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1 Introduction

The function dmm() sets up equations which relate the observed covariance of
pairs of individuals or dyads, to their expectation in terms of postulated genetic
and environmental variance and covariance components.

These equations, termed dyadic model equations (DME’s), can be solved
directly to obtain estimates of variance and covariance components. The DME’s
are linear equations, and are exactly analogous to a set of multi-trait multiple
regression equations.

The function dmm() therefore effectively turns variance component estima-
tion into a regression problem. All of the statistical techniques for fitting a
linear multiple regression are therefore available for solving the DME’s. The
function dmm() uses the QR algorithm by default, but can optionally use lm(),
robust regression (lmrob()), or principal component regression (pls package).

This document is about the practical issues in checking out a particular set
of DME’s and in choosing an appropriate regression method for their solution.
In many of the datasets available to quantitative geneticists, the (co)variance
components which we would like to estimate are partially confounded, some-
times to the point where they are not separably estimable. This is particularly
so in dealing with nonadditive genetic components. The function dmm() of-
fers an experimental approach which allows partially confounded components
to be estimated by constraining some components, using principal component
regression.

2 The dyadic model equations

The dyadic model is presented in Section 6.2.2 of the document dmmOvervire.pdf [1].
It results in a set of equations (the DME’s) which are given in matrix form as
equation 12, which is reproduced below

Ψ = WΓ + ∆ (1)
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It is important to understand each of the matrix components of these equa-
tions, so we elaborate as follows

First, the following variables set the size of the problem and the sizes of the
above matrices

n number of individuals with data

m number of individuals in pedigree

l number of traits

k number of fixed effects

c number of variance components to be estimated

Now we explain each matrix

Ψ n2 × l2 matrix of dyadic covariances for each pair of individuals (row) and
each traitpair (col). Each covariance needs to be appropriately adjusted
for fixed effects. The columns of Ψ become the dependent variables in a
multi-trait multiple regression.

W n2 × c matrix containing the coefficients of the dyadic model equations,
which become the independent variables of a multiple regression. Each
column of W has the form V ec(MZcRcZ

′
cM

′) where V ec is an opera-
tor that vectorizes a matrix, M is a matrix from the fixed effect model
such that Y −Xα̂ = MY , Zc is an incidence matrix relating individ-
uals with data to individuals in the pedigree, and Rc is a relationship
matrix relevant to component c. Note that relationship matrices are used,
not their inverse.

Γ c × l2 matrix of (co)variance component parameters to be estimated, which
become the partial regression coefficients of a multiple regression.

∆ n2×l2 matrix of dyadic model residuals. Note the variance of these is not the
individual environmental variance component - that has to be explicitely
fitted as one of the columns of matrix W and appears as one row of
matrix Γ. The ∆ matrix elements are the extent to which each dyadic
covariance in matrix Ψ deviates from its expectation. The (co)variances
of the elements of ∆ enter into the standard errors of variance component
estimates, in the same way that the (co)variances of residuals enter into
the standard errors of any regression coefficient estimates.

Matrices Ψ and W have n2 rows, so we are looking at solving n2 equations
in c unknowns. This is an overdetermined system. We can use least squares to
obtain an approximate solution.
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3 Checking the dyadic model assumptions

Before attempting a regression fit of model (1), it is worth looking at how well
the data conform to the assumptions made in using using least squares to fit a
multiple regression model. The critical assumptions are

� the independent variables ( columns of W ) are uncorrelated

� the residuals (columns of ∆) are uncorrelated with each other and with
the independent variates

A least squares fit does not involve assumptions regarding the distribution of
residuals, but this does become involved when using residuals to obtain standard
errors of parameter estimates.

3.1 The assumption of independence of columns of W

The correlations among independent variables (columns of W ) are returned by
dmm() in the attribute dme.correl of the returned object. These are pairwise
correlations between the columns of the W matrix. They are not quite the
same thing as correlations between relationship matrix elements, because the
columns of W also involve M and Z matrices.

The Z matrix simply selects a subset of the relationship matrix correspond-
ing to those individuals which have observations. The M matrix comes from
the fixed effects model, and consists of a set of weights which adjust for the
degrees of freedom involved in each of the fixed effects applicable to each indi-
vidual. So the columns of the W matrix are a weighted subset of the elements
of the appropriate relationship matrix. Their correlations are therefore not the
same as relationship matrix element correlations.

In the case of a dataset with mean only, and all individuals in the pedigree
with data, such as the warcolak dataset, the subset is all of the relationship
matrix and the weights in M are all equal, so the correlations of the columns of
W are exactly the same as the correlations of the elements of the relationship
matrices, in this special case.

In regression analysis it is generally considered that if there are collinearities
among the independent variates amounting to correlations greater than around
0.5 then the estimates of regression coefficients are suspect. Translating this to
our dyadic model, the variance component estimates are not likely to achieve a
realistic separation if the columns of W have correlations exceeding 0.5. The
option of using principal component regression (dmeopt=”pcr” has been devel-
oped as an experimental approach to dealing with serious collinearities among
the components.

If we want to plot these correlations ( eg as scatteplots) we need argument
dmekeep=T in calling dmm(). The dafault for dmm() is not to save the DME’s
in its return object. This can be overridden with argument dmekeep=T. This
results in 2 attributes dme.psi and dme.wmat being added to the returned object.
Caution, this can result in a very large returned object. The attribute dme.wmat
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is the W matrix, and its columns can be plotted with the standard plot()
routine.

3.2 The assumptions of independence of dyadic residuals

To check the dyadic residuals, we can use the S3 plot() method included in the
dmm package. This will output histograms, qqnorm plots, and scatterplots of
residuals against fitted and observed values. Plots tend to be more informative
for datasets with smaller numbers of individuals.

Dyadic residuals are usually not far from normally distributed, but may be
leptokurtic and slightly skewed to the right.

If dyadic residuals are correlated with fitted values of the components, then
there is something wrong with the model, probably some extra component
should be fitted.

One can expect dyadic residuals to be correlated with observed dyadic covari-
ances. It is normal for the fitted components in a dyadic model to explain only
a small fraction of the total variation, and this of course leads to the observed
covariances being highly correlated with residuals.

The question of patterns of correlation among the dyadic residuals them-
selves is a seriously difficult area. The covariances (or correlations) among the
dyadic residuals for one trait form an n2×n2 matrix - ie n4 elements. Too many
to compute and cant be stored in R. This issue is discussed in the document
dmmOverview.pdf [1] in relation to why dmm() is not able to do REML esti-
mates. REML estimates require that the covariance (or correlation) matrix of
the dyadic residuals be constructed and used to compute a GLS rather than an
OLS solution to the DME’s. That is not computationally feasible, and neither
is an examination of the residual covariance/correlation matrix.

The covariance structure of dyadic residuals is actually known. It is derived
in Searle et al (1992) [2] on pages 407-413. It involves fourth moments of the
observations.

4 An example using the warcolak dataset

Using the warcolak dataset from the nadiv package (Wolak(2014) [3], and just
analysing Trait2, we first setup the data file making all the appropriate relation-
ship matrices, then run the usual analysis fitting 4 variance components, using
the default ”qr” option for solving the DME’s, and setting options to save the
DME’s and the fit object.

> library(dmm)

> data(warcolak)

> warcolak.df <- warcolak.convert(warcolak)

> warcolak.mdf.univ <- mdf(warcolak.df,pedcols=c(1:3),factorcols=4,ycols=c(5:6),

sexcode=c(0,1),relmat=c("E","A","D","S"),keep=T)

.....
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> warcolak.fit.t2 <- dmm(warcolak.mdf.univ, Trait2 ~ 1,

components=c("VarE(I)","VarG(Ia)", "VarG(Id)","VarGs(Ia)"),

relmat = "withdf",dmekeep=T,dmekeepfit=T)

.....

> summary(warcolak.fit.t2)

.....

Components partitioned by DME from residual var/covariance after OLS-b fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait2 0.270 0.0369 0.198 0.342

VarG(Ia) Trait2:Trait2 0.313 0.0134 0.287 0.339

VarG(Id) Trait2:Trait2 0.327 0.0380 0.252 0.401

VarGs(Ia) Trait2:Trait2 0.146 0.0130 0.121 0.172

VarP(I) Trait2:Trait2 1.056 0.0142 1.028 1.084

These results are as for Trait 2 in the bivariate analysis reported in dm-
mOverview.pdf [1]. The only difference is that we have samed some additional
information.

The correlations among columns of W are, of course, also the same

> warcolak.fit.t2$dme.correl

VarE(I) VarG(Ia) VarG(Id) VarGs(Ia)

VarE(I) 1.0000000 0.4856317 0.9190589 0.4081477

VarG(Ia) 0.4856317 1.0000000 0.6255694 0.8266557

VarG(Id) 0.9190589 0.6255694 1.0000000 0.5254541

VarGs(Ia) 0.4081477 0.8266557 0.5254541 1.0000000

>

Two of these correlations are somewhat larger than the nominal 0.5 men-
tioned above. We need to look and see if the multiple regression has been able
to separate these 4 components properly. To that end we will redo the analysis
using dmeopt=”pcr” instead of the default ”qr”. Using the principal component
regression option requires at least two runs - the first retaining all 4 principal
components, and then one or more reruns omitting the least important principal
components. The first run is as follows

> warcolak.fitpcr1 <- dmm(warcolak.mdf.univ, Trait2 ~ 1,

components=c("VarE(I)","VarG(Ia)","VarG(Id)","VarGs(Ia)"),

relmat = "withdf",dmekeep=T,dmekeepfit=T,dmeopt="pcr")

.....

DME substep:

PCR option on dyadic model equations:

Data: X dimension: 29160000 4

Y dimension: 29160000 1

Fit method: svdpc

Number of components considered: 4
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VALIDATION: RMSEP

Cross-validated using 10 random segments.

(Intercept) 1 comps 2 comps 3 comps 4 comps

CV 1.023 1.022 1.022 1.022 1.022

adjCV 1.023 1.022 1.022 1.022 1.022

TRAINING: % variance explained

1 comps 2 comps 3 comps 4 comps

X 79.46086 92.89539 99.28012 100.00000

evec 0.02946 0.03157 0.03158 0.03158

DME substep completed:

OLS-b step completed:

>

> loadings(warcolak.fitpcr1$dme.fit)

Loadings:

Comp 1 Comp 2 Comp 3 Comp 4

‘VarE(I)‘ 0.209 0.663 0.192 -0.692

‘VarG(Ia)‘ 0.699 -0.705

‘VarG(Id)‘ 0.275 0.630 0.111 0.718

‘VarGs(Ia)‘ 0.626 -0.393 0.674

Comp 1 Comp 2 Comp 3 Comp 4

SS loadings 1.00 1.00 1.00 1.00

Proportion Var 0.25 0.25 0.25 0.25

Cumulative Var 0.25 0.50 0.75 1.00

>

What we need from this at the moment is the % of variance explained by
various numbers of principal components. Obviously using all 4 components
explains 100% of the variation, but what is interesting is that 3 components ex-
plain 99% and 2 components 92%. This is a signal that we should try regressing
the observations on 3 principal components of the columns of W , and see how
it affects the estimates and their standard errors. We do that with a rerun

> warcolak.fitpcr2 <- dmm(warcolak.mdf.univ, Trait2 ~ 1,

components=c("VarE(I)","VarG(Ia)","VarG(Id)","VarGs(Ia)"),

relmat = "withdf",dmeopt="pcr",ncomp=3)

.....

> summary(warcolak.fitpcr2)

Call:

summary.dmm(object = warcolak.fitpcr2)

Coefficients fitted by OLS for fixed effects:
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Trait Estimate StdErr CI95lo CI95hi

1 Trait2 -0.063 0.0138 -0.09 -0.036

Components partitioned by DME from residual var/covariance after OLS-b fit:

Traitpair Estimate StdErr CI95lo CI95hi

VarE(I) Trait2:Trait2 0.286 0.0127 0.262 0.311

VarG(Ia) Trait2:Trait2 0.315 0.0182 0.279 0.351

VarG(Id) Trait2:Trait2 0.310 0.0118 0.286 0.333

VarGs(Ia) Trait2:Trait2 0.146 0.0205 0.106 0.186

VarP(I) Trait2:Trait2 1.057 0.0244 1.010 1.105

>

So comparing these estimates with those from the ”qr” fit (which are the
same as obtained with ”pcr” with all 4 principal components), we find that
omitting one principal component has not changed the estimated components
substantially, and has reduced the standard errors of the two constrained com-
ponents. By omitting the fourth principal component we have in effect set it
to zero, which amounts to constraining the components estimates to be on the
plane defined by

−0.692 × V arE(I) + 0.718 × V arG(Id) = 0 (2)

We get this equation from the loadings which were given at the end of the
run with all four principal components above. If we substitute the estimates of
VarE(I) and VarG(Id) from the 3 component run into the above equation we
find that they do indeed fall on the constraint plane. So we still get estimates of
all 4 components, but two of them are constrained to be in a ratio 0.692/0.718,
or approximately equal.

To my mind, that is a more satisfactory analysis than the unconstrained re-
sult from a”qr” fit. By regressing on the principal components of columns of W
instead of on the columns themselves we have avoided violating the assumption
of independence, and by applying one constraint we have improved the standard
errors.

One can go on and try omitting two principal components. This leads to
two constraint equations, so the variance components would be constrained to
lie on the intersection of two planes. We shall not do it here. We have done
enough to demonstrate the method.

We can view the dyadic residuals using the S3 plot() method included in the
dmm package. We do this for the ”qr” fit as follows

> postscript(onefile=F,horizontal=F)

> plot(warcolak.fit.t2)

.....

> dev.off()
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Five plots will be saved on five separate files. It is probably better to use
png() rather than postscript(). The resulting plots are shown in Figure 1 to Fig-
ure 5. We can see that the histogram is more peaked than a normal distribution
(Figure 1), that the qqplot is sigmoidal (Figure 2), that the residuals are not
associated with fitted values ( Figure 3), that the observed values are strongly
correlated with the residuals (Figure 4), and that the fitted values and observed
values are not strongly correlated (Figure 5). There is some discussion of these
aspects in the next section.

5 Discussion

There is nothing special about the dyadic model used by dmm(). Quantitative
genetics has always been about covariances between relatives and measures of
relationship, that is about pairs of individuals. It is just not usually called
a dyadic model, but that is what it is. The term is common in the social
sciences where interactions between pairs of individuals are analysed with a
dyadic model.

What is important is what the dyadic model allows us to do, not the termi-
nology. By turning variance component estimation into a regression problem, a
dyadic model opens the door to using the wide range of established regression
techniques for variance component estimation. That includes techniques for
dealing with collinearities among the independent variables, and these could be
quite useful in quantitative genetic applications where the variance components
which we wish to estimate are often partially confounded, as in the example
above. There is a full presentation on the use of principal components regres-
sion in dmmOverview.pdf [1] Section 7.4. There are some issues, the interface to
the ”pcr” option via the pls package is clumsy and its use is seriously memory
intensive. Some further work is indicated.

The dyadic residuals (∆) are usually large and highly correlated with the
observed dyadic covariances (Ψ), as in Figure 4. This is because the covariance
for each dyad is obtained from only one replicate pair of observations. The R2

for a dyadic model is tiny - only 3 percent of the variance in the case of the
warcolak example above. This highlights the central problem of quantitative
genetic analysis - it is trying to extract information from a system with a signal
to noise ration of 0.03. Modelling variances is much more demanding than
modelling observations. It does not matter whether you do it by maximizing
a likelihood, fitting a regression, or doing an AOV. The problem is instinsic -
dmm() just makes it obvious by attacking the problem directly.
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Figure 1: Histogram of dyadic residuals for Trait2 of warcolak dataset with four
components fitted usng ”qr” method 10



Figure 2: A qqplot of dyadic residuals for Trait2 of warcolak dataset with four
components fitted usng ”qr” method 11



Figure 3: A plot of dyadic model fitted values against dyadic residuals for Trait2
of warcolak dataset with four components fitted usng ”qr” method12



Figure 4: A plot of dyadic model observed values against dyadic residuals for
Trait2 of warcolak dataset with four components fitted usng ”qr” method13



Figure 5: A plot of dyadic model observed values against dyadic model fitted
values for Trait2 of warcolak dataset with four components fitted usng ”qr”
method
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