that ctrdata adds to each record are annotation and record_last_import. The annotation Ąeld
is a single string that is only added if a user speciĄes an annotations when retrieving trials (Retrieve clinical
trial information). The last date and time when the trial record was imported is updated automatically.
Also these Ąelds can be used for analysis. For example, string functions can be used for annotations e.g. to
split it into components. Since no annotations were speciĄed when retrieving the trials in the steps above,
there are so far no annotation Ąelds and stopifnodata is set to FALSE to avoid the function raises an error
to alert users:

result <- dbGetFieldsIntoDf(

fields = c(

"annotation",

"record_last_import",

"clinical_results.outcome_list.outcome"),

stopifnodata = FALSE,

con = db)

str(result)

'data.frame': 342 obs. of 4 variables:

$ _id : chr "2004-004386-15-DE" "2004-004386-15-IT" ...

$ annotation : chr NA NA NA NA ...

$ record_last_import : Date, format: "2021-05-08" "2021-05-08" ...

$ clinical_results.outcome_list.outcome:List of 342

7

ctrdata_retrieve.Rmd
ctrdata_retrieve.Rmd

Analysing nested fields such as trial results

The registers represent clinical trial information by nesting Ąelds (e.g., several reporting groups within several
measures within one of several endpoints). A visualisation of this hierarchical representation for CTGOV is
this:

remotes::install_github("https://github.com/hrbrmstr/jsonview")

jsonview::json_tree_view(result[["clinical_results.outcome_list.outcome"]][

result[["_id"]] == "NCT00520936"])

Figure 3: CtgovNested

The analysis of nested information such as the highlighted duration of response can be done with ctrdata

as follows. The main steps are:

• to transform nested information to a long, name-value data.frame and then

8

• to identify where the measures of interest (e.g. duration of response, blue circles above) are located
in the information hierarchy by specifying the name and value of Ąelds (wherename, wherevalue) and
Ąnally

• to obtain the value of the item by specifying the name(s) of its value Ąeld(s) (valuename, red circles
above).

1. Create data frame from results fields.

These are the key results fields from

CTGOV and from EUCTR:

result <- ctrdata::dbGetFieldsIntoDf(

fields = c(

CTGOV

"clinical_results.baseline.analyzed_list.analyzed.count_list.count",

"clinical_results.baseline.group_list.group",

"clinical_results.baseline.analyzed_list.analyzed.units",

"clinical_results.outcome_list.outcome",

"study_design_info.allocation",

EUCTR

"@attributes.eudractNumber",

"trialInformation.populationAgeGroup",

"subjectDisposition.recruitmentDetails",

"baselineCharacteristics.baselineReportingGroups.baselineReportingGroup",

"endPoints.endPoint",

"trialChanges.hasGlobalInterruptions",

"subjectAnalysisSets",

"adverseEvents.seriousAdverseEvents.seriousAdverseEvent"

),

con = db

)

Keep only unique trial records

result <- result[

result[["_id"]] %in% ctrdata::dbFindIdsUniqueTrials(

con = db),

]

[...]

- Keeping 180 / 37 records from CTGOV / EUCTR

= Returning keys (_id) of 217 records in collection "my_collection_name"

2. The columns of the results data.frame

contain nested lists of fields, see

str(result[["endPoints.endPoint"]][1])

All nested data are transformed to a long,

name-value data.frame (resulting in several

hundred rows per trial record):

long_result <- ctrdata::dfTrials2Long(

df = result

)

Total 72049 rows, 182 unique names of variables

3. Obtain values for fields of interest where

they related to measures of interest. The

parameters can be regular expressions.

9

dor <- dfName2Value(

df = long_result,

wherename = paste0(

"clinical_results.outcome_list.outcome.measure.title|",

"endPoints.endPoint.title"),

wherevalue = "duration of response",

valuename = paste0(

"clinical_results.*category_list.category.measurement_list.measurement.value|",

"endPoints.*armReportingGroup.tendencyValues.tendencyValue.value"

)

)

Duration of response has been reported variably in

months and days. Here, just select trials reporting

duration of response in months:

dor <- dor[

grepl("months",

dfName2Value(

df = long_result,

wherename = paste0(

"clinical_results.*outcome.measure.title|",

"endPoints.endPoint.title"),

wherevalue = "duration of response",

valuename = paste0(

"clinical_results.*measure.units|",

"endPoints.endPoint.unit")

)[["value"]]),]

dor[, c("_id", "value")]

_id value

2 2010-019348-37-GB 8.1

8 2013-003595-12-SK 999.0

Analysing primary endpoints

Text analysis has to be used for many Ąelds of trial information from the registers. Here is an example
to simply categorise the type of primary endpoint. In addition, the number of subjects are extracted and
compared by type of primary endpoint.

Several "measure" entries are in "primary_outcome".

They are concatenated into a list when specifying

the JSON path "primary_outcome.measure"

result <- dbGetFieldsIntoDf(c(

CTGOV

"primary_outcome.measure",

"enrollment",

EUCTR

"e51_primary_end_points",

"f11_trial_has_subjects_under_18"

"f11_number_of_subjects_for_this_age_range"),

con = db)

De-duplicate

10

result <- result[

result[["_id"]] %in%

dbFindIdsUniqueTrials(con = db),]

Merge primary endpoint (pep)

result$pep <- dfMergeTwoVariablesRelevel(

df = result,

colnames =

c("primary_outcome.measure",

"e51_primary_end_points")

)

Merge number of subjects

result$nsubj <- dfMergeTwoVariablesRelevel(

df = result,

colnames =

c("enrollment",

"f11_number_of_subjects_for_this_age_range")

)

For primary endpoint of interest,

use regular expression on text:

result$pep_is_efs <- grepl(

pattern = "((progression|event|relapse|recurrence|disease)[-]free)|pfs|dfs|efs)",

x = result$pep,

ignore.case = TRUE)

Tabulate

table(result$pep_is_efs)

FALSE TRUE

204 19

Plot

library(ggplot2)

ggplot(data = result,

aes(x = nsubj,

y = pep_is_efs)) +

geom_boxplot() +

scale_x_log10()

ggsave("vignettes/boxpep.png", width = 6, height = 4)

Investigational or authorised medicinal product?

The information about the status of authorisation (licensing) of a medicine used in a trial is recorded
in EUCTR in the Ąeld dimp.d21_imp_to_be_used_in_the_trial_has_a_marketing_authorisation. A
corresponding Ąeld in CTGOV is not known. The status is in the tree starting from the dimp element.

Get results

result <- dbGetFieldsIntoDf(

fields =

c("a1_member_state_concerned",

"n_date_of_competent_authority_decision",

11

Figure 4: BoxPEP

"dimp.d21_imp_to_be_used_in_the_trial_has_a_marketing_authorisation",

"x6_date_on_which_this_record_was_first_entered_in_the_eudract_database",

"f422_in_the_whole_clinical_trial",

"a2_eudract_number"),

con = db)

Find first date of authorisation in EU member state

tmp <- aggregate(

result[["n_date_of_competent_authority_decision"]],

by = list(result[["a2_eudract_number"]]),

FUN = function(x) min(x))

result <- merge(

x = result,

y = tmp,

by.x = "a2_eudract_number",

by.y = "Group.1",

all.x = TRUE)

result[["startdatefirst"]] <- dfMergeTwoVariablesRelevel(

df = result,

colnames = c(

"x",

"x6_date_on_which_this_record_was_first_entered_in_the_eudract_database")

)

Now de-duplicate

result <- result[

12

result[["_id"]] %in%

dbFindIdsUniqueTrials(

include3rdcountrytrials = FALSE,

con = db),]

How many of the investigational medicinal product(s)

used in the trial are authorised?

number_authorised <- stringi::stri_count(

result[["dimp.d21_imp_to_be_used_in_the_trial_has_a_marketing_authorisation"]],

fixed = "Yes")

table(number_authorised, exclude = "")

number_authorised

0 1 2 4 8 15

203 9 5 4 1 1

result[["any_authorised"]] <- number_authorised > 0

Plot

library(ggplot2)

library(scales)

ggplot(

data = result,

aes(

x = startdatefirst,

fill = any_authorised)) +

scale_x_date(

breaks = breaks_width(width = "2 years"),

labels = date_format("%Y")) +

geom_histogram() +

labs(

title = "Neuroblastoma trials in EU",

x = "Year of trial authorisation (or entered in EUCTR)",

y = "Number of trials",

fill = "Medicine\nauthorised?")

ggsave("vignettes/nbtrials.png", width = 6, height = 4)

Analyses using aggregation pipeline and mapreduce

Here are example of analysis functions that can be run on the MongoDB server, which are fast and do not
consume R resources.

Load library for database access

library(mongolite)

Create R object m to access the

collection created above:

m <- mongo(url = paste0(db[["url"]], "/", db[["db"]]),

collection = db[["collection"]])

Number of records in collection:

m$count()

[1] 343

13

Figure 5: HistogramNBtrials

Number of EUCTR records, using JSON for query:

m$count(query = '{"_id": {"$regex": "[0-9]{4}-[0-9]{6}-[0-9]{2}",

"$options": "i"}}')

#[1] 146

Alternative:

m$count(query = '{"ctrname": "EUCTR"}')

[1] 146

Number of CTGOV records:

m$count(query = '{"_id": {"$regex": "NCT[0-9]{8}",

"$options": "i"}}')

[1] 196

Alternative:

m$count(query = '{"ctrname": "CTGOV"}')

[1] 196

The following examples use the aggregation pipeline in MongoDB:

See here for details on mongo's aggregation pipleline:

https://docs.mongodb.org/manual/core/aggregation-pipeline/

To best define regular expressions for analyses,

inspect the field (here, primary_outcome.measure):

Regular expressions ("$regex") are case insensitive ("i")

14

head(

m$distinct(key = "primary_outcome.measure",

query = '{"_id": {"$regex": "NCT[0-9]{8}", "$options": "i"}}'))

[1] "- To demonstrate that 123I-mIBG planar scintigraphy is sensitive and "

[2] "1-year Progression-free Survival"

[3] "1RG-CART cell counts in peripheral blood and infiltration of 1RG-CART "

[4] "Ability of iodine I 131 metaiodobenzylguanidine to provide palliative therapy"

[5] "Acute and late toxicities"

[6] "Adverse events as a measure of safety/tolerability"

[Example 1.] Total count of PFS, EFS, RFS or DFS

out <- m$aggregate(

Count number of documents in collection that

matches in primary_outcome.measure the

regular expression,

pipeline =

'[{"$match": {"primary_outcome.measure":

{"$regex": "(progression|event|relapse|recurrence|disease)[-]free",

"$options": "i"}}},

{"$group": {"_id": "null", "count": {"$sum": 1}}}]')

out

_id count

1 null 16

[Example 2.] Lists records of OS trials with start date

out <- m$aggregate(

pipeline =

'[{"$match": {"primary_outcome.measure":

{"$regex": "overall survival", "$options": "i"}}},

{"$project": {"_id": 1, "start_date": 1}}]')

head(out)

_id start_date

1 NCT00499616 October 8, 2007

2 NCT00793845 August 2008

3 NCT00923351 June 2, 2007

[Example 3.] Count number of trials by number of

study participants in bins of hundreds of participants:

hist <- m$mapreduce(

map = "function(){emit(Math.floor(this.f422_in_the_whole_clinical_trial/100)*100, 1)}",

reduce = "function(id, counts){return Array.sum(counts)}"

)

hist

_id value

1 3300 4

2 NaN 204

3 200 6

4 2200 4

5 600 1

6 2700 2

7 0 77

8 400 9

15

9 100 36

16

	Preparations
	Find fields / variables of interest
	Data frame from database
	Metadata from data frame
	Simple analysis - dates
	Merge corresponding fields from registers
	Annotations made by user
	Analysing nested fields such as trial results
	Analysing primary endpoints
	Investigational or authorised medicinal product?
	Analyses using aggregation pipeline and mapreduce

