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1 Introduction

Here we design an R package that incorporates some of the functionality
of a very old (and defunct) S package for statistical genetics described by
Geyer (1988). In particular, our new package will do multigene descent prob-
abilities as described originally by Thompson (1983) and as implemented by
Geyer (1988).

2 Pedigrees

We work relative to a defined pedigree in which every individual has
either two parents or none specified. Those with none specified are called
founders. A pedigree may be specified by a triplets matrix having three
columns and each row gives the names of a non-founder individual, its fa-
ther, and its mother, in that order. We check that no individual is its own
ancestor. Optionally, we check that sexes are consistent (no individual is
both father and mother). This check is optional so that we can deal with
hermaphroditic organisms.

Any ancestors of individuals not in the pedigree — including parents of
founders — are assumed to not be individuals in the pedigree. That is, we
are assuming that all unknown individuals are not any known individuals.

3 Descent Probabilities

Thompson (1983) defines multigene descent probabilities gS(B1, . . . , Bn)
to be the probability that genes at one autosomal locus randomly chosen
from each of the individuals B1, . . . , Bn are all descended from genes (not
necessarily the same gene) in some set S of genes in individuals in the
pedigree. The individuals B1, . . . , Bn need not be distinct. The set S can
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be specified by giving for each individual in the pedigree an integer 0, 1, or
2 that says how many of its genes (at the autosomal locus in question) are
in the set S.

Since the order of B1, . . . , Bn does not matter to the definition, we may
assume these arguments are in sorted order in some order that always has
offspring before parents. There always is such an order because no individual
can be its own ancestor, and such an order can be found by the topological
sort algorithm (Aho, et al., 1983, Section 6.6) which is implemented by R
function tsort in R package pooh (Geyer, 2017). Thus in what follows we
have B1 = · · · = Br for some r ≥ 1, and we have B1 not equal to nor an
ancestor of Bi for i > r. We also adopt the convention

gS() = 1, (1a)

which makes sense because the empty set of genes chosen from the empty
set of individuals is always contained in genes descended from S (because
the empty set is contained in any set).

Theorem 1. Assume arguments are in an order that has offspring before
parents. If B1 is not a founder, contains no genes of S, and occurs only
once in the arguments (n = 1 or B1 6= B2), then

gS(B1, . . . , Bn) = 1
2gS(M1, B2, . . . , Bn) + 1

2gS(F1, B2, . . . , Bn) (1b)

where F1 is the father of B1 and M1 is the mother of B1.
If B1 is not a founder, contains no genes of S, and occurs r times in the

arguments (B1 = · · · = Br and n = r or Br 6= Br+1), then

gS(B1, . . . , Bn) = (12)r−1gS(B1, Br+1, . . . , Bn)

+
[
1− (12)r−1

]
gS(M1, F1, Br+1, . . . , Bn) (1c)

where F1 and M1 are as before.
If B1 is a founder and contains no genes of S, then

gS(B1, . . . , Bn) = 0. (1d)

If B1 contains two genes of S and occurs r times in the arguments (B1 =
· · · = Br and n = r or Br 6= Br+1), then

gS(B1, . . . , Bn) = gS(Br+1, . . . , Bn). (1e)
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If B1 is not a founder, contains one gene of S, and occurs r times in the
arguments (B1 = · · · = Br and n = r or Br 6= Br+1), then

gS(B1, . . . , Bn) = (12)rgS(Br+1, . . . , Bn)

+ 1
2

[
1− (12)r

]
[gS(F1, Br+1, . . . , Bn) + gS(M1, Br+1, . . . , Bn)] . (1f)

If B1 is a founder, contains one gene of S, and occurs r times in the
arguments (B1 = · · · = Br and n = r or Br 6= Br+1), then

gS(B1, . . . , Bn) = (12)rgS(Br+1, . . . , Bn). (1g)

Proof. If B1 is not a founder and S contains no genes of B1 and B1 6= B2,
then a gene chosen at random from B1 is equally to have come from F1 or
M1 and is equally likely to be either of the genes in F1 or M1 by Mendel’s
laws. Since B1 has no genes of S, the only way it can have genes descended
from S is if they come through F1 or M1.

If B1 is not a founder and S contains no genes of B1 and B1 = · · · = Br

and B1 6= Br+1 or r = n, then with probability (12)r−1 the same gene
is chosen from B1, . . . , Br, in which case the probability that this gene
and randomly chosen genes from Br+1, . . . , Bn are descended from S is
gS(B1, Br+1, . . . , Bn). Otherwise, two different genes are chosen from B1,
. . . , Br, in which case one must be a randomly chosen gene from F1 and the
other must be a randomly chosen gene from M1 and the probability that
these genes and randomly chosen genes from Br+1, . . . , Bn are descended
from S is gS(M1, F1, Br+1, . . . , Bn).

If B1 is a founder and S contains no genes of B1, then from the assump-
tion that none of the ancestors of B1 — all of whom are unknown — are
any of the known individuals in the pedigree who collectively contain the
genes in S it follows that B1 cannot contain any genes descended from S.

If S contains two genes of B1 and B1 = · · · = Br and B1 6= Br+1 or
r = n, then all genes chosen from B1, . . . , Br must come from S because
they are chosen from these two genes of B1 contained in S. Hence (1e) holds.

If B1 is not a founder and S contains one gene of B1 and B1 = · · · = Br

and B1 6= Br+1 or r = n, then with probability (12)r the genes randomly
chosen from B1, . . . , Br are all the one gene of B1 contained in S, in which
case the probability that the genes of Br+1, . . . , Bn are descended from S is
gS(Br+1, . . . , Bn). Otherwise, some of the genes chosen from B1, . . . , Br are
the gene of B1 not contained in S, in which case this gene is equally likely to
have come from F1 or M1, in which case the probability that this gene and
the genes of Br+1, . . . , Bn are descended from S is gS(F1, Br+1, . . . , Bn) or
gS(M1, Br+1, . . . , Bn).
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If B1 is a founder and S contains one gene of B1 and B1 = · · · = Br

and B1 6= Br+1 or r = n, then with probability (12)r the genes randomly
chosen from B1, . . . , Br are all the one gene of B1 contained in S, in which
case the probability that the genes of Br+1, . . . , Bn are descended from S is
gS(Br+1, . . . , Bn). Otherwise, some of the genes chosen from B1, . . . , Br are
the gene of B1 not contained in S, in which case this gene came from some
ancestor of B1 — and all these ancestors are unknown, hence none are any
of the known individuals in the pedigree who collectively contain the genes
in S — it follows that the gene of B1 not contained in S is not descended
from S.

Our equations (1b) through (1g) are unnumbered displayed equations
on pp. 33–34 in Geyer (1988), except that two typographical errors have
been corrected, one minor (a missing parenthesis) and one major: what
is 1 − (12)r−1 in our (1c) is 2r−1 − 1 in Geyer (1988) and in Thompson
(1983, equation (7)). This error, if reproduced in the code for the old S
package sped, could have produced probabilities greater than one in case
B1 = B2 = B3. It looks like this error was not reproduced in the code (see
http://users.stat.umn.edu/~geyer/sped/src/gnx.c) so that code did
not have this particular error. Our equation (1a) is also in Geyer (1988) run
into the text on p. 34.

Our (1d) through (1g) do not appear in Thompson (1983) who says only
that our (1b) and (1c) are are to be used with boundary conditions that
specify when individuals Bi have genes in S. Presumably, our (1a) and (1d)
through (1g) are the boundary conditions Thompson referred to, because
Geyer was Thompson’s research assistant when Geyer (1988) was written.

4 Special Descent Probabilities

These come originally from Thompson (1986). We follow Geyer (1988).

4.1 Gammas

The fraction of genes in individual B that comes from founder A is

γ(A,B) = gSA
(B) (2)

where SA is the set of genes that contains the two genes of A and no other
genes.
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4.2 Betas

If, as before, Fi is the father of Bi and Mi is the mother of Bi, then

β(A,Bi) = gSA
(Fi,Mi) (3)

is the bilineal contribution of founder A to individual Bi, the probability
that both genes of Bi are descended from genes of founder A.

4.3 Alphas

Now let TA be the set of genes that contains one gene of founder A and
no other genes, and let Fi and Mi be as above, then

α(A,Bi) = 2gTA
(Fi,Mi) (4)

is the inbreeding of individual Bi relative to founder A, the probability that
both genes of individual B come from the same gene in founder A.

4.4 Inbreeding Coefficients

Then
α(B) =

∑
A∈Founders

α(A,B) (5)

4.5 Kinship Coefficients

The kinship coefficient of individuals Bi and Bj is

φ(Bi, Bj) = 2
∑

A∈Founders
gTA

(Bi, Bj) (6)

This is not an efficient way to calculate kinship coefficients, also called
coancestry coefficients (Lynch and Walsh, 1998, pp.135 and 763). They give
the following recursive equations and boundary conditions. If Bi is not a
founder, then

φ(Bi, Bi) =
1 + φ(Fi,Mi)

2
(7a)

and if Bi is not a founder and not an ancestor of Bj

φ(Bi, Bj) =
φ(Fi, Bj) + φ(Mi, Bj)

2
(7b)

and if Bi is a founder
φ(Bi, Bi) = 1. (7c)
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