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1 Introductory examples

We first consider an example from Finney(1947), which has been used in
Pregibon (1981, 1982) and Künsh et al. (1989). There are 39 observations on
tree variables: Resp, Vol, and Rate. The data were obtained in a study of the
effect of the rate (Rate) and volume (Vol) of air inspired on a transient vaso-
constriction in the skin of the digits. Only the occurrence or nonoccurrence
of vaso-constriction (Resp) was measured. Type:

> library(robcbi)

> data(Finney)

> Vol <- Finney$Vol; Rate <- Finney$Rate; Resp <- Finney$Resp

A plot of the data can be obtained by typing:

> plot(Vol,Rate,type="n")

> points(Vol[Resp==0],Rate[Resp==0],pch=5, cex=1.2)

> points(Vol[Resp==1],Rate[Resp==1],pch=16,cex=1.2)
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The shape of the point suggests the use of a logarithmic transformation for
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both regressor variables, Vol and Rate. To see how the shape changes, use
plotFdat() (this function is loaded together with data(Finney)).

> lVol <- log(Vol); lRate <- log(Rate)

> plotFdat <- Finney$plotFdat

> plotFdat()
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We now use the function glm() to fit the model logit(π) = θ1 + θ2 ln(Vol) +
θ3 ln(Rate), where logit(π) = ln(π/(1− π)). Type

> ML <- glm(Resp ~ lVol+lRate,family=binomial)

> summary(ML)

Call:

glm(formula = Resp ~ lVol + lRate, family = binomial)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.44806 -0.60489 0.09855 0.61009 2.29051
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Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.924 1.288 -2.270 0.02318 *

lVol 5.220 1.858 2.810 0.00496 **

lRate 4.631 1.789 2.589 0.00964 **

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 54.040 on 38 degrees of freedom

Residual deviance: 29.264 on 36 degrees of freedom

AIC: 35.264

Number of Fisher Scoring iterations: 6

From the summary table we read the estimated coefficients and their standard
errors. The deviance for the fit is 29.26 on 36 degrees of freedom and is less
than its asymptotic expectation of 36, indicating no gross inadequacy with
the model. However, the diagnostic given by the second plot

> plot(ML)# Works only in interactive mode
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suggest that observations 4 and 18 are not well fitted. A contour plot is
generated by

> plotFdat(zc=ML,cont=T)
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Two black points (Resp==1) are below the 25% contour line shown on the
scatter diagram. Using

> identify(lVol,lRate)# Works only in interactive mode

the two points are identified as observations 4 and 18. (To activate the cursor,
click the primary button of the mouse. Click the secondary button to exit the
program.) Since these observations are not really associated with extreme
values in the design space, their effect on the fit might presumably be small.
To confirm this claim, we remove them.

> n = length(Resp)

> out <- c(4,18); iii <- (1:n)[-out]

> MLs <- glm(Resp~lVol+lRate, family=binomial, subset=iii)

> summary(MLs)

Call:

glm(formula = Resp ~ lVol+lRate, family=binomial, subset=iii)

Deviance Residuals:
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Min 1Q Median 3Q Max

-1.74412 -0.00049 0.00000 0.00425 1.54579

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -24.58 14.02 -1.753 0.0796 .

lVol 39.55 23.25 1.701 0.0889 .

lRate 31.94 17.76 1.798 0.0721 .

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 51.266 on 36 degrees of freedom

Residual deviance: 7.361 on 34 degrees of freedom

AIC: 13.361

Number of Fisher Scoring iterations: 10

A warning message from glm indicates numerical unstability and the sum-
mary table reveals a dramatic increase in the value of the coefficients and
their standard errors. This is an indication that these two data points have
a large influence on the fit. A robust fitting procedure called conditionally
unbiased bounded influence regression due to Künsch et al. (1989) facilitates
the analysis. Type:

> ctrl <- cubinf.control(ufact=3.2)

> cbi <- cubinf(cbind(lVol,lRate),Resp, family=binomial,

control=ctrl)

Here, ufact=3.2 is a tuning parameter. (It is related to the paramter b in
Künsch et al. (1989), b = ufact

√
p, where p is the number of regression

coefficients; see Section 2.)
As another option, one can use glm() with the argument method=cubinf:

> CBI <- glm(Resp~lVol+lRate, family=binomial, method=cubinf,

ufact=3.2)

In this case, several access functions are available to retrieve the results, e.g.:

> summary(CBI)

> correl(CBI)

> covar(CBI)
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> deviance(CBI)

> predict(CBI)

> plot(CBI)

> residuals(CBI,type="pearson")

> rscale(CBI)

The ML and CBI results can be compared as follows:

> comp <- fits.compare(ML,CBI)

> comp

Calls:

Name

ML glm(formula = Resp ~ lVol + lRate, family = binomial)

CBI glm(formula = Resp ~ lVol + lRate, family = binomial,

method = cubinf, ufact = 3.2)

Residual Statistics

Min 1Q Median 3Q Max

ML -0.6495 -0.16768 4.844e-03 0.1700 0.9274

CBI -0.5873 -0.02171 9.632e-05 0.1006 0.9964

Number of Parameter in each Model

Nobs Resid df Model Parameters Est. Parameters

ML 39 36 3 3

CBI 39 36 3 3

Coefficients:

Estimate Std. Error t value

(Intercept):ML -2.9239 1.2666 -2.3084

(Intercept):CBI -6.3403 2.7902 -2.2723

lVol:ML 5.2205 1.8275 2.8566

lVol:CBI 9.8595 4.2668 2.3107

lRate:ML 4.6312 1.7596 2.6319

lRate:CBI 8.7659 3.7042 2.3665

Residual Scale Estimates:

ML : 10.01

CBI : 1

Correlation of Coefficients:
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Model = ML

(Intercept) lVol

lVol -0.8089

lRate -0.9286 0.8048

Model = CBI

(Intercept) lVol

lVol -0.9475

lRate -0.9746 0.9363

> plot(comp) # Works only in interactive mode
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The robust procedure automatically downweighs influential points by means
of a weight system. The weights can be obtained by typing:
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> weights(CBI)

[1] 1.0000000 1.0000000 1.0000000 0.2573661 1.0000000 1.0000000

[7] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

[13] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.2970314

[19] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

[25] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

[31] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

[37] 1.0000000 1.0000000 1.0000000

Weights smaller than 1 indicate outliers. Note that the weights of observa-
tions 4 and 18 are 0.25 and 0.29, respectively, whereas all other observations
receive weight equal 1. The weights depend on ufact. By setting ufact very
large (e.g., 100), all weights are equal 1; in this case, the robust procedure
gives the classical results based on the complete data set. As ufact decreases,
these two weights decrease rapidly, clearly indicating the anomalous nature
of these two observations. Classical and robust contour plots are generated
by:

> plotFdat(zc=ML,zr=CBI,rob=T,cont=T)
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As a second example we now consider the Breslow dataset. The data as
well as a description are obtained as follows:

> library(robcbi)

> data(Breslow)

> help(Breslow)

> y = Breslow$sumY

> x1 = Breslow$Age10

> x2 = Breslow$Base4

> x3 = rep(0,length(y))

> x3[Breslow$Trt=="progabide"] = 1

> x4 = x2*x3

We compute the robust estimate of a Poisson regression model and draw a
normal qq-plot,

> CBA = glm(y~x1+x2+x3+x4,family=poisson,method=cubinf,ufact=3.2)

> plot(CBA,num=5)

Coefficients:

(Intercept) x1 x2 x3 x4

1.8335 0.1939 0.1112 -0.3591 0.0198

Degrees of Freedom: 58 Total (i.e. Null); 54 Residual

Residual Deviance: 379.4517
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which shows that the distribution of the Pearson residuals has heavy tails
and

> weights(CBA)

[1] 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000

[6] 1.000000000 1.000000000 0.365586057 1.000000000 0.814194127

[11] 1.000000000 1.000000000 1.000000000 1.000000000 0.189910326

[16] 0.830589863 1.000000000 0.060586568 1.000000000 1.000000000

[21] 1.000000000 1.000000000 1.000000000 1.000000000 0.225039067

[26] 1.000000000 1.000000000 1.000000000 0.311636972 1.000000000

[31] 1.000000000 1.000000000 1.000000000 1.000000000 0.416164619

[36] 1.000000000 1.000000000 0.365693594 1.000000000 1.000000000

[41] 1.000000000 1.000000000 0.590191521 1.000000000 1.000000000

[46] 1.000000000 1.000000000 1.000000000 0.005812668 1.000000000

[51] 1.000000000 1.000000000 0.549705419 1.000000000 1.000000000

[56] 0.484688541 1.000000000 1.000000000 1.000000000

points out several influential observations receiving a weight smaller than 1.
We finally compute the R2

n statistic (Section 2.5) to compare CBA with
a reduced model with three variables:
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> CBA.red = update(CBA, .~.-x3-x4)

> np = 5 # number of parameters of the full model

> nq = 3 # number of parameters of the reduced model

> CVR = covar(CBA)

> CFF = coef(CBA)

> K22 = CVR[(nq+1):np,(nq+1):np]

> cff = as.matrix(CFF[(nq+1):np])

> Rn2 = t(cff)%*%solve(K22)%*%cff

> Rn2

[,1]

[1,] 13.93261

Section 2 briefly describes the conditionally unbiased bounded influence
estimate and the computational algorithms. Most algorithms have been taken
from the ROBETH library described in Marazzi (1993). Section 3 gives a
complete description of the object oriented functions.

2 The bounded influence estimate

Let X = (xij) denote a real n×p design matrix with rows xT
i = (xi1, . . . , xip)

and (y1, . . . , yn)T a given n-vector of responses

2.1 Models and estimates

In particular, we consider the following cases:

Bernoulli
Probability(yi = j|xi) = πi(1− πi), j = 0, 1, (1)

Binomial

Probability(yi = j|xi) =

(
ni
j

)
πji (1− πi)ni−j, j = 0, 1, . . . , ni, (2)

Poisson
Probability(yi = j|xi) = exp(−λi)λji/j! , j = 0, 1, . . . ,∞, , (3)

where 0 ≤ πi ≤ 1 and λi > 0 are unknown parameters and ni is the number
of trials at the design point xi in the Binomial case. We define ni ≡ 1 in the
Bernoulli and Poisson cases, and assume that

Ω : Eθ(yi|xi) = nig(xT
i θ), (4)
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where θ is a p-vector of unknown parameters and

g(ϑi) = πi =
exp(ϑi)

1 + exp(ϑi)
in the Bernoulli and Binomial cases, (5)

g(ϑi) = λi = exp(ϑi) in the Poisson case, (6)

where ϑi = xT
i θ. We are interested in estimating θ.

Let ψa(s) = max[−a,min(s, a)] denote the Huber function with tuning
constant a. Künsch et al. (1989) define the conditionally unbiased bounded
influence estimate of θ as the solution of the following system of equations
for the p-vector θ, the n constants c1, . . . , cn, and the p× p lower-triangular
matrix A:

n∑
i=1

ψai(yi − ci − nig(ϑi))xi = 0, (7)

Mi∑
j=0

ψai(j − ci − nig(ϑi))πi(j) = 0, i = 1, . . . , n, (8)

1

n

n∑
i=1

ub(yi, ni;ϑi, ci; |Axi|)Axi(Axi)T = Ip, (9)

where Ip denotes the p×p identity matrix, ϑi = xT
i θ, Mi = ni in the Binomial

case, Mi =∞ in the Poisson case, ai = b/|Axi| (and |·| denotes the Euclidean
norm), and b >

√
p is a given tuning constant. The function ub is defined by

ub(yi, ni;ϑi, ci; |zi|) =
Mi∑
j=0

[
ψb/|zi|(j − ci − nig(ϑi))

]2
πi(j), (10)

where zi = Axi. Note that the argument yi does not appear in the right-hand
side of (10).

Remark 1. The classical maximum likelihood estimate is the solution θ of

n∑
i=1

l0i (yi, x
T
i θ)xi = 0. (11)

The functions −l0i (y, ϑ)x with l0i (y, ϑ) = −y + nig(ϑ) and i = 1, . . . , n are
called (classical) score functions. (x and y denote a generic design point and
a generic response.) Thus, the bounded influence estimate defined by (7)
is based on truncated scores and the constants ci defined by (8) make this
estimate conditionally unbiased, given xi. Equation (7) is also equivalent to∑

(yi − ci − nig(ϑi))wixi = 0, where wi = min(1, ai/|yi − ci − nig(ϑi))|. The
vector ϑ = Xθ is called the linear predictor, and the function g the inverse
link function in the literature about generalized linear models.
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Remark 2. Equation (9) is an empirical version of the condition

A Eθ{xxT[ψb/|z|(y − c(xTθ, b/|z|)− Eθ(y|x))]2} AT = Ip, (12)

where expectation is taken over the joint distribution of x and y and the
function c(ϑ, a) is implicitly defined by

Eθ[ψa(y − c(ϑ, a)− Eθ(y|x))] = 0, (13)

where z = Ax and ϑ = xTθ. This condition imposes a bound to the self
standardized sensitivity of the estimate (Künsch et al. 1989). In applications,
the distribution of x is unknown and it is common to replace it by its empirical
version, thus obtaining (9) and (10). Alternatively, we can replace the joint
distribution of x and y by its empirical version and obtain (9) with

ub(yi, ni;ϑi, ci; |zi|) =
[
ψb/|zi|(yi − ci − nig(ϑi))

]2
. (14)

The two choices are asymptotically equivalent.

2.2 Covariance matrix of the coefficient estimates

According to Künsch et al. (1989), under regularity conditions, the coefficient
estimate θ̂ = (θ̂1, . . . , θ̂p) defined by the solution of (7)–(9) is asymptotically

normally distributed with covariance matrix Ku(ψ, θ) [i.e., n1/2(θ̂ − θ) ∼
N(0, Ku(ψ, θ))], where

Ku(ψ, θ) = S−1
1 (ψ, θ)S2(ψ, θ)S−1

1 (ψ, θ), (15)

S1(ψ, θ) = Eθψ(y, x, θ, A)(y − Eθ(y|x))xT. (16)

S2(ψ, θ) = Eθψ(y, x, θ, A)ψ(y, x, θ, A)T, (17)

ψ(y, x, θ, A) = ψb/|z|(y − Eθ(y|x)− c(xTθ, b/|z|))x. (18)

Here, z = Ax and expectation is taken over the joint distribution of x and y.
In applications, the distribution of x is unknown and it is common to

replace it by its empirical version, thus obtaining the following estimate of
Ku:

K̂u = Ŝ−1
1 Ŝ2Ŝ

−1
1 , (19)

where

Ŝ1 =
1

n

n∑
i=1

Mi∑
j=0

ψai(j − ci − nig(xT
i θ̂))(j − nig(xT

i θ̂))πi(j)xix
T
i , (20)

Ŝ2 =
1

n

n∑
i=1

Mi∑
j=0

[ψai(j − ci − nig(xT
i θ̂))]

2πi(j)xix
T
i . (21)

The covariance matrix C of the coefficient estimates can be estimated by
multiplying K̂u by 1/n.
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2.3 Numerical procedures

A detailed description of the numerical procedures is given in Marazzi (1993,
Chapter 10). The following summary is taken from this book.

The main algorithm for computing the bounded influence estimate is
based on three modules with the following purposes:

θ-step: For given values of ai and ci (i = 1, . . . , n), find the solution θ of (7).

c-step: For given values of ϑi and ai (i = 1, . . . , n), find the solutions c1, . . . , cn
of the equations (8).

A-step: For given values of ϑi and ci (i = 1, . . . , n), find the solution A of (9)
and compute a1, . . . , an.

The modules are based on iterative algorithms that compute improved values
θ(1), c

(1)
i , and A(1) of θ, ci, and A given the current values θ(0), c

(0)
i , and A(0).

Main algorithm. Let TOL be a given tolerance and MAXIT a given posi-
tive integer (maximum number of iterations). The main algorithm has the
following structure:

0. Set NIT := 1.
Initialize θ(0), c

(0)
i (i = 1, . . . , n), and A(0); compute a1, . . . , an.

1. Compute θ(1) using the θ-step; compute ϑ1, . . . , ϑn.

2. Check convergence:
If a measure of deviation between θ(1) and θ(0) (see Remark 2) is smaller
than TOL , go to step 6.

3. Compute A(1) and the corresponding values of ai (i = 1, . . . , n) using the
A-step.

4. Compute c
(1)
i (i = 1, . . . , n) using the c-step.

5. Set θ(0) := θ(1), A(0) := A(1), c
(0)
i := c

(1)
i (i = 1, . . . , n).

Set NIT := NIT + 1; if NIT ≤ MAXIT , go to step 1.

6. Exit.
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We call a cycle a generic iteration of the main algorithm consisting of steps
1, 2, 3, 4 and 5.

Remark 1. The reader is referred to Marazzi (1993) for the definition of the

initial values θ(0), c
(0)
i (i = 1, . . . , n), and A(0).

Remark 2. For the convergence criterion of the main algorithm we assume
that a preliminary estimate Ĉ of the covariance matrix of the coefficient
estimates, or its inverse Ĉ−1, is available before starting iterations. According
to the value of an option parameter ICNV , the user sets S = Ĉ if ICNV = 1
or S = Ĉ−1 if ICNV = 2 or 3 (for ICNV = 1 or 3 only the diagonal elements
are required). Let δ = θ(1) − θ(0).

The main algorithm evaluates the function

Iδ(δ, S, TOL, ICNV ) = pos?(TOL
√
sjj − δj) if ICNV = 1

pos?(TOL−
√
δTSδ) if ICNV = 2

pos?(TOL− δj
√
sjj) if ICNV = 3,

where TOL is a given tolerance for the relative error and pos?(s) = 1 if s > 0
and 0 otherwise. Iterations are stopped if Iδ = 1. The most common option
is ICNV = 1.

Remark 3. Although the convergence of the algorithms used for the θ-, the
c-, and the A-step can be ensured on the grounds of known general results,
no proof of their joint convergence in the main algorithm is known.

The θ-step. Let s denote a given real number. We use the following notations:

Binomial case

g(ϑ) =
exp(ϑ)

1 + exp(ϑ)
, G(ϑ) = ln(1 + exp(ϑ)), (22)

t1 = ln
(

s− a
ni − s+ a

)
, t2 = ln

(
s+ a

ni − s− a

)
, (23)

ξ1 = −(s− a)t1 + ni ln
(

ni
ni − s+ a

)
, ξ2 = −(s+ a)t2 + ni ln

(
ni

ni − s− a

)
.

(24)

Poisson case

g(ϑ) = exp(ϑ), G(ϑ) = exp(ϑ), (25)

t1 = ln(s− a), t2 = ln(s+ a), (26)

ξ1 = −(s− a)t1 + (s− a), ξ2 = −(s+ a)t2 + (s+ a). (27)
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For a given i let Li(s, ϑ, a) and li(s, ϑ, a) be the functions defined in Table
1 and Table 2; note that li(s, ϑ, a) = (∂/∂ϑ)Li(s, ϑ, a). The values t1 and
t2 defined above are the solutions of l0(s, ϑ) = −a and l0(s, ϑ) = a (l0 is
defined in Section 2, Remark 1) and the values ξ1 and ξ2 are chosen so that
the function Li(s, ϑ) is continuous in ϑ. Clearly, for some values of s, a, and
ni, one or both solutions may not exist.

The solution of (7) for given values of a1, . . . , an, c1, . . . , cn characterizes
the minimum of

Q(θ) =
n∑
i=1

Li(si, x
T
i θ, ai), (28)

where si = yi − ci. As Q(θ) is a convex and differentiable function, we use
the Newton algorithm for solving this optimality problem.

The gradient and the Hessian matrix of Q are

∇Q(θ) =
∂Q

∂θ
= XT` and H(θ) =

∂2Q

∂θ∂θT
= XTDX, (29)

where ` = (`1, . . . , `n)T and

`i = li (si, ϑi, ai) for i = 1, . . . , n, (30)

D = diag (′i (si, ϑi, ai)) . (31)

The Newton algorithm computes an improvement δ by solving−XTDXδ =
XT`. In other words, if θ(0) denotes the current value of θ, we approximate
Q(θ(0) + δ) by

V (δ) = Q(θ(0)) + δT∇Q(θ(0)) +
1

2
δTH(θ(0))δ (32)

and minimize V (δ). There are two well-known difficulties: (1) H can become
singular; (2) |δ| can be too large (and thus the objective function Q is not
reduced). A remedy for (1) is the use of a positive definite generalized inverse
as described in Marazzi (1993, Chapter 2, Section 2.1.2, Remark 3, with
X̆ = D1/2X), whereas difficulty (2) is usually overcome by means of an
adaptive step length algorithm.

An alternative procedure for reducing |δ| is to minimize a quadratic com-
parison function V̄ that majorizes Q. Let V̄ be defined by

V̄ (δ) =
∑

L̄i
(
xT
i δ
)

(33)

with
L̄i(ϑ) = āi + b̄iϑ+ c̄iϑ

2, (34)
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where 2n of the 3n coefficients are determined so that L̄i(ϑ) and Li(si, ϑ, ai)
have the same value and the same tangent for ϑ = xT

i θ
(0). Writing H̄ =

XTD̄X, the comparison function becomes

V̄ (δ) = Q(θ(0)) + δT∇Q(θ(0)) +
1

2
δTH̄δ. (35)

Finally, the n diagonal elements c̄i/2 of D̄ are chosen so that V̄ (δ) ≥ Q(θ(0) +
δ) for all δ. This procedure clearly reduces the objective function and thus
no further adaptation of the step length is needed. See Marazzi (1993) for
details.
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2.4 Deviance D∗

Consider the p parameter model Ω : y = Xθ+e, and denote by θ̂Ω the robust
estimate of θ in the model Ω. This estimate depends on the values a1, . . . , an
and c1, . . . , cn defined by (7)–(9). Let Q(θ) =

∑n
i=1 Li(yi − ci, xT

i θ, ai) be the
function defined in (28) and let θ∗ be the minimum of this function when
X = In. θ∗ is usually called the unconstrained minimum of Q(θ). The
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deviance D∗ of Ω is defined as

D∗ = 2Q(θ̂Ω)− 2Q(θ∗).

2.5 Residuals

Residuals for GLMs are defined in several different ways. For the condi-
tionally unbiased bounded influence estimates, the residual() method for
object has a type= argument, with three choices:

• "deviance" (the default): Deviance residuals are defined as

rDi = sign(yi − µ̂i)
√
di,

where di is the contribution of the ith observation to the deviance, i.e.,

di = 2Li(yi − ci, xT
i θ̂Ω, ai)− 2Li(yi − ci, θ∗i , ai),

and µ̂i = nig(θ̂Ω,i).

• "pearson": In analogy with the classical case, we define these residuals as

rPi = (yi − µ̂i)/
√
v(µ̂i),

where v(µ̂i) = µ̂i in the Poisson case, v(µ̂i) = µ̂i(1 − µ̂i) in the Bernoulli
case, v(µ̂i) = µ̂i(1− µ̂i)/ni in the Binomial case, and µ̂i = nig(θ̂i).

• "response": These are simply yi − µ̂i, where µ̂i = nig(θ̂i).

2.6 Test of a linear hypothesis

In order to test a linear hypothesis the R2
n-test described in Hampel et al.

(1986, Chapter 7) can be used. Consider the p parameter model

Ω : y = Xθ + e,

and let a linear hypothesis be expressed in the canonical form

H0 : θq+1 = θq+2 = . . . = θp, 0 < q < p.

Denote by θ̂Ω the robust estimate of θ in the model Ω and let K22 be the
(p− q)× (p− q) lower right block of the asymptotic covariance matrix of θ̂Ω

. The R2
n-test statistic is defined by

R2
n = n(θ̂Ω,q+1, . . . , θ̂Ω,p)K

−1
22 (θ̂Ω,q+1, . . . , θ̂Ω,p)

T.

UnderH0, theR2
n-test statistic follows approximatively a χ2-distribution with

(p− q) degrees of freedom.
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3 Functions

Two types of functions are provided:

(a) Functions for the numerical computations of the estimates;

(b) Interface functions for the use of the estimation functions within the
object oriented paradigm of R, as described in Chambers and Hastie
(1992).

The functions of type (b) are likely to be appropriate for most users and
applications. In order to control the computational algorithms in details
some users may want to use functions of type (a). In addition there are ser-
vice functions which are normally intended for programmers and developers.
These functions are not necessarily documented elsewhere and are listed here
for completeness.

3.1 The estimation functions

The main estimation function is cubinf(), which is is used by glm() to fit the
conditionally unbiased bounded influence estimates. Alternatively, cubinf()
can be called directly. cubinf() returns a list containing the estimate of
coefficients and other values returned by the function gymain of the package
robeth. (See help(cubinf) for more details). Computations are performed
using routines from the robeth package as follows:

1. The initial values of θ̂, A and ci, i = 1, . . . , n are computed using the
function gintac (Marazzi 1993, p.292).

2. The M-estimates are computed by means of the function gymain (Marazzi
1993, p.304).

3. Covariance matrices of estimated coefficients are obtained using the func-
tions ktaskw and gfedca (Marazzi 1993, p.148, and p.309).

The following function can be used in order to change defaults:

• cubinf.control() – There are a few control parameters for the numer-
ical algorithms. Their default values are collected in the auxiliary
function cubinf.control() and may be set with this function. The
control structure input in cubinf() defaults to the list returned by
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cubinf.control(). Users may wish to set their own control parame-
ters. This is easily accomplished. In either cubinf() or glm(), simply
set control=xcontrol in the calling sequence of either function. Here
xcontrol is any object produced by cubinf.control() with the desired
control parameter values. Use help(cubinf.control) for additional
details.

The following functions are service functions:

• The functions gintac(), gymain(), gfedca(), ktaskw(), mchl(), minv().
mtt1(), glmdev(), are wrapper functions for the robeth functions used
by cubinf().

• The robeth functions mentioned above call other routines of the same
library as explained in Marazzi (1993).

3.2 The object oriented interface

The function cubinf() computes the robust estimates and returns a list
of results. These are more easily produced using method="cubinf" in the
R function glm(). The value returned by glm() is an object with class
“cubinf” inheriting from class “glm”. The function glm() was modified to
call cubinf() when method="cubinf".

The functions print(), summary() and plot() as well as the access func-
tions coef(), residual(), fitted(), formula() and deviance() have been
extended to objects of the class “cubinf”.

The following access functions are new.

• scale.estimate(), covar(), correl(), weights(), Rank() — These
functions extract the scale estimate, the covariance matrix of the es-
timated coefficients, the corresponding correlation matrix, the weights
wi, and the rank of the design matrix.

Note. The weights wi are defined as wi = min(1, ai/|yi − ci − nig(ϑi))| (see
Section 2.1, Remark 1).

In addition, a function for comparing the two fits has been added.

• fits.compare() — This function accepts a sequence of objects of class
“glm”or“cubinf”(with optional names), and creates a class“fits.compare”
object. The “fits.compare” objects is nothing more than a list of the
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input objects with names. However, when the “fits.compare” object
is printed, summaries of each of the input objects are computed and
printed in a manner suitable for comparing the input models. Plotting
the “fits.compare” object results in a sequence of graphical displays.
These displays are designed to be of use in comparing two sets of pa-
rameter estimates in linear models.

Finally, a number of new auxiliary functions are required by the interface.
Many of these routines are simple program stubs used to print error messages
that the associated glm() function is not yet available for objects from the
class.

• print.cubinf(), summary.cubinf(), and print.summary.cubinf() —
These functions extend the print.lm(), summary.lm(), and print.

summary.lm() functions to objects of class “cubinf”.

• plot.cubinf() — extends plot() to objects of class “cubinf”.

• plot.fits.compare() — extends plot() to objects of class“fits.compare”.

• deviance.cubinf(), scale.estimate.cubinf(), covar.cubinf(),
correl.cubinf(), weights.cubinf(). Rank.cubinf() — These func-
tions are required by the corresponding access functions.

• anova(), add1.cubinf(), drop1.cubinf(), and step.cubinf() — These
are function stubs used to print error messages that the associated
routines are not implemented.

• Other function stubs of class“glm”, effects(), kappa(), proj(), alias(),
lm.influence(), and lm.sensitivity() are not applicable to ob-
jects of class “cubinf”. Therefore, function stubs effects.cubinf(),
kappa.cubinf(), proj.cubinf(), lm.influence.cubinf(),
alias.cubinf(), and lm.sensitivity.cubinf() have been added to
issue warning messages for these functions.

• The function update() has been extended in order to compare two nested
models when method="cubinf".
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