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Abstract

The R package tfarima provides classes and methods to build and use customized
Transfer Function and ARIMA models with multiple operators and/or parameter restric-
tions. Model estimation can be accomplished by exact or conditional maximum likelihood
(EML/CML). Procedures for automatic outlier detection, calendar effect estimation, pre-
diction and seasonal adjustment based on this class general of models are also provided.
Some classic time series are analyzed to illustrate the usage of the package.
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1. Introduction

The arima() function contained in the R stats package (R Core Team 2018) allows to estimate
traditional multiplicative ARIMA(p,d,q)(P,D,Q)s models with regression variables, sometimes
called RegARIMA models. This function is extended by the wrapper arimax() function of the
TSA package (Chan and Ripley 2018) to allow for transfer functions (TFs) and innovational
outliers. Although these two functions are useful to analyze and forecast a great variety of
time series, sometimes it is needed to specify ARIMA models with more than two ARIMA
structures and/or with certain parameter constraints. The um() function of the tfarima

package here presented extends the arima() and arimax() functions in these two directions
to allow the estimation of univariate models (UMs) with multiple AR, I and MA operators,
as well as with restrictions on the coefficients of these operators.

The general class of ARIMA(p,d,q) models that can be handled with the tfarima package is
defined by the equation

ϕp(B)[δd(B)z
(λ)
t − µ] = ϑq(B)at, t = 1, 2, . . . , n; (1)

where zt is a time series of length n; z
(λ)
t is the power Box-Cox transformation z

(λ)
t = (zλ

t −

1)/λ; ϕp(B), δd(B) and ϑq(B) are the AR, I and MA operators, respectively, which are
polynomials in the backshift operator B of degree p, d and q; µ is the mean of the transformed

time series δd(B)z
(λ)
t , and at is a Gaussian white noise process with variance σ2

a. Each one
of the three operators AR, I and MA can in turn be expressed as the product of several lag
polynomials of the form

ad(Bs)p = (1 − a1Bs − · · · − adBsd)p, (2)
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which is a polynomial in Bs of degree d, raised to the integer power p, that is, a polynomial
of order (d, s, p). Note that, following the Box-Jenkins notation (Box, Jenkins, Reinsel, and
Ljung 2015), the polynomial (2) is normalized to ad(1) = 1 and the coefficients (a1, . . . , ad)
are preceded by a minus sign. Such coefficients can be expressed as functions of a set of
parameters (b1, . . . , bk):

aj = fj(b1, . . . , bk), j = 1, . . . , d and k ≤ d. (3)

In this way, the tarima package allows us to specify customized ARIMA models with multiple
operators and parameter restrictions.

By the same token, the impulse response function (IRF) ν(B) = ν0 + ν1B + ν2B2 + . . . for
an input Xt can be approximated by the rational transfer function

ν(B) = w0
ws(B)

δr(B)
Bb, (4)

where b is the delay or dead time, w0 = νb is the first non-null coefficient of the IRF ν(B),
and δr(B) and ws(B) are polynomials that, like the AR and MA operators of (1), can be
expressed as the product of multiple normalized polynomials of the class (2)-(3).

Combining (1) and (4) we obtain a very flexible class of TF models for an output Yt given by

Yt =
k

∑

i=1

wi0
ωisi

(B)

δiri
(B)

BbiXit + Nt

δd(B)Nt =µ +
ϑq(B)

ϕp(B)
at,

(5)

where each input Xit has associated a TF(ri, si, bi) of the class (4) and the noise Nt follows a
general ARIMA(p, d, q) model of the class (1). This specification contains as special cases the
intervention models used to deal with four common types of outliers: additive outlier (AO),
innovative outlier (IO), level shift (LS) and transitory change (TC), see, e.g., Box and Tiao
(1975) and Chen and Liu (1993).

Unlike the arima() function of the stats package, which uses the state space representation
of the ARIMA model suggested by Gardner, Harvey, and Phillips (1980), the (exact or condi-
tional) maximum likelihood estimation of models (1) and (5) is based on the closed form of the
inverse covariance matrix following the algorithm of Ljung and Box (1979). This procedure
is also used to compute the exact residuals, which can differ from the innovations provided
by the Kalman filter, see, e.g., Mauricio (2008). The covariance matrix for the estimated
parameters is computed with the numDeriv package (Gilbert and Varadhan 2016) from the
Jacobian matrix of partial derivatives of the scaled exact residuals, see, e.g, Ansley (1979).

Other capabilities of the tfarima package are the estimation of unobserved components based
on the decomposition of the eventual forecast function proposed by Box, Pierce, and Newbold
(1987), the automatic detection of outliers proposed by Chen and Liu (1993) and the tests
for MA unit roots along the lines of Tam and Reinsel (1997).

To improve the computational efficiency, some functions of the tfarima package have been
implemented in C++ with RStudio (RStudio Team 2020) using the Rcpp and RcppArmadillo

packages (Eddelbuettel and Sanderson 2014).



José Luis Gallego 3

This paper describes the main capabilities of the tarima pakage for R and is organized as
follows. Section 2 outlines a class of factored seasonal ARIMA models, which are an example
of customized ARIMA models. Sections 3, 4 and 5 describe and illustrate the usage of the
S3 classes lagpol, um and tfm to specify and handle ARIMA and TF models with multiple
operators and parameter restrictions. Section 5 contains a summary and some extensions in
progress.

2. Factored seasonal ARIMA models

As an illustration of some customized ARIMA models that can be estimated with the tfarima

package, we consider the generalized seasonal ARIMA models suggested by Gallego and
Treadway (1995) and Aston, Findley, Wills, and Martin (2004). They extended the widely
used airline ARIMA(0, 1, 1)(0, 1, 1)s model,

(1 − B)(1 − Bs)zt = (1 − θB)(1 − ΘBs)at, (6)

noting that, for s > 1, the seasonal difference 1 − Bs and the so-called seasonal MA poly-
nomial 1 − ΘBs admit two interesting factorizations, which here are referred to as the basic
factorization

1 − ΘBs = (1 − Θ1/sB)(1 + Θ1/sB + Θ2/sB2 + · · · + Θ(s−1)/sBs−1)

and the full factorization

1 − ΘBs = (1 − Θ1/sB)(1 + Θ1/sB)

[(s−1)/2]
∏

k=1

(1 − 2 cos(2πk/s)Θ1/sB + Θ2/sB2),

where [x] is the integer part of x and the (1 + Θ1/sB) factor only appears when s is even.
Note that for Θ = 1 we obtain the factorizations of 1 − Bs. Hence, two generalizations of the
model (6) arise: the basic generalization with three parameters

(1 − B)2(1 + B + · · · + Bs−1)zt = (1 − θB)(1 − Θ
1/s
0 B)(1 + Θ

1/s
1 B + · · · + Θ

(s−1)/s
1 Bs−1)at (7)

and the full generalization with [s/2] + 1 parameters

(1 − B)2(1 + B)

[(s−1)/2]
∏

k=1

(1 − 2 cos(2πk/s)B + B2)zt =

(1 − θB)(1 − Θ
1/s
0 B)[(1 + Θ

1/s
s/2B)]

[(s−1)/2]
∏

k=1

(1 − 2 cos(2πk/s)Θ
1/s
k B + Θ

2/s
k B2)at. (8)

It is clear that both generalizations are simply obtained by replacing the common parameter
Θ in each factor of the seasonal polynomial 1 − ΘBs by a specific parameter Θi for each
factor i, where i = 1, 2, 3 for the basic generalization and i = 0, 1 . . . , [s/2] for the full
generalization. Besides, both specifications involve nonlinear constraints on some coefficients
of the MA polynomials. Thus, the MA(s − 1) polynomial 1 − a1B − · · · − as−1Bs−1 in (7)

is constrained so that its s − 1 coefficients aj = −Θ
j/s
1 (j = 1, . . . , s − 1) depend on a single
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parameter Θ1. Similarly, the MA(2) polynomials 1 − a1jB − a2jB2 in (8) are constrained

so that a1j = 2 cos(2πj/s)Θ
1/s
j and a2j = −Θ

2/s
j . These special polynomials and other non-

conventional polynomials defined by the user can be handled by the tfarima package. A
general test for multiple MA unit roots is also being implemented, which can be used to
evaluate the noninvertibility of these and other MA operators.

It is worth highlighting that these two factorizations of the airline model (6) are closely related
to two popular structural time series models. The basic structural model (BSM) decomposes
a time series Zt into a sum of three unobserved components:

Zt = µt + γt + ǫt.

where µt, γt and ǫt are the trend, seasonal and irregular components.

The trend component µt is described by the so-called local linear trend model

µt =µt + βt−1 + ηt, ηt ∼ iidN(0, σ2
η),

βt =βt−1 + ζt, ζt ∼ iidN(0, σ2
ζ ),

where the stochastic slope βt follows a random walk process. The seasonal component can be
modeled in two ways, as suggested by Harvey and Todd (1983),

γt = −
s−1
∑

t=1

γt−j + wt, ωt ∼ iidN(0, σ2
ω),

or by Harvey and Durbin (1986),

γt =

[s/2]
∑

j=1

γjt,

where
[

γjt

γ∗

jt

]

=

[

cos(2πk/s) sin(2πk/s)
− cos(2πk/s) cos(2πk/s)

] [

γj,t−1

γ∗

j,t−1

]

+

[

ωjt

ω∗

jt

]

,

and ωjt and ωjt are both iidN(0, σ2
ω). The reduced form of these two BSMs is an ARIMA(0,s+1,s+1)

model

(1 − B)(1 − Bs)Zt = θs+1(B)at

where the coefficients θs+1(B) are subject to complicated restrictions. The sum_um() function
of the tfarima allows to obtained the reduced form of structural time series by providing the
ARIMA models of the unobserved components.

3. The lagpol class: lag polynomials

Lag polynomials of order (d, s, p) defined by equations (2)-(3) can be created with the lagpol()

function of the tfarima package,

lagpol <- function(param = NULL, s = 1, p = 1, lags = NULL, coef = NULL)
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where param is a numeric vector of named parameters, coef is a vector of expressions to
compute the coefficients of the polynomial as functions of the parameters, s is the power of
the backshift operator, p is the power to the which the polynomial is raised and lags is an
optional integer vector for unequally spaced polynomials indicating the non-null coefficients.

For example, to create and print the nonseasonal polynomial (1 − θB)2 with θ = 0.5, we run
the following lines:

R> lp1 <- lagpol(param = c(theta = 0.5), p = 2L)

R> lp1

(1 - 0.5B)^2 = 1 - B + 0.25B^2

where param = c(theta = 0.5) is a single-parameter vector and p = 2L indicates that this
lag polynomial is raised to the power of 2. Here, the default value for coef = NULL is equiv-
alent to coef = "theta". Note that lag polynomials are created following the Box-Jenkins
notation. If the notation (1 + θB)2 with θ = −0.5 is preferred, the sign of the coefficients
must be changed in the coef argument,

R> lp2 <- lagpol(param = c(theta = -0.5), p = 2L, coef = "-theta")

R> lp2

(1 - 0.5B)^2 = 1 - B + 0.25B^2

where coef = "-theta" would be the coefficient in (1 − (−θ)B)2.

The so-called seasonal polynomials are created in a similar way, but using the s argument to
indicate the seasonal period. For example, the second-order seasonal polynomial 1−Θ1B12 −

Θ2B24 with Θ1 = 1.2 and Θ2 = −0.9 is created as follows:

R> lp3 <- lagpol(param = c(Theta1 = 1.2, Theta2 = -0.9), s = 12)

R> lp3

1 - 1.2B^12 + 0.9B^24

Customized lag polynomials with restrictions on the coefficients can be created passing to
the coef argument a vector of strings with such restrictions. For example, to create the lag
polynomial with three-coefficients and two-parameters 1 − θB − ΘB12 + θΘB13, with θ = 0.8
and Θ = 0.9, we run the following sentence:

R> lp4 <- lagpol(param = c(theta = 0.8, Theta = 0.9),

+ coef = c("theta", "Theta", "-theta*Theta"),

+ lags = c(1, 12, 13))

R> lp4

1 - 0.8B - 0.9B^12 + 0.72B^13

where lags = c(1, 12, 13) contains the positions of the three non-null coefficients.

The lagpol() function also allows us to create the factors of the seasonal polynomial 1−ΘBs

described in Section 2. Some examples for s = 12 and Θ = 0.8 are the following:
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1. 1 + Θ1/12B + Θ2/12B2 + · · · + Θ11/12B11. To create this polynomial we first create a
character vector with the expressions of the coefficients and then we call the lagpol()

function setting a single named parameter to the argument param = c(Theta = 0.8)

and a vector of expressions to the argument coef = coef:

R> coef <- paste("-Theta^(", 1:11,"/12)", sep = "")

R> coef

[1] "-Theta^(1/12)" "-Theta^(2/12)" "-Theta^(3/12)"

[4] "-Theta^(4/12)" "-Theta^(5/12)" "-Theta^(6/12)"

[7] "-Theta^(7/12)" "-Theta^(8/12)" "-Theta^(9/12)"

[10] "-Theta^(10/12)" "-Theta^(11/12)"

R> lp5 <- lagpol(param = c(Theta = 0.8), coef = coef)

R> lp5

1 + 0.98B + 0.96B^2 + 0.95B^3 + 0.93B^4 + 0.91B^5 + 0.89B^6 + 0.88B^7

+ 0.86B^8 + 0.85B^9 + 0.83B^10 + 0.82B^11

2. 1 − Θ
1/12
0 B and 1 + Θ

1/12
6 B:

R> lp6 <- lagpol(param = c(Theta0 = 0.8), coef = "Theta0^(1/12)")

R> lp7 <- lagpol(param = c(Theta6 = 0.8), coef = "-Theta6^(1/12)")

R> printLagpolList(list(lp6, lp7))

[1] 1 - 0.98B [2] 1 + 0.98B

3. 1 − 2 cos(2π/12)Θ
1/12
k B + Θ

2/12
k B2 for k = 1, . . . , 5:

R> coef <- c("2*cos(2*pi/12)*Theta1^(1/12)", "-Theta1^(2/12)")

R> lp8 <- lagpol(param = c(Theta1 = 0.8), coef = coef)

R> lp8

1 - 1.7B + 0.96B^2

Here we first create a vector with the expressions of the coefficients for the factor of
frequency 1 and then create the corresponding lag polynomial. We can use the lapply()

function to create all the MA(2) factors,

R> lp9 <- lapply(1:5, function(k) {

+ th <- paste("Theta", k, sep = "")

+ param <- 0.8

+ names(param) <- th

+ coef1 <- paste("2*cos(2*pi*", k, "/12)*", th, "^(1/12)", sep = "")

+ coef2 <- paste("-", th, "^(2/12)", sep = "")

+ lagpol(param = param, coef = c(coef1, coef2))

+ })

R> printLagpolList(lp9)
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[1] 1 - 1.7B + 0.96B^2 [2] 1 - 0.98B + 0.96B^2 [3] 1 - 1.2e-16B +

0.96B^2 [4] 1 + 0.98B + 0.96B^2 [5] 1 + 1.7B + 0.96B^2

Integrated operators such as nonseasonal and seasonal differences and other simplifying fac-
tors, which do not contain any parameter, can be created as follows:

1. (1 − B)2

R> d2 <- lagpol(coef = "1", p = 2)

R> d2

(1 - B)^2 = 1 - 2B + B^2

2. 1 − B12

R> D <- lagpol(coef = "1", s = 12)

R> D

1 - B^12

3. 1 − 2 cos(2π ∗ k/12)B + B2 for k = 1, . . . , 5

R> sf <- lapply(1:5, function(k) {

+ coef1 <- paste("2*cos(2*pi*", k, "/12)", sep = "")

+ coef2 <- "-1"

+ lagpol(coef = c(coef1, coef2))

+ })

R> printLagpolList(sf)

[1] 1 - 1.7B + B^2 [2] 1 - B + B^2 [3] 1 - 1.2e-16B + B^2 [4] 1

+ B + B^2 [5] 1 + 1.7B + B^2

It is convenient to note that the lagpol() function returns an S3 object of class lagpol,
which is a building block to create ARIMA and TF models. Some useful methods of the
lagpol class are roots() and inv().

R> class(D)

[1] "lagpol"

R> roots(sf[[1]])

Real Imaginary Modulus Frequency Period Mult.

[1,] 0.8660254 0.5 1 0.08333333 12 1

[2,] 0.8660254 -0.5 1 0.08333333 12 1

R> as.lagpol(inv(d2, lag.max = 9))

1 + 2B + 3B^2 + 4B^3 + 5B^4 + 6B^5 + 7B^6 + 8B^7 + 9B^8 + 10B^9
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4. The um class: univariate models

Univariate ARIMA models belonging to the class defined by (1) can be created using the
um() function of the tfarima package,

um <- function(z = NULL, bc = FALSE, ar = NULL, i = NULL, ma = NULL,

mu = NULL, sig2 = 1.0, fit = TRUE)

where z is an object of class ts; bc is a logical value that indicates whether or not to take
logs; ar, i and ma are lists of objects of class lagpol, character and/or numeric representing

lag polynomials; mu is a numeric value for the mean of the stationary series δ(B)z
(λ)
t ; sig2 is

a numeric value for the variance of the error, and fit is a logical value indicating whether or
not to estimate the model. The function returns an object of class um.

To illustrate the usage of this function we create a multiplicative ARIMA model with orders
(0, 1, 1)(0, 1, 1)3(0, 1, 1)12, ∇∇12zt = (1−θ1B)(1−θ2B3)(1−θ3B12)at where θ1 = θ2 = θ3 = 0.8
and σ2

a = 1. We can set the arguments ar, i and ma providing three types of objects:

1. Lists of objects of class lagpol:

R> d1 <- lagpol(coef = 1)

R> d3 <- lagpol(coef = 1, s = 3)

R> d12 <- lagpol(coef = 1, s = 12)

R> ma1 <- lagpol(param = c(th1 = 0.8))

R> ma3 <- lagpol(param = c(th2 = 0.8), s = 3)

R> ma12 <- lagpol(param = c(th3 = 0.8), s = 12)

R> um1 <- um(i = list(d1, d3, d12), ma = list(ma1, ma3, ma12))

In this code chunk, we first create six lagpol objects, one for each operator of the model,
and then we pass them as lists to the arguments of the um function. This approach is
recommended to create customized models since it provides a way to specify names,
preestimates and restrictions for parameters.

2. Character strings with the equations of the polynomials:

R> um2 <- um(i = "(1 - B)(1 - B3)(1 - B12)",

+ ma = "(1 - .8B)(1 - .8B3)(1 - .8B12)")

Here we provide to each argument i and ma the equations of the operators as character
strings. This way of creating a model is more compact than the previous one, but doesn’t
allow us neither to set the names of the parameters nor create customized models. It is
useful to study the statistical properties of common ARMA models (Section 4.1).

3. Lists containing the orders c(d, s = 1, p = 1) of the operators:

R> um3 <- um(i = list(1, c(1, 3), c(1, 12)),

+ ma = list(1, c(1, 3), c(1, 12)))

In this case, we only provide the orders of each type of operator and the function sets the
names and values of the parameters: .1 for AR parameters, .2 for MA parameters and 1
for I coefficients. Hence, ar = list(1, c(1, 3), c(1, 12)) and ma = list(1, c(1,
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3), c(1, 12)) are equivalent to ar = "(1 - .1B)(1 - .1B3)(1 - .1B12)" and ma

= "(1 - .2B)(1 - .2B3)(1 - .2B12)", whereas i = list(1, c(1, 3), c(1, 12))

is equivalent to ma = "(1 - B)(1 - B3)(1 - B12)". This approach is convenient to
fit conventional models to time series.

We can combine these three types of objects to set the arguments ar, i and ma:

R> um4 <- um(i = list(1, "1 - B3", d12), ma = list("1 - .8B", c(1, 3), ma12))

Each list of operators AR, I and MA in a um object, and the corresponding extended polyno-
mials, are stored into the data members ar, i and ma, phi, nabla and theta.

R> printLagpolList(um1$i)

[1] 1 - B [2] 1 - B^3 [3] 1 - B^12

R> printLagpolList(um1$ma)

[1] 1 - 0.8B [2] 1 - 0.8B^3 [3] 1 - 0.8B^12

R> nabla(um1)

1 - B - B^3 + B^4 - B^12 + B^13 + B^15 - B^16

R> theta(um1)

1 - 0.8B - 0.8B^3 + 0.64B^4 - 0.8B^12 + 0.64B^13 + 0.64B^15 - 0.51B^16

Note that we have created the object um1 without providing a time series, which is useful, for
example, to study the statistical properties of a particular model, to simulate data or to fit
the same model to several time series. These and other capabilities for objects of class um are
explained in the next sections.

4.1. Statistical properties

We can create an object of class um to study the characteristics of a particular ARMA model in
terms of the simple and partial autocorrelation functions (ACF and PACF) and the spectral
density function. The following code creates five basic time series models and displays their
main functions (see Figure 1):

R> ar1p <- um(ar = "(1 - 0.9B)")

R> ar1n <- um(ar = "(1 + 0.9B)")

R> ma1p <- um(ma = "(1 - 0.9B)")

R> ma1n <- um(ma = "(1 + 0.9B)")

R> ar2c <- um(ar = "(1 - 1.52B + 0.8B^2)")

R> display(list(ar1p, ar1n, ma1p, ma1n, ar2c), lag.max = 20)
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(1 − 0.9B)wt = at (1 + 0.9B)wt = at wt = (1 − 0.9B)at wt = (1 + 0.9B)at (1 − 1.5B + 0.8B
2
)wt = at
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Figure 1: ACF, PACF and spectrum of five UM’s.
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Figure 2: Plot and range-median diagram for the monthly AirPassenger series.

The display() function shows the ACF, PACF and/or spectrum of a list of objects of class
um. Other methods of the um class to characterize stochastic processes are pi.weights() and
psi.weights(), which show the AR(∞) and MA(∞) forms; autocov() and autocorr(),
which compute the theoretical autocovariances and (simple/partial) autocorrelations, and
roots(), which computes the roots of the different polynomials of the model.

4.2. Model identification

Figure 2 shows the plot and the range-median diagram for the totals of international airline
passengers listed as Series G in Box et al. (2015). These graphs have been generated with the
ide() function of the tfarima package:

R> Z <- AirPassengers

R> ide(Z, graphs = c("plot", "rm"))

where the option rm in the graphs argument means range-median.

The ide() function can also show several graphs for a list of transformations. Figure 3 displays
the plot, ACF and PACF for the transformed series: log(Zt), (1 + B + · · · + B11) log(Zt) and
∇∇12 log(Zt). The transf argument allows us to set a list of lists of transformations such as
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Figure 3: Some identification tools for three data transformations of AirPassengers

the Box-Cox transformation (bc), the number of nonseasonal and seasonal differences (d and
D), the annual sum (S) or a list of lagpol objects with the integrated operators (i).

R> ide(Z, transf = list(list(bc = T), list(bc = T, S = 1),

+ list(bc = T, D = 1), list(bc = T, D = 1, d = 1)))

4.3. Model estimation

Box et al. (2015) fit a multiplicative ARIMA(0,1,1)(0,1,1)12 to the log(AirPassengers) series.
This model can be estimated with the um function as follows:

R> airl <- um(Z, bc = T, i = list(1, c(1, 12)), ma = list(1, c(1, 12)))

R> airl

theta1 theta2 sig2

0.401846366 0.557039272 0.001348078

The basic generalization of this model given in (7) is estimated by running the command:

R> bairl <- um(Z, bc = T, i = list(1, c(1, 12)), ma = list(1, "0/12", "12"))

where "0/12" means factor of frequency 0/12, 1 − Θ1/12B, and "12" means 1 + Θ1/12B +
Θ2/12B2 + · · · + Θ11/12. Such factors can also be created as described in Section 2. We can
see in this factorized model that there is a unit MA root not detected in the conventional
ARIMA model:

R> bairl
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theta1 theta2 theta3 sig2

0.378636665 0.999813862 0.539476315 0.001307118

R> #bairl$ma

R> printLagpolList(bairl$ma)

[1] 1 - 0.38B [2] 1 - B [3] 1 + 0.95B + 0.9B^2 + 0.86B^3 +

0.81B^4 + 0.77B^5 + 0.73B^6 + 0.7B^7 + 0.66B^8 + 0.63B^9 + 0.6B^10 +

0.57B^11

Similarly, the full generalization of the airline model given in (eq:fgam) is estimated by running
the command:

R> fairl <- um(Z, bc = T, i = list(1, c(1, 12)), ma = list(1, "(0:6)/12"))

where "(0:6)/12" means factors with roots at the frequencies 0/12, 1/12, . . . , 6/12.

R> fairl

theta1 theta2 theta3 theta4 theta5

0.449259930 0.998903194 0.449990440 0.443816228 0.999011827

theta6 theta7 theta8 sig2

0.537213429 0.626780620 0.985501321 0.001182939

R> printLagpolList(fairl$ma)

[1] 1 - 0.45B [2] 1 - B [3] 1 - 1.6B + 0.88B^2 [4] 1 - 0.93B +

0.87B^2 [5] 1 - 1.2e-16B + B^2 [6] 1 + 0.95B + 0.9B^2 [7] 1 +

1.7B + 0.93B^2 [8] 1 + B

4.4. Model diagnostic checking

Detailed results of the estimation together with diagnostic statistics can be printed with the
summary() function:

R> summary(bairl)

Model:

bairl <- um(z = Z, i = list(1, c(1, 12)), ma = list(1, "0/12", "12"), bc = T)

Time series:

Z

Maximum likelihood method:

exact
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Figure 4: Some diagnostic tools for the residuals of model bairl

Coefficients:

Estimate Gradient Std. Error z Value Pr(>|z|)

theta1 3.786e-01 -8.223e-06 7.893e-02 4.797 1.61e-06 ***

theta2 9.998e-01 -2.111e-06 2.567e-01 3.895 9.81e-05 ***

theta3 5.395e-01 3.416e-06 7.635e-02 7.066 1.59e-12 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Total nobs 144 Effective nobs 131

log likelihood 245.8 Error variance 0.001307

Mean of residuals -1.348e-06 SD of the residuals 0.0346

z-test for residuals -0.0004674 p-value 0.9996

Ljung-Box Q(1) st. 9.982 p-value 0.00158

Ljung-Box Q(32) st. 46.39 p-value 0.04801

Barlett H(3) stat. 1.326 p-value 0.5154

AIC -3.707 BIC -3.641

whose argument is an object of class um. Some diagnostic graphs for this object can be shown
with the diagchk() function (see Figure 4):

R> diagchk(bairl)

4.5. Multiple seasonalities

ARIMA models to forecast time series with multiple seasonalities can also be estimated with
the um() function. As an illustration we consider the half-hourly electricity demand data in
England and Wales from Monday 5 June 2000 to Sunday 27 August 2000 analyzed by Taylor
(2003) and provided by the forecast package. This series exhibits daily and weekly seasonality
and can be described by a multiplicative ARIMA(0, 1, 1)(0, 1, 1)48(0, 1, 1)336 model,

∇∇48∇336zt = (1 − θ1B)(1 − θ2B3)(1 − θ3B336)at.
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Figure 5: Point and interval forecasts for electricity demand.

We can estimate this model by running the sentences:

R> library(forecast)

R> E <- taylor

R> um.E <- um(E, i = list(1, c(1, 48), c(1, 336)),

+ ma = list(1, c(1, 48), c(1, 336)),

+ method = "cond")

For this kind of models it is recommended to use CML as first estimation method given that
the exact method requires to invert a 336 × 336 matrix. Once we have good preestimates, we
could reestimate the model by EML. Next, we report these estimates:

R> #um.E <- fit(um.E, method = "exact")

R> um.E$param[["theta1"]] <- -6.551086e-02

R> um.E$param[["theta2"]] <- 7.000628e-01

R> um.E$param[["theta3"]] <- 7.206957e-01

R> um.E$sig2 <- 2.180469e+04

4.6. Forecasting

Point and interval forecast from a um object can be computed with the predict() function,
whose arguments n.ahead and level allow to set the lead time and the confidence levels.
The object returned by this function can be displayed with the plot() function, whose
n.back argument sets the number of previous observations to be shown. The following script
computes 48 forecasts (one day) and displays a plot with the last 336 observations (seven
days) followed by the 48 forecasts:

R> p <- predict(um.E, n.ahead = 48)

R> plot(p, n.back = 336)

4.7. Unobserved components

The ucomp() function computes unobserved components for a time series based on an object
of class um. For example, the half-hourly electricity data can be decomposed by running

R> p <- ucomp(um.E)

R> plot(p)
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Figure 6: Unobserved components for electricity demand.

This function performs a decomposition of the eventual forecast function of a um object
following a similar approach to that described by Box et al. (1987). The starting point is the
fundamental decomposition of a time series:

zt = ẑt−1(1) + at

where ẑt−1(1) is the forecast of zt from origin t − 1. For a general ARIMA(p,d,q) model

ẑt(l) = b
(t)
1 f1(l) + · · · + b

(t)
p+dfp+d(l), l ≥ p + d − q,

where the functions fj(t) are determined by the roots of the AR and I polynomials and

the adaptive coefficients b
(t)
j can be determined from p + q forecasts. Such roots can be

classified into three categories: real unit roots (trend), complex unit roots (seasonality) and
real/complex non-unit roots (cycle). The irregular component coincides with the residuals of

the model. Since the ucomp() returns matrices with the values of fj(t) and b
(t)
j it is possible

to estimate the unobserved components according to other criteria.

5. The tfm class: transfer function models

To create TF models defined by equation (5), we have to create previously both the TF for
each input and the UM for the noise. The tf() function of the tfarima package specifies the
TF for a particular input,

tf <- function(x = NULL, delay = 0, w0 = 0.1, ar = NULL, ma = NULL,

um = NULL, par.prefix = "")

where the input x is an object of class "ts", delay is an integer value for the input lag, w0 a
numeric value for the parameter w0 of the TF, ar and ma are lists of objects of class lagpol

in the denominator (AR) and numerator (MA) of the TF, um is an optional object of class
um used to back/forecast the input x, and par.prefix is an optional character to set a prefix
for the parameters of the TF. Any of the three ways described to provide lag polynomials in
the um() function can also be used with the tf() function.
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Once we have specified a TF for each input, we can create a TF model with the tfm()

function,

tfm <- function(output = NULL, xreg = NULL, inputs = NULL, noise, fit = TRUE)

where output is an object of class ts, xreg is a vector or matrix of regressors, inputs is a
list of objects of class tf, noise is an object of class um with the UM for the noise, fit is a
logical value indicating whether or not to fit the TF model. Two comments are in order: (1)
if the um object for the output is set to the noise argument, then it is not necessary provide
the output argument because it is already contained in this um object; (2) time series for
the inputs and regressors must have at least the same length as the output, but they can be
extended with backcasts and forecasts to improve the estimation or to forecast the output
(more on that later).

The function returns an object of class tfm, whose main data members are xreg, inputs

and noise. Some useful methods for these of objects are: noise(), fit(), diagchk(),
calendar(), outliers(), predict() and ucomp(), which are illustrated in the following
subsections.

5.1. Calendar effects

Hillmer (1982) used the telephone data of Thompson and Tiao (1971) to illustrate how to
forecast time series with trading day variation. This data refers to outward station movements
(disconnections) of the Wisconsin telephone company from January 1951 to October 1968.
Clearly the series exhibits increasing seasonality and an upward trend requiring logs and
both types of differences. Besides, it is affected by the number of trading days in a month
because there are more disconnections on weekdays than on weekends. Due to these calendar
effects, the sample ACF and PACF of ∇∇ log(Yt) do not have a recognizable pattern. Hence,
to identify a tentative ARMA structure for this series, the calendar effects are removed by
fitting the regARIMA model

log(Zt) =
7

∑

j=1

αjXjt + Nt

∇∇12Nt =at,

where Xjt, i = 1, ..., 7, are, respectively, the number of Mondays, Tuesdays, and so on in
month t and Nt is the noise. Defining β0 =

∑7
j=1 αj/7 and Lt = X1t + · · · + X7t (length of

month t), the regression component TDt =
∑

j=1 αjXjt can be reparametrized as

TDt = β0Lt +
6

∑

j=1

β1(Xjt − X7t)

where βj = αj − β0 for j = 1, . . . , 6 (see, e.g., Bell and Hillmer 1983).

The calendar() function enlarges an ARIMA or a TF model by adding calendar variables:

calendar <- function(x, form = c("dif", "td"), easter = FALSE, n.ahead = NULL)

where x is an object of class um or tfm, form is a character indicating the type of representation
for TDt, easter is a logical value to include an extra calendar variable for Easter, and n.ahead

is an optional integer to extend the regressors with future observations to forecast the output.
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To estimate this regARIMA model, we create an ARIMA(0,1,0)(0,1,0)12 model without pa-
rameters and call the calendar() function:

R> Y <- Wtelephone$Y

R> umY <- um(Y, bc = TRUE, i = list(1, c(1,12)))

R> tfmY <- calendar(umY, n.ahead = 13)

R> tfmY

Lom Mon_Sun Tue_Sun Wed_Sun Thu_Sun

-0.025279555 0.023436662 0.024087935 0.011829553 0.009641849

Fri_Sun Sat_Sun sig2

0.004062339 -0.047702989 0.003895825

Alternatively, we could estimate this model generating the calendar variables and creating a
tfm object:

R> X <- CalendarVar(Y, form = "lom", n.ahead = 13)

R> tfmY <- tfm(xreg = X, noise = umY)

where the Y argument in the CalendarVar() function is used to get the sample period.

We can recovery the noise Nt or its transformations exp(Nt) and ∇∇12Nt with the function

noise <- function(tfmY, diff = TRUE, exp = FALSE)

where diff is a logical value indicating if the noise must be differenced and exp is a logical
value indicating if the antilog must be applied to the non-differenced noise. Note that these
transformations are determined by the noise model.

Now we can identify a pattern in the ACF and PACF of the corrected series compatible with
an ARIMA(0,1,1)(0,1,1)12:

R> y <- noise(tfmY, diff = FALSE, exp = TRUE)

R> ide(list(Y, y), transf = list(bc = T, d = 1, D = 1))

The two MA operators can be added to the tfmY object with the modify() function:

R> tfmY <- modify(tfmY, ma = list(1, c(1,12)))

R> tfmY

Lom Mon Tue Wed Thu

-0.042666547 0.049018049 0.048648330 0.044885508 0.022852854

Fri Sat theta1 theta2 sig2

0.039365675 -0.022720778 0.742669684 0.456118447 0.001933313

Finally, we could predict future values:

R> p <- predict(tfmY, n.ahead = 13)

R> print(p, rows = c(1, 13))
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Figure 7: Identification tools for original and corrected telephone data.

Forecast RMSE 95% LB 95% UB

dic. 1968 18482.07 0.04396946 16956.02 20145.48

dic. 1969 20113.77 0.06769510 17614.54 22967.60

For the sake of completeness, we estimate the ARIMA model developed by Thompson and
Tiao (1971):

(1 − φ1B3)(1 − φ2B12) log(Yt) = (1 − θ9B9 − θ12B12 − θ13B13)at

R> ma <- lagpol(c(theta9 = .2, theta12 = .2, theta13 = .2),

+ lags = c(9, 12, 13))

R> TT <- um(Y, bc = TRUE, ar = list(c(1, 3), c(1, 12)), ma = ma)

R> TT

phi1 phi2 theta9 theta12 theta13

0.941588020 0.995575838 -0.235380779 0.319588129 0.033347043

sig2

0.004822835

5.2. Intervention analysis and outlier detection

Intervention models suggested by Box and Tiao (1975) are special cases of TF models and
can be estimated with the tfm() function to deal with outliers. For example, Box et al.
(2015) identify three innovational outliers (IO) at times 58, 59 and 60 in the Series C, the
“uncontrolled” temperature readings every minute in a chemical process. To estimate the
effects of these IOs they fit the outlier model:

(1 − B)Yt =
1

1 − φB
(w1P

(58)
t + w2P

(59)
t + w3P

(60)
t + at),
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where P
(τ)
t is a pulse function at τ :

P
(τ)
t =

{

0 t 6= τ

1 t = τ

They estimated the model by conditional least squares (CLS) and obtained the follow-
ing results (standard errors in parenthesis): φ̂ = 0.851(0.035), ω̂1 = 0.745(0.116), ω̂2 =
−0.551(0.120), ω̂1 = −0.455(0.116), σ̂2

a = 0.0132. This model can be reformulated as a single
input transfer function model:

Yt =w0
(1 − w′

1B − w′

2B2)

(1 − φB)(1 − B)
P

(58)
t + Nt

Nt =
1

(1 − φB)(1 − B)
at,

(9)

where the input and the noise share the same ARI operators. The capabilities of the tfarima

package to estimate models with multiple operators and parameter restrictions allows us to
estimate this model by running the following code:

R> Y <- as.ts(seriesC)

R> um1 <- um(Y, ar = 1, i = 1, method = "cond")

R> P58 <- InterventionVar(Y, 58)

R> tf58 <- tf(P58, ma = 2, ar = c(um1$ar, um1$i))

R> tfm1 <- tfm(inputs = tf58, noise = um1)

R> tfm1

P58 P58.w1 P58.w2 phi1 sig2

0.74473341 0.74054615 0.61106025 0.85123172 0.01389304

R> printLagpol(tfm1$inputs[[1]]$theta, digits = 3)

0.745 - 0.552B - 0.455B^2

Firstly, we load the Series C and fit an ARIMA(1,1,0) model, which is used as noise model.
Next, we create a pulse variable at τ = 58 and its transfer function by providing the order of
the MA polynomial and the ARI operators of the um1 model. Finally, we create and fit the
transfer function model which is made up of a single input and an ARIMA(1,1,0) noise. We
can see that the results of the estimation by conditional likelihood maximum are very similar
to those of Box et al. (2015).

The outliers() function implements a version of the Chen and Liu (1993) procedure to detect
and correct the effects of four common types of anomalies: additive outliers, innovational
outliers, level shifts and transitory changes. We apply this function to model um1 and use a
critical value c = 3.5 to determine if an observation is anomalous:

R> tfm2 <- outliers(um1, c = 3.5)

R> tfm2
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LS58 IO60 phi1 sig2

0.70372279 -0.45606236 0.85354122 0.01391037

The function detects two outliers at times 58 and 60 of type LS and IO, respectively. Note
that model tfm2 is compatible with model tfm1 since (9) can be reformulated as

Yt = w0
(1 − w′

1B)

(1 − φB)
S

(58)
t − w0 ∗ w′

2P 60
t + Nt,

where S50
t = (1 − B)−1P 58

t is a step function at T = 58 and w′

1 ≃ φ.

The outliers() function can also be used to identify and estimate the effects of possible
outliers at known times:

R> tfm3 <- outliers(um1, dates = c(58, 59, 60))

R> summary(tfm3)$table

Estimate Gradient Std. Error z Value Pr(>|z|)

LS58 0.74464605 -3.695249e-07 0.1183491 6.2919457 3.135112e-10

LS59 0.08264826 6.578909e-07 0.1558444 0.5303256 5.958862e-01

IO60 -0.38500574 -3.937869e-07 0.1782898 -2.1594375 3.081624e-02

phi1 0.85116889 -1.583515e-06 0.0355065 23.9721977 5.423579e-127

We can see that the possible outlier at time τ = 59 is identified as a LS but it is not significant.

5.3. Building transfer function models

To illustrate the Box-Jenkins approach to the identification, fitting and checking of TF models,
we replicate the analysis of the gas furnace data by Box et al. (2015), Series J. They identify
and fit an AR(3) model for the input Xt, which can be also fitted to the output Yt:

R> Y <- seriesJ$Y - mean(seriesJ$Y)

R> X <- seriesJ$X - mean(seriesJ$X)

R> umx <- um(X, ar = 3)

R> umy <- fit(umx, Y)

This umx model is used to prewhiten the input X and the output Y . The residuals()

function of the tfarima package compute the conditional or exact residuals for a time series
from an object of class um:

R> a <- residuals(umx, Y, method = "cond")

R> b <- residuals(umx, X, method = "cond")

Now we can use the ccf() function of the stats package to display the estimated cross
correlation function for the gas furnace data after filtering. Alternatively, we can use the
pccf() function of the tfarima defined as

R> pccf(X, Y, um.x = umx, um.y = NULL, lag.max = 16)
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Figure 8: Estimated cross correlation function.

where x and y are the input and the output, um.x and um.y are the univariate models used
to prewhiten both series, and lag.max is the number of correlation in each side. If both um.x

and um.y are equal to NULL, the ccf is estimated without prewhitening; if only one of these
arguments is equal to NULL, the um provided is used to prewhiten both series; otherwise, each
series is prewhitenned by its own UM.

As in Box et al. (2015) we identify a TF with orders (1, 2, 3) or (2, 2, 3), (see Figure 8).

Preestimates of the parameters of the TF can be computed with the tfest() function

R> tfx <- tfest(Y, X, delay = 3, p = 2, q = 2, um.x = umx, um.y = umy)

where we provide the output and the input, the delay, the orders of the AR and MA lag poly-
nomials of the TF, and the UMs for the input and the output. The extended lag polynomials
of the TF are stored into the data members theta and phi.

R> printLagpol(tfx$theta)

- 0.51 - 0.32B - 0.48B^2

R> printLagpol(tfx$phi)

1 - 0.65B + 0.087B^2

Box et al. (2015) fitted the following TF model:

Yt =
w0 − w1B − w2B2

1 − δ1B − δwB2
Xt + Nt,

Nt =
1

1 − φ1B − φ2B2
at,

which can be estimated as follows:

R> tfmy <- tfm(Y, inputs = tfx, noise = um(ar = 2))

R> printLagpol(tfmy$inputs[[1]]$theta)

- 0.53 - 0.37B - 0.51B^2
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R> printLagpol(tfmy$inputs[[1]]$phi)

1 - 0.57B + 0.012B^2

R> printLagpol(tfmy$noise$phi)

1 - 1.5B + 0.63B^2

where we can see that the estimates are very close to those reported by Box et al. (2015):
ω̂0 = −0.53, ω̂1 = 0.33, ω̂2 = 0.51, δ̂1 = 0.57, δ̂2 = 0.02, φ̂1 = 1.54, φ̂2 = −0.64.

It is worth mentioning that the tfm() function use the backcasting method to extend the
input using its own UM so that the effect of transients can be minimized. The number of
backcasts is controlled with the n.back, by default it is set to n/4. The UM of the input is
also used to compute forecasts when forecasting the output.

6. Summary

We have presented some of the capabilities offered by the tfarima package to build customized
TF and ARIMA models, which can include multiple conventional and user-defined lag polyno-
mials. The package provides a full set of functions to apply the three stages of the Box-Jenkins
methodology: identification, estimation and diagnosis of TF-ARIMA models, which can be
used to forecast and decompose time series. Currently the package is been improved to in-
clude tests for a diversity of MA unit roots. A multivariate version of the package is also
being developed.
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