
calculate_biomass_and_predicted_catch();

// calculate the objective function

calculate_the_objective_function();

There are three user-defined functions called at the beginning of the PROCEDURE SECTION

The code to define the FUNCTIONS comes next. To define a function whose name is name the
template directive FUNCTION name is used. Notice that no parentheses () are used in the
definition of the function, but to call the function the statement takes the form name();

1.20 A fisheries catch-at-age model

This section describes a simple catch-at age model. The data input to this model include
estimates of the numbers at age caught by the fishery each year and estimates the fishing
effort each year. This example introduces AD Model Builder’s ability to automatically cal-
culate profile likelihoods for carrying out Bayesian inference. To cause the profile likelihood
calculations to be carried out use the -lprof command line argument.

Let i index fishing years 1 ≤ i ≤ n and j index age classes with 1 ≤ j ≤ r. The
instantaneous fishing mortality rate is assumed to have the form Fij = qEisj exp(δi) where
q is called the catchability, Ei is the observed fishing effort, sj is an age-dependent effect
termed the selectivity, and the δi are deviations from the expected relationship between
the observed fishing effort and the resulting fishing mortality. The δi are assumed to be
normally distributed with mean 0. The instantaneous natural mortality rate M is assumed
to be independent of year and age class. It is not estimated in this version of the model.
The instantaneous total mortality rate is given by Zij = Fij + M . The survival rate is given
by Sij = exp(−Zij). The number of age class j fish in the population in year i is denoted by
Nij. The relationship Ni+1,j+1 = NijSij is assumed to hold. Note that using this relationship
if one knows Sij then all the Nij can be calculated from knowledge of the initial population
in year 1, N11, N12, . . . , N1r and knowledge of the recruitment in each year N21, N31, . . . Nn1.

The purpose of the model is to estimate quantities of interest to managers such as the
population size and exploitation rates and to make projections about the population. In
particular we can get an estimate of the numbers of fish in the population in year n + 1 for
age classes 2 or greater from the relationship Nn+1,j+1 = NnjSnj. If we have estimates mj

for the mean weight at age j, then the projected biomass level Bn+1 of age class 2+ fish for
year n + 1 can be computed from the relationship Bn+1 =

∑r
j=2 mjNn+1,j.

Besides getting a point estimate for quantities of interest like Bn+1 we also want to get
an idea of how well determined the estimate is. AD Model Builder has completely automated
the process of deriving good confidence limits for these parameters in a Bayesian context.
One simply needs to declare the parameter to be of type likeprof number. The results are
given in the section on Bayesian inference.

The code for the catch-at-age model is:

1-32 AD Model Builder



DATA_SECTION

// the number of years of data

init_int nyrs

// the number of age classes in the population

init_int nages

// the catch-at-age data

init_matrix obs_catch_at_age(1,nyrs,1,nages)

//estimates of fishing effort

init_vector effort(1,nyrs)

// natural mortality rate

init_number M

// need to have relative weight at age to calculate biomass of 2+

vector relwt(2,nages)

INITIALIZATION_SECTION

log_q -1

log_P 5

PARAMETER_SECTION

init_number log_q(1) // log of the catchability

init_number log_P(1) // overall population scaling parameter

init_bounded_dev_vector log_sel_coff(1,nages-1,-15.,15.,2)

init_bounded_dev_vector log_relpop(1,nyrs+nages-1,-15.,15.,2)

init_bounded_dev_vector effort_devs(1,nyrs,-5.,5.,3)

vector log_sel(1,nages)

vector log_initpop(1,nyrs+nages-1);

matrix F(1,nyrs,1,nages) // the instantaneous fishing mortality

matrix Z(1,nyrs,1,nages) // the instantaneous total mortality

matrix S(1,nyrs,1,nages) // the survival rate

matrix N(1,nyrs,1,nages) // the predicted numbers at age

matrix C(1,nyrs,1,nages) // the predicted catch at age

objective_function_value f

sdreport_number avg_F

sdreport_vector predicted_N(2,nages)

sdreport_vector ratio_N(2,nages)

likeprof_number pred_B

PRELIMINARY_CALCS_SECTION

// this is just to invent some relative average

// weight numbers

relwt.fill_seqadd(1.,1.);

relwt=pow(relwt,.5);

relwt/=max(relwt);

PROCEDURE_SECTION

// example of using FUNCTION to structure the procedure section

get_mortality_and_survival_rates();

get_numbers_at_age();

get_catch_at_age();

evaluate_the_objective_function();

FUNCTION get_mortality_and_survival_rates

// calculate the selectivity from the sel_coffs

for (int j=1;j<nages;j++)

{

log_sel(j)=log_sel_coff(j);

}

// the selectivity is the same for the last two age classes

log_sel(nages)=log_sel_coff(nages-1);

Copyright c© 1993–2007 by Otter Research Ltd 1-33



// This is the same as F(i,j)=exp(log_q)*effort(i)*exp(log_sel(j));

F=outer_prod(mfexp(log_q)*effort,mfexp(log_sel));

if (active(effort_devs))

{

for (int i=1;i<=nyrs;i++)

{

F(i)=F(i)*exp(effort_devs(i));

}

}

// get the total mortality

Z=F+M;

// get the survival rate

S=mfexp(-1.0*Z);

FUNCTION get_numbers_at_age

log_initpop=log_relpop+log_P;

for (int i=1;i<=nyrs;i++)

{

N(i,1)=mfexp(log_initpop(i));

}

for (int j=2;j<=nages;j++)

{

N(1,j)=mfexp(log_initpop(nyrs+j-1));

}

for (i=1;i<nyrs;i++)

{

for (j=1;j<nages;j++)

{

N(i+1,j+1)=N(i,j)*S(i,j);

}

}

// calculated predicted numbers at age for next year

for (j=1;j<nages;j++)

{

predicted_N(j+1)=N(nyrs,j)*S(nyrs,j);

ratio_N(j+1)=predicted_N(j+1)/N(1,j+1);

}

// calculate predicted biomass for profile

// likelihood report

pred_B=predicted_N *relwt;

FUNCTION get_catch_at_age

C=elem_prod(elem_div(F,Z),elem_prod(1.-S,N));

FUNCTION evaluate_the_objective_function

// penalty functions to ‘‘regularize ’’ the solution

f+=.01*norm2(log_relpop);

avg_F=sum(F)/double(size_count(F));

if (last_phase())

{

// a very small penalty on the average fishing mortality

f+= .001*square(log(avg_F/.2));

}

else

{

// use a large penalty during the initial phases to keep the

// fishing mortality high

f+= 1000.*square(log(avg_F/.2));

1-34 AD Model Builder



}

// errors in variables type objective function with errors in

// the catch at age and errors in the effort fishing mortality

// relationship

if (active(effort_devs)

{

// only include the effort_devs in the objective function if

// they are active parameters

f+=0.5*double(size_count(C)+size_count(effort_devs))

* log( sum(elem_div(square(C-obs_catch_at_age),.01+C))

+ 0.1*norm2(effort_devs));

}

else

{

// objective function without the effort_devs

f+=0.5*double(size_count(C))

* log( sum(elem_div(square(C-obs_catch_at_age),.01+C)));

}

REPORT_SECTION

report << "Estimated numbers of fish " << endl;

report << N << endl;

report << "Estimated numbers in catch " << endl;

report << C << endl;

report << "Observed numbers in catch " << endl;

report << obs_catch_at_age << endl;

report << "Estimated fishing mortality " << endl;

report << F << endl;

This model employs several instances of the init bounded dev vector type. This type
consists of a vector of numbers which sum to 0, that is they are deviations from a common
mean, and are bounded. For example the quantities log relpop are used to parameterize
the logarithm of the variations in year class strength of the fish population. Putting bounds
on the magnitude of the deviations helps to improve the stability of the model. The bounds
are from -15.0 to 15.0 which gives the estimates of relative year class strength a dynamic
range of exp(30.0).

The FUNCTION keyword has been employed a number of times in the PARAMETER SECTION

to help structure the code. A function is defined simply by using the FUNCTION keyword
followed by the name of the function.

FUNCTION get_mortality_and_survival_rates

Don’t include the parentheses or semicolon here. To use the function simply write its name
in the procedure section.

get_mortality_and_survival_rates();

You must include the parentheses and the semicolon here.

The REPORT SECTION shows how to generate a report for an AD Model Builder program.
The default report generating machinery utilizes the C++ stream formalism. You don’t need
to know much about streams to make a report, but a few comments are in order. The stream
formalism associates stream object with a file. In this case the stream object associated with

Copyright c© 1993–2007 by Otter Research Ltd 1-35



the AD Model Builder report file is report. To write an object xxx into the report file you
insert the line

report << xxx;

into the REPORT SECTION. If you want to skip to a new line after writing the object you can
include the stream manipulator endl as in

report << "Estimated numbers of fish " << endl;

Notice that the stream operations know about common C objects such as strings, so that it
is a simple matter to put comments or labels into the report file.

1.21 Bayesian inference and the profile likelihood

AD Model Builder enables one to quickly build models with large numbers of parameters
– this is especially useful for employing Bayesian analysis. Traditionally however it has been
difficult to interpret the results of analysis using such models. In a Bayesian context the
results are represented by the posterior probability distribution for the model parameters.
To get exact results from the posterior distribution it is necessary to evaluate integrals over
large dimensional spaces and this can be computationally intractable. AD Model Builder
provides an approximations to these integrals in the form of the profile likelihood. The profile
likelihood can be used to estimates for extreme values (such as estimating a value β so that
for a parameter b the probability that b < β ≈ 0.10 or the probability that b > β ≈ 0.10)
for any model parameter. To use this facility simply declare the parameter of interest to
be of type likeprof number in the PARAMETER SECTION and assign the correct value to the
parameter in the PROCEDURE SECTION.

The code for the catch at age model estimates the profile likelihood for the projected
biomass of age class 2+ fish. (Age class 2+ has been used to avoid the extra problem of
dealing with the uncertainty of the recruitment of age class 1 fish). As a typical application
of the method, the user of the model can estimate the probability that the biomass of fish for
next year will be larger or smaller than a certain value. Estimates like these are obviously
of great interest to managers of natural resources.

The profile likelihood report for a variable is in a file with the same name as the variable
(truncated to eight letters, if necessary, with the suffix .PLT appended). For this example
the report is in the file PRED B.PLT. Part of the file is shown here.

pred_B:

Profile likelihood

-1411.23 1.1604e-09

-1250.5 1.71005e-09

-1154.06 2.22411e-09

................... // skip some here

...................

278.258 2.79633e-05

1-36 AD Model Builder


	Getting started with AD Model Builder
	What are nonlinear statistical models?
	Installing the software
	The sections in an AD Model Builder TPL file
	The Original AD Model Builder examples
	Example 1 -- linear least-squares
	The DATA SECTION
	The Parameter Section
	The Procedure Section
	The Preliminary Calcs Section
	The use of loops and element-wise operations
	The default output from AD Model Builder
	Robust Nonlinear regression with AD Model Builder
	Modifying the model to use robust nonlinear regression
	Chemical engineering -- a chemical kinetics problem
	Financial Modelling -- A Generalized Autoregressive Conditional Heteroskedasticity or GARCH model
	Carrying out the minimization in a number of phases
	Natural resource management -- the Schaeffer-Pella-Tomlinson Model
	Bayesian considerations in the Pella--Tomlinson model
	Using FUNCTIONS to improve code organization
	A fisheries catch-at-age model
	Bayesian inference and the profile likelihood
	Saving the output from profile likelihoodto use as starting values for MCMC analysis
	The profile likelihood Calculations
	Modifying the profile likelihood approximation procedure
	Changing the default file names for data and parameter input
	Using the subvector operation to avoid writing loops
	The use of higher dimensional arrays
	The TOP_OF_MAIN section
	The GLOBALS_SECTION
	The BETWEEN_PHASES_SECTION

	Markov Chain Simulation
	Introduction to the Markov Chain Monte Carlo approach in Bayesian Anaylsis
	Reading AD Model Builder binary files
	Convergence diagnostics for MCMC analysis

	A forestry model -- estimating the size distribution of wildfires
	Model description
	The numerical integration routine
	Using the ad_begin_funnel routine to reduce the amount of temporary storage required
	Effect of the accuracy switch on the running time for numerical integration
	A comparison with Splus for the forestry model

	Economic Models -- regime switching
	Anaylsis of economic data from Hamilton's 1989 paper
	The code for Hamilton's fourth order autoregressive model
	Results of the analysis
	Extending Hamilton's model to a fifth order autoregressive process

	Econometric Models -- simultaneous equations
	Simultaneous Equations Models
	Full Information Maximum Likelihood (FIML)
	Concentrating out D for the FIML
	Evaluating the model's performance
	Results of (FIML) for unconstrained D
	Results of (FIML) for constrained D
	Code for (FIML) for constrained D

	Truncated Regression
	Truncated Linear Regression
	The AD Model Builder Truncated Regression Program

	Multivariate GARCH
	Formulation of the VARMA GARCH process
	Setting a value for 1
	Ensuring that the t are postive definite
	Missing data
	The likelihood function
	Model Selection
	The Box-Ljung statistic
	Analysis of Simulated data
	Analysis of Real Data
	Input Format
	Output Files
	The code for the BEKKGARCH model

	The Kalman filter
	The Kalman Filter
	Equations for the Kalman filter
	Parameterizing the covariance matrix parameterizations

	 Applying the Laplace approximation to the Generalized Kalman Filter -- with an application to Stochastic Volatility Models
	Parameter estimation
	The stochastic volatility model
	The Data
	The Results

	 Using Vectors of initial parameter types
	Creating Dynamic Link Libraries with AD Model Builder
	Compiling the code to produce a DLL
	The splus objects
	Debugging the DLL's
	Understanding what is being passed to the DLL
	Passing strings from Splus to a DLL
	A mixture of two bivariate normal distributions
	Interpretation of the parameter estimates

	Command line options
	Writing Adjoint Code
	The necessity for adjoint code
	Writing Adjoint Code -- a simple case
	Debugging Adjoint Code -- a simple case
	Adjoint code for more than one indepdendent variable
	Structured calculation of derivatives in adjoint code
	General Adjoint Code

	The Random Effects Module
	Using the random effects module -- advice for current ADMB users

	Truncated Regression
	Truncated Linear Regression
	The AD Model Builder Truncated Regression Program

	All the functions in AD Model Builder
	Naming conventions for documenting functions
	Mathematical Functions
	operations on arrays
	Element-wise operations

	The identity matrix function identity_matrix
	Probability densities and related functions poisson negative binomial cauchy
	The operations det inv norm norm2 min max sum
	Eigenvalues and eigenvectors of a symmetric matrix
	The choleski decomposition of a positive definite symmetric matrix
	Solving a system of linear equations
	Methods for filling arrays and matrices
	Methods for filling arrays and matrices with random numbers
	Methods for obtaining shape information from containers
	Methods for extracting from arrays and matrices
	Accessing subobjects of higher dimensional arrays
	Sorting vectors and matrices
	Statistical Functions
	The random number generator class
	The adstring class operations
	Miscelaneous Functions

	Miscellaneous and Advanced Features of AD Model Builder
	Using strings and labels in the TPL file
	Using other class libraries in AD Model Builder programs
	Appendix 1 -- The regression function
	Appendix 2 -- AD Model Builder types
	Appendix 3 -- The profile likelihood
	Appendix 4 -- Concentrated Likelihoods
	References
	How to order AD Model Builder

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V




