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Manipulation of categorical data edits and error
localization with the editrules package.

Mark van der Loo and Edwin de Jonge

Summary: Analyses of categorical data are often hindered by the occurrence

of inconsistent or incomplete raw data. Although R has many features for

analyzing categorical data, the functionality for error localization and error

correction are currently limited. The editrules package is designed to offer a

user-friendly toolbox for edit definition, manipulation, and error localization

based on the generalized paradigm of Fellegi and Holt.

This is the second paper describing functionalities of the R editrules package

and marks the completion of editrules version 2.0. The first paper (De Jonge

and Van der Loo, 2011) describes methods and implementation for handling

numerical data while this paper is concerned with handling categorical data.

Keywords: Statistical data editing, error localization, Fellegi-Holt, backtrack-

ing, statistical software
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1 Introduction

Analyses of categorical data are often hindered by occurrences of incomplete

or inconsistent raw data records. The process of locating and correcting such

errors is referred to as data editing, and it has been estimated that National

Statistics Institutes spend up to 40% of their resources on this process (De Waal

et al., 2011). For this reason, considerable attention is paid to the development

of data editing methods that can be automated. Since data are often required

to obey many interrelated consistency rules, data editing can be too complex

to perform manually. Winkler (1999) mentions practical cases where records

have to obey 250, 300 or even 750 internal consistency rules. Although the R

statistical environment has numerous facilities for analyzing categorical data

[See e.g. Husson et al. (2010)], the options for error localization and record

correction are currently limited.

This paper presents version 2.0 of R package editrules, which was developed to

help closing the gap between raw data retrieval and data analysis with R. The

main purpose of the editrules package is to provide a user-friendly environment

for handling data restriction rules, to apply those rules to data, and to localize

erroneous fields in data based on the generalized principle of Fellegi and Holt

(1976). The package does not offer functionality for data correction. However,

it does facilitate the identification of the set of solutions for an error correction

problem.

Under the hood, the package contains several innovations with respect to the

branch-and-bound algorithm for error localization in categorical data described

in De Waal et al. (2011). The most important innovation is a new variable

elimination algorithm of which allows for on-the-fly redundant rule removal.

The algorithm itself will be reported in a forthcoming paper.

The current paper complements our previous paper on the treatment of numeri-

cal data (De Jonge and Van der Loo, 2011). We describe some of the algorithms

underlying editrules’ functionality and the internal representation of categorical

data. Examples in R code are given throughout the text to assist new users in

getting started with the package.

2 Categorical data and edit rules

The value domain of categorical data records is usually limited by rules inter-

relating these variables. The simplest examples are cases where the value of

one variable excludes values of another variable. For example: if the age class

of a person is “child”, then (by law) the marital status cannot be “married”. In
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survey or administrative data, violations of such rules are frequently encoun-

tered. Resolving such violations is an important step prior to data analysis and

estimation.

In this section we describe the representation of edits and records as imple-

mented in the editrules package and we report on the basic (low-level) edit rule

manipulation functionality.

2.1 Describing records and edit rules

A record of n categorical variables can be written as an element of the cartesian

product space D:

D = D1 ×D2 × · · · ×Dn, (1)

where each Dk is the set of possible categories for variable k. The domain of

values D is often referred to as the data model for a dataset. The number of

categories for variable k is labeled dk while the total number of categories is

labeled d, given by

d =
n∑

k=1

dk. (2)

As an example, consider the domain of a record consisting of the variables

marital status, age and position in household, so that D = D1 ×D2 ×D3:

D1 = {married, unmarried, widowed, divorced} (3)

D2 = {under-aged, adult} (4)

D3 = {spouse, child, other}. (5)

In total, there are d1 · d2 · d3 = 4 · 2 · 3 = 24 records in D.

To represent a record, we construct an index vector in {0, 1}d indicating the

categories in a record. For example, the record:

(married, adult, spouse). (6)

can be represented as

(1, 0, 0, 0)⊕ (0, 1)⊕ (1, 0, 0) = (1, 0, 0, 0, 0, 1, 1, 0, 0), (7)

where ⊕ is the direct vector sum. Note that the position of the 1’s indicate

which value each variable has. In this representation, a record with n variables

has precisely n 1’s and the rest 0’s. We will refer to this representation of

categorical records as the boolean representation, since the 1’s and 0’s can be
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interpreted as true and false respectively. We show below that it is useful to

allow boolean operations (and, or, negation) on such vectors.

In practical cases, not every record in a domain, defined as in [Eq. (1)] will be

valid. For example, we may want to exclude records such as

(married, under-aged, spouse), (8)

since by law, under-aged people cannot be married.

In general, a data consistency rule, (called edit rule or edit in short) e is a subset

of D, with the interpretation that if a record falls in e, it is invalid. Every edit

can be written in the form

e = A1 ×A2 × · · ·An, (9)

where each Ak ⊆ D. For example, the rules which states:

under-aged persons cannot be married, (10)

can be written as

{married} × {under-aged} × {spouse, child, other}. (11)

Just like records, edits can be represented with boolean vectors where the 1s

indicates which categories are a member of the edit. The edit in (11) can be

represented as

(1, 0, 0, 0)⊕ (1, 0)⊕ (1, 1, 1) = (1, 0, 0, 0, 1, 0, 1, 1, 1). (12)

In editrules, edits are represented as boolean vectors. A set of edits is repre-

sented as two-dimensional array, where each row represents a single edit.

2.2 The editarray object

In the editrules package, a set of categorical edits is storeed as an editarray

object. We denote an editarray E for n categorical variables and m edits as

(brackets indicate a combination of objects)

E = 〈A, ind〉, with A ∈ {0, 1}m×d and d =
n∑

k=1

dk, (13)

Each row a of A contains the boolean representation of one edit, and the dk

denote the number of categories of each variable. The object ind is a nested

list which relates columns of A to variable names and categories. Labeling

variables with k ∈ 1, 2, . . . , n and category values with vk ∈ 1, 2, . . . , dk, we use

the following notations:

ind(k, vk) =
∑
l<k

dl + vk (14)
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> E <- editarray(c(

+ "gender %in% c('male','female')",

+ "pregnant %in% c('yes','no')",

+ "if (gender == 'male') pregnant == 'no'"

+ )

+ )

> E

Edit array:

levels

edits gndr:feml gndr:male prgn:no prgn:yes

e1 FALSE TRUE FALSE TRUE

Edit rules:

d1 : gender %in% c('female', 'male')

d2 : pregnant %in% c('no', 'yes')

e1 : if( gender == 'male' ) pregnant != 'yes'

> datamodel(E)

variable value

1 gender female

2 gender male

3 pregnant no

4 pregnant yes

Figure 1: Defining a simple editarray with the editarray function. The array

is printed with abbreviated column heads, which themselves consist of variable

names and categories separated by a colon (by default). When printed to screen,

a character version of the edits is shown as well, for readability.

ind(k) = {ind(k, vk) | vk ∈ Dk}. (15)

So ind(k, vk) is the column index in A for variable k and category vk and ind(k)

is the set of column indices corresponding to all categories of variable k. The

editarray is the central object for computing with categorical edits, just like the

editmatrix is the central object for computations with linear edits [De Jonge and

Van der Loo (2011)].

It is both tedious and error prone to define and maintain an editarray by hand. In

practice, categorical edits are usually stated verbosely, such as: “a man cannot

be pregnant”, or “an under-aged person cannot be married”. To facilitate the

definition of edit arrays, editrules is equipped with a parser which takes R-

statements in character and translates them to an editarray.

Figure 1 shows a simple example of defining an editarray with the editrules
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package. The first two edits in Figure 1 define the domain. The editarray func-

tion derives the datamodel based on the variable names and categories it finds

in the edits, whether they are univariate (defining domains) or multivariate.

This means that if all possible variables and categories are mentioned in the

multivariate edits, the correct datamodel will be derived as well.

When printed to the screen, the boolean array is shown with column heads of

the form

<abbreviated var. name><separator><abbreviated cat. label>

where both variable names and categories are abbreviated for readability, and

the standard separator is a colon (:). The separator may not occur as a symbol

in either variable or category name, and its value can be determined by passing

a custom sep argument to editarray. For convenience, the function datamodel

accepts an editarray as input and returns an overview of variables and their

categories for easy inspection in the form of a data.frame.

Internally, editarray uses the R internal parse function to transform a character

expressions to a parse tree. This tree is subsequently traversed recursively to

derive the entries of the editarray. The reverse operation is also implemented.

The R internal function as.character has been overloaded to derive a character

representation from a boolean representation. When printed to the screen, both

the boolean and textual representation are shown.

Univariate edits define the domain of a single variable. Together, these domains
form a data model. A domain can be defined with common R syntax using the
%in% operator. If a domain is defined explicitly, the edit must follow the
following syntax diagram.

-- " 〈variable〉 %in% �c( � , �� ’〈category〉’ � )� 〈identifier〉 �� c(TRUE, FALSE) �
� " -�

Here, 〈variable〉 is the name of a categorical variable, and 〈category〉 is a literal

category name. Note that the category name is enclosed by single quotes while

the entire statement is between double quotes. So here, the entire statement is

offered in string format to editarray. The 〈identifier〉 is the name of a predefined

character variable storing the unique categories for a variable. The suymbol

〈identifier〉 denotes a previously defined R character or factor vector listing

categories for a variable. Since the 〈identifier〉 is evaluated as an expression,

in principle any R expression evaluating to a character or factor vector may be

used as well. However, we do not recommend such constructions since they

clutter a clear definition of the datamodel.
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Multivariate rules can be defined in two ways. The most useful and common
way to define edits follows the following syntax diagram.

-- "if (

� � &&� & �� �� 〈set expression〉 � ) �
� � ||� | �� �� 〈set expression〉 �� false �� " -�

Where each 〈set expression〉 is a logical statement following

-- �� ! �� 〈variable〉 �� � ==� != ���’〈category〉’� �true�false �� �
� �

� %in% �c( � , �� ’〈category〉’ � )� 〈identifier〉 �� �true�false �� �
� �

� -�

The reader can check that the examples given in Figure 1 follow this syntax.

The example below illustrates the use of separately defined data models and

boolean categories.

> xval <- letters[1:4]

> yval <- c(TRUE,FALSE)

> ( M <- editarray(c(

+ "x %in% xval",

+ "y %in% yval",

+ "if ( x %in% c('a','b') ) !y "

+ )) )

Edit array:

levels

edits x:a x:b x:c x:d y:FALS y:TRUE

e1 TRUE TRUE FALSE FALSE FALSE TRUE

Edit rules:

d1 : x %in% c('a', 'b', 'c', 'd')

d2 : y %in% c(FALSE, TRUE)

e1 : if( x %in% c('a', 'b') ) y == FALSE

The second way to define multivariate edits is based on rewriting on the basic
classical logic law P ⇒ Q = ¬P ∨Q. It involves the following syntax diagram.

-- "

� � ||� | �� �� 〈set expression〉 � " -�
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Where each 〈set expression〉 is as in the syntax diagram above. In practice,

a user will commonly not use this form since it is less readable. However, the

as.character method for editarray can generate such statements by passing the

argument useIf=FALSE, as shown below.

> as.character(M,useIf=FALSE)

d1 d2

"x %in% c('a', 'b', 'c', 'd')" "y %in% c(FALSE, TRUE)"

e1

"!( x %in% c('a', 'b') ) | y == FALSE"

The main advantage of this form is that contrary to the if() form, it allows for

vectorized checking of edits, which is why it is used internally.

2.3 Coercion, checking, redundancy and feasibility

The editrules package is equipped with functions operating on sets of edits rep-

resented as an editarray. An overview is given in Table 1.

The datamodel function extracts the variables and categories from an editarray,

and returns them as a two-column data.frame. With as.data.frame or as.character

one can coerce an editarray so that it can be written to a file or database.

Character coercion is also used when edits are printed to the screen. Coercing

the data model to character form can be switched off by passing the option

datamodel=FALSE to as.character. The result of as.data.frame has columns with

edit names, a character representation of the edits and a column for remarks.

The function violatedEdits takes an editarray and a data.frame as input and

returns a logical matrix indicating which record (rows) violate which edits

(columns). It works by parsing the editarray to R-expressions and evaluating

them as logical expressions within the data.frame environment. By default, the

records are checked against the data model. This can be turned off by providing

the optional argument datamodel=FALSE.

When manipulating edit sets, some edits may become redundant. We distin-

guish two redundancy situations. The first situation occurs when an edit e

of the form in Eq. (9) has Ak = ∅ for at least one variable k. In this case,

no record can ever be an element of e, making e obsolete. Such edits can be

removed from a set of edits without harming any further processing or record

checking. The second situation occurs when every record in an edit is also a

member of a second edit. In this case, the first edit is redundant with respect to

the second. The second case can easily be detected in the boolean representa-

tion, for if a and b are edits in the boolean representation, then a is redundant
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Table 1. Functions for objects of class editarray. Only mandatory argu-

ments are shown, refer to the built-in documentation for optional argu-

ments. The functions are described in the subsections indicated between

square brackets.

Function description

datamodel(E) get datamodel [2.3]

getVars(E) get a list of variables

as.data.frame(E) coerce edits to data.frame

contains(E) which edits contains which variable

as.character(E) coerce edits to character vector [2.2]

blocks(E) Get list of independent blocks of edits

reduce(E) Remove redundant variables and rows [3.1]

isObviouslyRedundant(E) find redundancies, duplicates [2.3]

duplicated(E) find duplicate edits [2.3]

isSubset(E) find edits, subset of another edit [2.3]

isObviouslyInfeasible(E) detect simple contradictions [2.3]

isFeasible(E) check edit set consistency [2.3]

substValue(E,var,value) substitute a value [3.1]

eliminate(E,var) eliminate a variable [3.2]

violatedEdits(E,dat) check which edits are violated by dat [2.3]

localizeErrors(E,dat) localize errors [4.2]

errorLocalizer(E,x) backtracker for error localization [4.3]

summary(E) summarize the content of E

plot(E) plot a graph of E (requires igraph package)

12



Algorithm 1 isSubset(E)
Input: An editarray E = 〈A, ind〉.
1: s← (false)m

2: for (a(i),a(i′)) ∈ rows(A)× rows(A) do

3: if a(i) ∨ a(i′) = a(i′) then

4: si ← true

Output: Boolean vector s indicating which edits represented by A are a subset

of another edit.

with respect to b if a∧b = a, or equivalently when a∨b = b. Here, the logical

operators ∧ and ∨ work elementwise on the boolean vectors.

In editrules, the first type of redundancy can be detected in the boolean repre-

sentation with isObviouslyRedundant. By default, this function also checks for

duplicate edits, but this may be switched off with an extra parameter. Also,

the standard R function duplicated has been overloaded to search for duplicate

edits in an editarray directly. The second type of redundancy can be detected

with the function isSubset. The pseudocode is given in Algorithm 1. In the

actual R implementation, the only explicit loop is a call to R’s vapply function.

The other loops are avoided using R’s indexing and vectorization properties.

Manipulations may also lead to edits of the form e = D, in which case every

possible record is invalid, and the editarray has become impossible to satisfy.

The function isObviouslyInfeasible detects whether any such edits are present.

The function isFeasible checks if the set of edits in its argument allows at least

one valid record. This may yield results which are counterintuitive at first

glance. For example, consider a set of edits on the domain D = {(x, y) ∈
{a, b} × {c, d}}.

> M <- editarray(c(

+ "x %in% c('a','b')",

+ "y %in% c('c','d')",

+ "if ( x == 'a' ) y == 'c'",

+ "if ( x == 'a' ) y != 'c'"))

>

This set of edits is feasible, even though edits e1 and e2 seem to contradict each

other:

> isFeasible(M)

[1] TRUE

The explanation is that e1 and e2 contradict each other only when x = a, so
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Algorithm 2 substValue(E,k,v)

Input: an editarray E = 〈A, ind〉, a variable index k and a value v

1: i← ind(k, v)

2: A← A\{a ∈ rows(A) | ai = false} . Remove rows not involving v

3: A← A\{at
j ∈ columns(A) | j ∈ ind(k)\i} . Remove categories 6= v

4: Update ind

Output: 〈A, ind〉 with v substituted for variable k.

> isFeasible(substValue(M,'x','a'))

[1] FALSE

where the function substValue is discussed in the next section. One can check

that the record (x = b, y = d) indeed satisfies all edits in M.

The feasibility check works by eliminating all variables in an editarray one by

one until either no edits are left or an obvious contradiction is found. Variable

elimination is discussed further in section 3.2.

3 Manipulation of categorical restrictions

The basic operations on sets of categorical edits are value substitution and vari-

able elimination. The former amounts to adapting the datamodel underlying

the edit set while the latter amounts to deriving relations between variables not

involving the eliminated variable.

In the next subsection we give an example of value substitution with the editrules

package, as well as some background. Subsection 3.2 we give an example of

eliminating variables with the editrules package.

3.1 Value substitution

If it is assumed that in a record one of the variables takes a fixed value, that

value may be substituted in the edit rules. In the boolean representation this

amounts to removing all edits which exclude that value, since the record cannot

violate those edits. Secondly, the columns related to the substituted variable but

not to the substituted category are removed, thereby adapting the datamodel to

the new assumption. Algorithm 2 gives the pseudocode for reference purposes.

In the editrules package, value substitution is performed by the substValue func-

tion, which accepts an editarray, a variable name and a category name. In the

following example the editmatrix defined in Figure 1 is used.
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> substValue(E,"gender","female")

Edit array:

levels

edits gndr:feml gndr:male prgn:no prgn:yes

Edit rules:

d1 : gender %in% c('female', 'male')

d2 : pregnant %in% c('no', 'yes')

In this case, the variable gender is substituted by the value female. The rules

concerning gender = male may be deleted, so here only the datamodel is left

without any multivariate rules. In fact, the datamodel itself may be reduced,

which can be achieved by setting the option reduce=TRUE.

> substValue(E,"gender","female",reduce=TRUE)

Edit array:

levels

edits gndr:feml prgn:no prgn:yes

Edit rules:

d1 : gender %in% 'female'

d2 : pregnant %in% c('no', 'yes')

Here, the only option left for gender is included explicitly in the datamodel.

For some operations it is necessary to remove such redundancies as well. The

function reduce completely removes variables from an edit set for which the

value has been fixed:

> reduce(substValue(E,"gender","female"))

Edit array:

<0 x 0 matrix>

Edit rules:

:

The substitution renders the only edit rule obsolete. Since after the substitution,

there are no limitations on the variable pregnant, (except for the datamodel)

this variable is deleted from the editarray as well. The reduce function is used

extensively in the deductive imputation routines of the deducorrect package

(Van der Loo and De Jonge, 2011).
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3.2 Elimination of variables

The purpose of the eliminate function is to derive all possible non-redundant

edits from an edit set that do not contain a certain variable. For categorical data

edits, this amounts to a series of logic resolution operations. As an example,

consider the following syllogism:

P1 An Under-aged person cannot be married

P2 A spouse has to be married

C An under-aged person cannot be a spouse.

Here, the conclusion C following from premises P1 and P2 does not contain the

variable marital status anymore. That is, marital status is eliminated.

To generalize this operation, note that using Eqs. (3)-(5), the above syllogism

can be written as

{married} × {under-aged} × D3

{unmarried, widowed, divorced} × D2 × {spouse}
D1 × {under-aged} × {spouse}.

(16)

Note that the resulting edit is derived by taking the set union in the first

variable and the set intersection in the other variables. A generalized version

of this operation was first described in the context of error localization by

Fellegi and Holt (1976). They also devised a combinatorial algorithm that

generates every edit from an edit set that does not contain some chosen variable.

The elimination algorithm in editrules is different, and is based on repeated

application of the binary operation shown in Eq. (16). The details of this

algorithm will be published in a forthcoming paper.

In editrules the above operation can be performed as follows. We first define a

data model and edit rules:

> E <- editarray(c(

+ "age %in% c('under-aged','adult')",

+ "maritalStatus %in% c('married','not married')",

+ "positionInHousehold %in% c('spouse','child','other')",

+ "if (age == 'under-aged') maritalStatus != 'married'",

+ "if (positionInHousehold == 'spouse') maritalStatus == 'married'"

+ ))

We may derive the conclusion by eliminating the marital status variable:

> eliminate(E,'maritalStatus')
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Edit array:

levels

edits age:adlt age:und- mrtS:mrrd mrtS:ntmr psIH:chld psIH:othr psIH:spos

e1 FALSE TRUE TRUE TRUE FALSE FALSE TRUE

Edit rules:

d1 : age %in% c('adult', 'under-aged')

d2 : maritalStatus %in% c('married', 'not married')

d3 : positionInHousehold %in% c('child', 'other', 'spouse')

e1 : if( age == 'under-aged' ) positionInHousehold != 'spouse'

This indeed yields the right conclusion. Alternatively, we may eliminate age:

> eliminate(E,'age')

Edit array:

levels

edits age:adlt age:und- mrtS:mrrd mrtS:ntmr psIH:chld psIH:othr psIH:spos

e1 TRUE TRUE FALSE TRUE FALSE FALSE TRUE

Edit rules:

d1 : age %in% c('adult', 'under-aged')

d2 : maritalStatus %in% c('married', 'not married')

d3 : positionInHousehold %in% c('child', 'other', 'spouse')

e1 : if( maritalStatus == 'not married' ) positionInHousehold != 'spouse'

This deletes the only rule actually involving age. That is, no new rules not

involving age can be derived.

4 Error localization in categorical data

4.1 A Branch and bound algorithm

The editrules package implements an error localization algorithm, based on the

branch-and-bound algorithm of De Waal and Quere (2003). The algorithm has

been extensively described in De Waal (2003) and De Waal et al. (2011). The

algorithm is similar to the branch-and-bound algorithm used for error localiza-

tion in numerical data in the editrules package as described in De Jonge and

Van der Loo (2011), except that the elimination and substitution subroutines

are implemented for categorical data.

In short, a binary tree is created with the full set of edits and an erroneous

record at the root node. Two child nodes are created. In the first child node

the first variable of the record is assumed correct, and its values is substituted
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in the edits. In the second child node the variable is assumed incorrect and

it is eliminated from the set of edits. The tree is continued recursively until

choices are made for each variable. Branches are pruned when they cannot

lead to a solution, leaving a partial binary tree where each path from root

to leaf represents a solution to the error localization problem. Computational

complexity is reduced further by pruning branches leading to higher-weight

solutions then solutions found earlier.

Recall the datamodel of Eqs. (3)-(5), with variables marital status, age and

position in household. We define the following two edits:

e(1) An under-aged person cannot be married

e(2) A spouse has to be married

As an example we treat the following record with the branch-and-bound algo-

rithm to localize the errors:

(married, under-aged, spouse). (17)

At the beginning of the algorithm, only the root node is filled. The situation

may be represented as follows:

HH��
AA AA�� ��

�� �� �� ��BB BB BB BB

rr rr r r rr r r r r r r r
r mar. stat. age pos. in hh

v 1 0 0 0 1 0 1 0 0

a(1) 1 0 0 0 1 0 1 1 1

a(2) 0 1 1 1 1 1 1 0 0

Root node, w = 0,

where v is the boolean representation of the record, and a(1) and a(2) are the

boolean representations of e(1) and e(2) respectively. The weight w counts the

number of variables that are assumed to be incorrect, which at the root node

is zero.

The tree is traversed in depth-first fashion. In the first step, we substitute

married in marital status, yielding

HH��
AA AA�� ��

�� �� �� ��BB BB BB BB

rr rr r r rr r r r r r r r
r��r v 1 1 0 1 0 0

a(1) 1 1 0 1 1 1
Subst. mar. stat., w = 0.

Here, a(2) is removed, since it has no meaning for v anymore. The positions for

the categories unmarried, widowed and divorced are left empty here to signify

that the datamodel has a fixed marital status now. The dark part of the tree

on the left shows which nodes have been treated. Continuing we find
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HH��
AA AA�� ��

�� �� �� ��BB BB BB BB

rr rr r r rr r r r r r r r
r��r

��r v 1 1 1 0 0

a(1) 1 1 1 1 1
Subst. age., w = 0.

At this point we have fixed the value for marital status and age. It can be

seen from the value of a(1) for position in household that no matter what value

is chosen for that field in v, the resulting record will always fall in a(1). This

shows that this path will never lead to a valid solution. We therefore prune the

tree here, go up one node and turn right.

HH��
AA AA�� ��

�� �� �� ��BB BB BB BB

rr rr r r rr r r r r r r r
r��r

��r− AAr v 1 1 0 0
Elim. age, w = 1.

Eliminating the age variable yields an empty edit set. We may continue down

and substitute the value spouse for position in household.

HH��
AA AA�� ��

�� �� �� ��BB BB BB BB

rr rr r r rr r r r r r r r
r��r

��r− AAr
��r v 1 1

Subst. hh. pos., w = 1.

This yields the first solution: only the age variable needs to be changed. In

search for more solutions, we move up the tree and try to eliminate position in

household. However, since eliminating position in household would increase the

weight to 2 we will prune the tree at this point. Moving up to the root node

and eliminating marital status gives

HH��
AA AA�� ��

�� �� �� ��BB BB BB BB

rr rr r r rr r r r r r r r
r��r

��r− AAr
��r
HHr v 1 0 1 0 0

a(3) 1 1 1 1 1 0 1 0 0
Elim. mar. stat., w = 1.

where a(3) is the derived edit. It is interpreted as the rule that under-aged

people cannot be a partner in the household (no matter what the value of

marital status is). Creating the next child node by substituting age, we get

HH��
AA AA�� ��

�� �� �� ��BB BB BB BB

rr rr r r rr r r r r r r r
r��r

��r− AAr
��r
HHr
��r v 1 1 0 0

a(3) 1 1 1 1 1 1 0 0
Subst. age, w = 1.

Going down the tree and substituting position in household yields

HH��
AA AA�� ��

�� �� �� ��BB BB BB BB

rr rr r r rr r r r r r r r
r

��r
��r− AAr
��rAAr��r
HHr
��r
��r v 1 1

a(3) 1 1 1 1 1 1
Subst. hh. pos., w = 1.

However, whatever value we would choose for marital status, it would always

result in an erroneous record since a(3) has true on all categories of that vari-

able. Therefore, we go up one step in the tree. Eliminating position in house-

hold would increase the weight to 2, but since we already found a solution with
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weight equal to 1, this path need not be followed. We go up another node and

bound on the fact that eliminating age would yield the same problem. The final

tree may be represented as follows:

HH��
AA AA�� ��

�� �� �� ��BB BB BB BB

rr rr r r rr r r r r r r r
r��r

��r− AAr
��r
HHr
��r
��r− .

Here, every evaluated node is colored black, and a node is crossed when a bound

condition was encountered. The only (minimal) solution created is represented

by the path substitute marital status → eliminate age → substitute position

in household. This corresponds to the solution where age has to be altered to

fix the record, and indeed changing age from under-aged to adult in Eq. (17)

will make the record fully valid. Note that the branch-and-bound algorithm

reduced the number of nodes to be evaluated from 15 to 8 in this example.

4.2 Error localization with localizeErrors

The function localizeErrors applies the branch-and-bound algorithm to deter-

mine the minimal weight error location for every record in a data.frame. The

columns may be in character or factor format. The function has an identical

interface for numerical data under linear edits and categorical data under cat-

egorical edits. It is implemented as an S3 generic function, accepting either an

editmatrix or an editarray as the first argument and a data.frame as the second

argument. Further arguments are a vector of variable weights, a maximum

search time (in seconds) to spend on a single record, a maximum weight and

the maximum number of variables which may be changed. The latter two ar-

guments introduce extra bound conditions in the branch-and-bound algorithm.

Even when variables are weighted, the solution to the error localization problem

may not be unique. In those cases localizeErrors will draw uniformly from the

set of lowest-weight solutions. The degeneracy (number of equivalent solutions

found) is reported in the output.

The result of a call to localizeErrors is an object of class errorLocation. It contains

a boolean matrix with error locations for each record as well as a status report

containing degeneracies, solution weights run times and whether the maximum

runtime was exceeded. It also contains a timestamp (in the form of a Date

object) and the name of the user running R. Table 2 gives an overview of the

slots involved.

In Figure 2 an example of the use of localizeErrors is given. The data model and

rules are as in subsection 4.1. The records are given by
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> E <- editarray(c(

+ "age %in% c('under-aged','adult')",

+ "maritalStatus %in% c('unmarried','married','widowed','divorced')",

+ "positionInHousehold %in% c('spouse', 'child', 'other')",

+ "if( age == 'under-aged' ) maritalStatus == 'unmarried'",

+ "if(positionInHousehold == 'spouse') maritalStatus == 'married'"

+ )

+ )

> (dat <- data.frame(

+ maritalStatus=c('married','unmarried','widowed' ),

+ age = c('under-aged','adult','adult' ),

+ positionInHousehold=c('child','spouse','other')

+ ))

maritalStatus age positionInHousehold

1 married under-aged child

2 unmarried adult spouse

3 widowed adult other

> set.seed(1)

> localizeErrors(E,dat)

Object of class 'errorLocation' generated at Mon Nov 28 11:28:18 2011

call : localizeErrors(E, dat)

slots: $adapt $status $call $user $timestamp

Values to adapt:

adapt

record maritalStatus age positionInHousehold

1 FALSE TRUE FALSE

2 FALSE FALSE TRUE

3 FALSE FALSE FALSE

Status:

weight degeneracy user system elapsed maxDurationExceeded

1 1 2 0.008 0 0.007 FALSE

2 1 2 0.008 0 0.008 FALSE

3 0 1 0.004 0 0.002 FALSE

Figure 2: Localizing errors in a data.frame of records. The data model is as

defined in Eqs. (3)-(5). The randseed is set before calling localizeErrors to make

results reproducible. The third record has degeneracy 2, which means that the

chosen solution was drawn uniformly from two equivalent solutions with weight

1.
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Table 2. Slots in the errorLocation object
Slot description.

$adapt boolean array, stating which variables must be adapted for each

record.

$status A data.frame, giving solution weights, number of equivalent so-

lutions, timings and whether the maximum search time was

exceeded.

$user Name of user running R during the error localization

$timestamp date() at the end of the run.

$call The call to localizeErrors

maritalStatus age positionInHousehold

1 married under-aged child

2 unmarried adult spouse

3 widowed adult other

Clearly, the first and third record disobey at least one rule while the second

record is valid. The first record can be repaired by adapting age and the second

record can be made consistent by changing either position in household or mari-

tal status. In the latter case, both solutions have equal weight and localizeErrors

has drawn one solution.

4.3 Error localization with errorLocalizer

The function errorLocalizer gives more control over the error localization process

since it allows to parameterize the search separately for each record. This can

be useful, for example when reliability weights are calculated for each record.

Since errorLocalizer is described extensively in De Jonge and Van der Loo (2011),

here we just discuss the example shown in Figure 3.

The data model and edits are defined in Eqs. (3)-(5). For errorLocalizer, a record

must be offered as a named character vector. A call to errorLocalizer generates

a backtracker object which contains all information necessary to start searching

the binary tree. After calling $searchNext() the weight and first found solution

are returned, while the backtracker object stores some meta-information about

the process, most significantly the duration of the search. The parameter $max-

DurationExceeded indicates whether a solution was found within the maximum

time allowed for the search. A second call yields an equivalent solution and the

third call returns NULL, indicating that all minimal weight solutions have been

found. Finally, we note that with $searchAll(), all solutions encountered during

the branch-and-bound procedure are returned.
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> record <- c(

+ age = 'under-aged',

+ maritalStatus='married',

+ positionInHousehold='child'

+ )

> el <- errorLocalizer(E,record)

> el$searchNext()

$w

[1] 1

$adapt

age maritalStatus positionInHousehold

FALSE TRUE FALSE

> el$duration

user system elapsed

0.000 0.000 0.003

> el$maxdurationExceeded

[1] FALSE

> el$searchNext()

$w

[1] 1

$adapt

age maritalStatus positionInHousehold

TRUE FALSE FALSE

> el$searchNext()

NULL

Figure 3: Finding errors with errorLocalizer. The data model and edits in E

are as in Figure 2.

23



5 Conclusions

This paper describes the theory and implementation of categorical edit manip-

ulation in R package editrules. Categorical restrictions may be defined textually

in standard R syntax. Edits can be manipulated by variable elimination and

value substitution. Many other functionalities such as feasibility checks, block

detection and redundancy removal are implemented as well. Moreover, the

package offers functionality to check records against rules and can determine

the location of errors based on the generalized principle of Fellegi and Holt.

Future work will include performance enhancements of error localization by

restating the problem as a mixed-integer problem, the treatment of mixed data

and handling interdependent edits.
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