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License agreement

Ranlip is distributed under GNU LESSER GENERAL PUBLIC LICENSE.
The terms of the license are provided in the file ”copying” in the root direc-
tory of this distribution.

You can also obtain the GNU License Agreement from
http://www.gnu.org/licenses/licenses.html

Ranlip partly depends on another package, gsl, relevant part of which
is also distributed under Lesser GPL.
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Chapter 1

Introduction

This manual describes the programming library ranlip, which implements
the method of acceptance/ rejection in the multivariate case, for Lipschitz
continuous densities. It assumes that the Lipschitz constant of the density
ρ is known, or can be approximated, and that computation of the values
of ρ at distinct points is not expensive. The method builds a piecewise
constant hat function, by subdividing the domain into hyperrectangles, and
by using a large number of values of ρ. Lipschitz properties of ρ allow one
to overestimate ρ at all other points, and thus to overestimate the absolute
maxima of ρ on the elements of the partition.

The library ranlip implements computation of the hat function and
generation of random variates, and makes this process transparent to the
user. The user needs to provide a method of evaluation of ρ at a given point,
and the number of elements in the subdivision of the domain, which is the
parameter characterising the quality of the hat function and the number of
computations at the preprocessing step.

The class of Lipschitz-continuous densities is very broad, and includes
many multimodal densities, which are hard to deal with. No other properties
beyond Lipschitz continuity are required, and the Lipschitz constant, if not
provided, can be estimated automatically. The algoritm does not require ρ
to be given analytically, to be differentiable, or to be normalised.

Section 1.1 describes theoretical background of this method of construc-
tion of the hat function. Chapter 2 describes the programming interfaceof
ranlip library and provides a number of examples of its usage.
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1.1 Theoretical background

1.1.1 Nonuniform random variate generation

Generation of nonuniform random variates is a common problem in such
methods as Monte-Carlo simulation. While a large number of efficient al-
gorithms exists for specific distributions [3,4], frequently the distribution is
unknown at the design stage. Universal (or black box) methods have re-
cently gained popularity [5, 6, 8], as they do not require the distrubution to
be given a priori, and essentially use the same programming code for very
large classes of densities. Moreover, the densities need not to be given ex-
plicitly, only an algorithm for calculating the value of ρ at a given point has
to be available.

A number of techniques for the univariate case are already available [4,6].
Inversion and acceptance/ rejection methods are the two main approaches
used. However inversion does not generalise for multivariate distributions.
Special properties, like convexity, concavity, or log-concavity help design
efficient algorithms [5–8], but at the same time limit them to unimodal
distributions.

In this manual we describe an approach to generate multivariate nonuni-
form random variates for a very general class of Lipschitz-continuous densi-
ties on a compact set. We will rely on the acceptance/ rejection technique,
which generalises well for multivariate case.

Problem of random variate generation
Let ρ be the density of the required distribution, given on a compact set

D ⊂ Rn. The goal is to generate a sequence of random variates with the
density ρ.

We will assume that the density ρ is Lipschitz continuous, i.e., there
exists a constant M , such that

|ρ(x)− ρ(y)| ≤M ||x− y||,

for all x and y ∈ D, where || � || is any norm. We call the smallest such M
the Lipschitz constant of ρ, and denote the class of such densities Lip(M).
We will use l∞ norm, in which

||x− y||∞ = max
i=1,...,n

|xi − yi|.

For simplicity, assume that D is a hyperrectangle, given by

ai ≤ xi ≤ bi, i = 1, . . . , n.
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Other compact domains are treated by embedding them into a hyperrectan-
gle, and rejecting the random variates that fall outside D at the generation
step.

1.1.2 Acceptance/rejection

Acceptance/ rejection is a classical approach to nonuniform random variate
generation, based on approximation of the density ρ from above with a
multiple of another density g, called the hat function h(x) = cg(x). If
generation of random variates with the density g is easy, then the approach
is to generate random variates with the density g, and then either accept or
reject them based on the value of an independent uniform random number.
The better approximation with the hat function is, the higher are the chances
of acceptance, and hence the efficiency of the generator.

Since ρ may take a variety of shapes, it is common to subdivide the
domain into small parts (elements of the partition), and use a simple and
accurate hat function on each element of the partition. In this case of
piecewise continuous hat function, we first randomly choose an element of
the partition (using a discrete random variate generator), and then generate
a random variate on this element using acceptance/ rejection. Subdivision
allows one to obtain much more accurate hat functions and hence higher
acceptance ratio. The algorithm is outlined below.

Acceptance/rejection algorithm for a piecewise hat function
Given a partition of D, Dk, k = 1, . . . ,K, and a piecewise hat function
h(x) = hk(x), if x ∈ Dk, generate random variates with density ρ(x) < h(x)

Step 1 Generate a discrete random variate k ∈ {1, . . . ,K}, where the proba-
bility of choosing k is proportional to the integral

∫
Dk
hk(x)dx.

Step 2 Generate an independent random variate X on Dk with density pro-
portional to hk, and an independent uniform random number Z ∈
(0, 1).

Step 3 If Zhk(X) ≤ ρ(X) then return X, else go to Step 1.

1.1.3 Building the hat function

We will use a piecewise constant hat function h(x), which takes constant
values hk on the elements of the partition of the domain D. We partition
D into hyperrectangles, because generation of uniform random variates on
a hyperrectangle is particularly efficient. The total number of the elements
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of the partition has to be sufficiently large for h to be an accurate approxi-
mation of ρ from above. However, too large numbers of elements translate
into long preprocessing time, thus a right balance has to be struck between
preprocessing time and the quality of approximation.

To build the hat function, we will find an overestimate of the absolute
maximum of ρ on each hyperrectangle Dk, and take this value as hk. An
overestimate of the absolute maximum will be found by using a large number
of values of ρ and its Lipchitz constant in l∞ norm.

Consider an n-dimensional hyperrectangle R with the vertices xm,m =
1, . . . , 2n. Let us evaluate ρ(x) at these vertices and denote the obtained
values by ρm. Our goal is to find the absolute maximum of any ρ ∈ Lip(M)
on R.

From the Lipschitz condition it follows that any ρ ∈ Lip(M) must satisfy

∀x ∈ R : ρ(x) ≤ ρm +M ||x− xm||, m = 1, . . . 2n,

from which we deduce

∀x ∈ R : ρ(x) ≤ min
m=1,...,2n

sm(x) = min
m=1,...,2n

(ρm +M ||x− xm||).

We call functions sm(x) = ρm +M ||x− xm|| the support functions of ρ.
Evidently, the absolute maximum of S(x) = minm=1,...,2n s

m(x) will be
a safe overestimate of the absolute maximum of ρ(x), and we can take
maxx∈R S(x) as the value of the hat function on R. Thus our strategy
is to consider every hyperrectangle Dk of the subdivision of D, and compute
hk = maxx∈Dk

S(x) by using the values of ρ(x) at its vertices.
Since we need to process a very large number of hyperrectangles for an

accurate hat function, let us simplify computation of hk, in order to obtain
an explicit approximate solution to the optimisation problem

maximise min
m=1,...,2n

sm(x).

First, let us consider the following subsets, which partition the hyper-
rectangle R,

Smi = {x ∈ R : sm(x) = ρm +M |xi − xmi |}, i = 1, . . . , n.

On each such subset, the function sm(x) is linear.
Clearly, ∪i=1,...,nS

m
i , and the interiors of these sets do not intersect. Now

consider the pairwise intersections

Spqi = Spi ∩ S
q
i .
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The collection of the sets Spqi , i = 1, . . . , n, where pairs (p, q), p, q ∈ {1, . . . 2n},
correspond to those vertices of R that share a common edge, forms an over-
lapping partition of R (i.e., ∪Spqi = R).

Since

∀x ∈ R : min
m=1,...,2n

sm(x) ≤ min{sp(x), sq(x)}, ∀p, q ∈ {1, . . . , 2n},

max
x∈Spq

i

min
m=1,...,2n

sm(x) ≤ max
x∈Spq

i

min{sp(x), sq(x)}.

Further,
max
x∈R

min
m=1,...,2n

sm(x) = max
∀Spq

i

{max
x∈Spq

i

min
m=1,...,2n

sm(x)}.

Hence we arrive to an overestimate

max
x∈R

min
m=1,...,2n

sm(x) ≤ max
∀Spq

i

{max
x∈Spq

i

min{sp(x), sq(x)}}.

The advantage of using expression on the right, is that maxx∈Spq
i

min{sp(x), sq(x)}
is easily found explicitly. Notice that the only pairs p, q that yield subsets
Spqi from our collection, are the vertices of the hyperrectangle R that share
the same edge. Then on the subset Spqi we have

min{sp(x), sq(x)} = min{ρp +M |xi − xpi |, ρ
q +M |xi − xqi |}.

Assume xpi < xqi . Because ∀x ∈ Spqi : xpi ≤ xi ≤ x
q
i , we have

min{sp(x), sq(x)} = min{ρp +M(xi − xpi ), ρ
q +M(−xi + xqi )}.

It is easy to show that the minimum is achieved at x∗i =
xpi+x

q
i

2 + ρq−ρp
2M , and

its value is ρq+ρp

2 +
M(xqi−x

p
i )

2 . Thus we have

max
x∈R

ρ(x) ≤ max
x∈R

min
m=1,...,2n

sm(x) ≤ max
∀Spq

i

{ρ
q + ρp

2
+M

|xqi − x
p
i |

2
}. (1.1)

The right hand side of the above inequality is used in ranlip to overestimate
the absolute maximum of ρ(x) on each Dk.

Notice that an n-dimensional hyperrectangle has n2n−1 edges, and this is
how many sets Spqi are in the partition of Dk. Thus after we have computed
2n values of ρm for each Dk, we need n2n−1 comparisons to compute hk.

In order to improve the quality of approximation on each Dk, we may
further subdivide it into smaller hyperrectangles, apply Eq.(1.1) to each of
these subsets, and then take the maximum as hk. Of course, we could have
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simply increased the number of Dk, using the same number of computations.
However from the practical point of view it may be counterproductive to
have a very large partition of D, as the tables for the discrete random
variate generator have limitations on their length. Thus it makes sense
to have a partition of a reasonable size, but use a finer partition to improve
the accuracy of the overestimate hk. In ranlip the user has control over
the size of both rough and fine partitions and may choose not to use the fine
partition.

In the above formulae it is assumed that the Lipschitz constant of ρ in
l∞ norm, M , is known. This value is easily interpreted for differentiable
densities as the largest value of the partial derivatives of ρ, but it also has
a meaning for non-differentiable densities. The value of M can be safely
overestimated by the user, but at a cost of less accurate hat function (and
slower generation step).

It is possible to automatically estimate the Lipschitz constant by com-
paring the values ρm. Thus it makes sense to include this optional step into
the computational algorithm. One has to be aware that automatic estima-
tion of the value of M gives an underestimate, not an overestimate of M .
There is a small chance that the actual value of M is larger then the estimate
computed from a finite collection of function values. Hence it is desirable to
use a priori information about the Lipschitz constant, if available.

Too low value of the chosen Lipschitz constant can be detected at the
generation step (if ρ(x) > h(x) for some x). This would mean, however,
that the whole generation of the random sequence has to be repeated.

Note that for efficiency reasons, ranlip computes local estimates of the
Lipschitz constant on the elements of the partition Dk, i.e., it uses different
estimates of Lipschitz constants on different Dk. If the fine partition does
not have enough elements, the estimate may not be accurate. The user can
restrict local estimates to be no smaller than a given value.



Chapter 2

Description of the library

2.1 Installation

Installation of Ranlip package is standard: the user just needs to install
the package from CRAN or from a local file

R CMD INSTALL ranlip.tar.gz

2.2 Description of the functions in package Ranlip

The method of building the hat function, and generation of random vari-
ates using acceptance/ rejection described in the previous section, have been
implemented in a class library ranlip in c++ language, with an interface to
R. All algorithms reside in the src folder in ranlip.cpp and ranlip.h.

The wrapper functions between R and c++ are: RcppExports.cpp and
ranlipwrapper.cpp

2.2.1 ranlip.Seed

Function of setting the seed

Function for setting the seed of the default uniform random number generator
ranlux.

ranlip.Seed(seed)

2.2.2 ranlip.Init

Function for the initialization of the internal variables, it needs to be
called before building the hat functions

11
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ranlip.Init(dim, left, right)

Argument Description
dim The dimension

left
An array of size dim which determines the domain of ρ: lefti ≤
xi ≤ righti

right
An array of size dim which determines the domain of ρ: lefti ≤
xi ≤ righti

2.2.3 ranlip.RandomVec

Generates randoms variates with density ρ

Function for generating a random variate with density ρ. It should be called
after ranlip.PrepareHatFunctionAuto() or ranlip.PrepareHatFunction().

ranlip.RandomVec(Fn)

Argument Description

Fn
It is the function ρ(x) where x is the array of size dim. It needs
to be provided by the user coded in R, see examples.

output
Random vector of length dim.

2.2.4 ranlip.RandomVecN

Generates n randoms variates with density ρ

Function for generating n random variates with density ρ. It should be called
after ranlip.PrepareHatFunctionAuto() or ranlip.PrepareHatFunction().

ranlip.RandomVecN(100,Fn)

Argument Description
n Number of random variates to generate

Fn
It is the function ρ(x) where x is the array of size dim. It needs
to be provided by the user coded in R, see examples.

output
Matrix of size n× dim of random vectors of length dim.

2.2.5 ranlip.PrepareHatFunction

Building the hat function

Function for building the hat function using Lipschitz constant and domain
partition
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ranlip.PrepareHatFunction(num, numfine, Lip, Fn)

Argument Description

num
The number of subdivisions in each variable to partition the Do-
main D into hyperrectangles Dk. On each Dk, the hat function
will have a constant value hk

numfine

The number of subdivisions in the finer partition in each variable.
Each Dk is subdivided into (numfine− 1)dim smaller hyperrect-
angles, in order to improve the quality of the overstimate hk.
nunmfine should be a power of 2 for numerical efficiency reason
( if not, it will be automatically changed to a power of 2 larger
than the supplied value) numdine can be 2, in which case the fine
partition is not used

Lip Lipschitz constant supplied
Fn The density function ρ(x) where x is the array of size dim.

2.2.6 ranlip.PrepareHatFunctionAuto

Building the hat function and estimates Lipschitz constant

Function for building the hat function and automatically computing an estimate
to the Lipschitz constant.

ranlip.PrepareHatFunctionAuto(num, numfine, minLip, Fn)

Argument Description

num
The number of subdivisions in each variable to partition the Do-
main D into hyperrectangles Dk. On each Dk, the hat function
will have a constant value hk

numfine

The number of subdivisions in the finer partition in each variable.
Each Dk is subdivided into (numfine− 1)dim smaller hyperrect-
angles, in order to improve the quality of the overstimate hk.
nunmfine should be a power of 2 for numerical efficiency reason
( if not, it will be automatically changed to a power of 2 larger
than the supplied value) numdine can be 2, in which case the fine
partition is not used

minLip
Denotes the lower bound on the value of the computed Lipschitz
constant, the default value is 0

Fn The density function ρ(x) where x is the array of size dim.

output The estimate of the Lipschitz constant.

2.2.7 ranlip.SavePartition

Saves the computed hat function
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Function for saving previously computed hat function to file name(string)
ranlip.SavePartition(filename)

Argument Description
filename The file name

output
0 if success, nonzero in case of error (1= hat function not com-
puted, 2=file cannot be opned).

2.2.8 ranlip.LoadPartition

Load the computed hat function

Function for loading previously computed hat function from file name(string)
ranlip.LoadPartition(filename)

Argument Description
filename The file name

output
0 if success, nonzero in case of error (2=file cannot be opened, 3=
corrupted file, 4=memory not allocated.).

2.2.9 Distribution function

The distribution function Fn needs to be provided by the user. This function takes
two parameters, the input x and the dimension dim. The distribution needs not
be normalised.

Example: trivariate normal distribution (not normalised)

Fn <- function(x,dim){

out <- exp(-(x[1]^2+x[2]^2+x[3]^2))

return(out)

}

2.3 Examples

library("ranlip")

# dimension 2

dim <- 2

Fn <- function(x,dim){

r<-x[1]*x[1]+x[2]*x[2]

out <- exp(-( (x[1]+0.2)^2+(x[2]+0.1)^2)/1.1 )*(1-exp(-sqrt(r)))

return(out)

}
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left <- c(-2,-2)

right <- c(2,2)

num <- 20

numfine <- 4

MinLip <- 10

ranlip.Init(dim, left, right)

Lipconst<- ranlip.PrepareHatFunctionAuto(num, numfine, MinLip, Fn)

print(Lipconst)

r<-ranlip.RandomVec(Fn)

print(r)

rv<-ranlip.RandomVecN(1000, Fn)

plot(rv[,1],rv[,2],cex=0.5)

ranlip.FreeMem()

left <- c(-2,-2)

right <- c(2,4)

ranlip.Init(dim, left, right)

Fn1 <- function(x,dim){

out <- exp(-(x[2]-x[1]^2)^2 - (x[1]^2+x[2]^2)/2 )

return(out)

}

ranlip.PrepareHatFunctionAuto(num, numfine, MinLip, Fn1)

rv<-ranlip.RandomVecN(10000, Fn1)

plot(rv[,1],rv[,2],cex=0.2)

ranlip.FreeMem()

2.4 Where to get help

The software library Ranlip and its components, are distributed by G.Beliakov AS
IS, with no warranty, explicit or implied, of merchantability or fitness for a partic-
ular purpose. G.Beliakov, at his sole discretion, may provide advice to registered
users on the proper use of Ranlip and its components.

Any queries regarding technical information, sales and licensing should be di-
rected to gleb@deakin.edu.au. I am interested to learn about your experiences
using Ranlip , bugs, suggestions, its usefulness, applying it in practice and so on.

If you want to cite Ranlip package, use references [1, 2].
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Figure 2.1: Distribution 1 used in the example ρ(x, y) = exp(−(r+a)2/b)(1−
exp(−|r|)), r2 = x2 + y2, a = (0.2, 0.1), b = 1.1.

Figure 2.2: Random vectors generated with Distribution 1.
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Figure 2.3: Distribution 2 used in the example ρ(x, y) = exp(−(y − x2)2 −
x2+y2

2 )

Figure 2.4: Random vectors generated with Distribution 2.
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