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Abstract

Moult is the process by which birds replace their feathers. It is a costly process in terms of energy
and reduced flight ability but necessary for the maintenance of the plumage and its functions. Because
birds generally avoid to moult while engaged with other energy demanding activities such as breeding
and migration, the analysis of moult data gives insight into how birds fit this life stage into the annual
cycle, on time constraints in the annual cycle, and on the effects of environmental variables on the timing
of moult. The analysis of moult data requires non-standard statistical techniques. More than 20 years
ago Underhill and Zucchini developed a likelihood approach for estimating duration, mean start date
and variation in start date of a population of moulting birds. However, use of these models has been
limited, mainly due to the lack of user-friendly software. The moult package for R implements the
Underhill-Zucchini models, allowing the user to specify moult models in a regression type formula. In
addition the functions allow the moult parameters (duration, and mean and variation in start date) to
depend on explanatory variables. We here describe the package, give a brief summary of the theory and
illustrate the models on two datasets included in the package.

Introduction

Many bird ringers collect data on the progression of moult. Moult data can provide insights into the energy
allocation under time constraints involved in the annual cycle of different bird populations, and these data
are relatively easy to collect compared to the timing of breeding and migration (Newton 2009). However, the
analysis of moult data has been slowed initially by the lack of appropriate statistical methods to analyse
these, and after Underhill and Zucchini (1988) developed their likelihood models (referred to as UZ models
henceforth), by the lack of software that could run these models in a convenient user-friendly way.

Here we show how to fit the UZ moult models using the R package moult, available from the Comprehensive
R Archive Network (CRAN) at http://cran.r-project.org/package=moult. We briefly summarise the theory
underlying the moult models as developed by Underhill and Zucchini (1988) and extended in Underhill et al.
(1990). We describe the implementation in R (R Core Team 2017) and illustrate the use of the models using
some examples.

Moult data

The standard accepted method of collecting moult data on primary feathers is to score each primary feather
as 0 (old), 5 (new), or scores 1 to 4 for intermediate stages of feather development (Ginn and Melville 1983).
These individual moult scores (collected for either nine, ten or, rarely, 11 primaries, depending on the species)
are then summed to give an overall moult score between 0 and 45 (for 9 primaries) or between 0 and 50 (for
10 primaries).

The aim of analysing moult data is to understand the timing of moult, so that the parameters of interest are
the start and duration of moult, and a measure of the within-population variation in start date.

Fitting simple linear regression models to moult data is not appropriate (Pimm 1976; Summers, Swann,
and Nicoll 1983; Underhill 1985; Underhill and Zucchini 1988); they give biased estimates for the start
and duration of moult. Underhill and Zucchini (1988) developed models that specifically address the issues
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Figure 1: Illustration of UZ model assumptions and parameters. With a constant rate of change in moult
index, the individual indicated by the solid line has completed a proportion y of its moult at time t and thus
must have started moult at time t − yτ , where τ is the duration of moult = 1/slope of line. The individual
indicated by the dotted line has completed moult at time t, thus its starting time T1 must have been prior to
t − τ .

of moult data using a likelihood approach. The main issue is that moult has three clearly defined stages
(pre-moult, in moult, post-moult), so that moult scores cannot be assumed to be normally distributed.

The Underhill and Zucchini (UZ) moult models

The UZ models use four key assumptions to construct a likelihood for the moult data. The assumptions are
as follows. 1) The moult index increases linearly over time, i.e. a constant rate of change in moult index, for
each individual (Figure 1). This moult index can be the original sum of moult scores, or some transformation
of these to make the index linear. For example, for waders Summers et al. (1983) proposed using ‘proportion
of feather mass grown’ assuming that feather mass is produced at a constant rate. It is convenient to scale
this index to range from 0 to 1. 2) The duration of moult, and hence the rate of change in moult index, is the
same for every individual. Modelling the duration of moult as a function of covariates allows us to relax this
assumption. 3) Date of start of moult of individuals is normally distributed about a population mean start
date. Assumption (3) could be changed, for example to Gamma, however this has not been implemented in
package moult so far. 4) The individual observations are independent.

Figure 1 shows the hypothetical trajectories of two individuals. If both individuals were caught at time t, the
green individual (dotted line) has completed moult and will have moult index = 1; the blue individual is in
moult with observed moult index y. Of interest is the time at which these individuals have started, T1 and
T2 say, respectively, and their duration of moult (τ for both). To model moult in the population, we assume
that for individual i starting date Ti ∼ N(µ, σ2), with µ and σ the mean start date and standard deviation
in start date, respectively, for the population.

Given the above model for start and duration of moult, it is then possible to calculate the probability for
individual i to have a moult index yi at time ti:

Pr(yi) = Pr(Ti = ti − yiτ)
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In other words, the probability that the individual has started moult at time Ti = ti − yiτ . The probability
of moult index yi at time ti is approximated by the normal density f(ti − yiτ |µ, σ2). In newer versions of
the moult package, this probability is not approximated by the density anymore, but, more correctly, by
the integral

∫ yi+e

yi−e
ti − yiτdyi, where e represents the precision of the moult indices, with default 0.02. The

probabilities for all individuals are combined into a likelihood, and parameters µ, τ and σ2 are estimated by
maximising this likelihood. For a more detailed description of the UZ models we refer the reader to Underhill
and Zucchini (1988).

Explanatory variables

As in other statistical models it is often of interest to see how parameters change as functions of covariates.
For example, the duration of moult could depend on the distance a population needs to migrate, as the time
spent on migration restricts the time left for other activities (Newton 2009). Another example would be
different mean start dates for different geographical populations of a species.

Previously, software for the UZ models did not include the option of modelling parameters as functions of
explanatory variables, or did so only in a limited way (Underhill, Serra, and Brandao 2008). The moult

package allows the three parameters µ, τ and σ to be modelled as functions of explanatory variables. There
is a restriction: σ can be modelled as a function of only a single categorical variable, resulting in a different
variance estimate for each group specified by the categorical variable; no continuous covariates are currently
allowed for σ.

Fitting moult models in R

The UZ moult models can be fitted with the function moult(). This function was designed to be similar in
structure to the standard regression type functions in R (such as lm() and glm()). In particular, we obtained
many ideas for coding from the hurdle() function in package pscl (Zeileis, Kleiber, and Jackman 2008).
The call to moult has the following structure:

moult(formula, data, start = NULL, type = 2)

Only the formula argument is required, the others are optional, with default values if not specified. formula

can have five parts, of which the first two (moult.index and days) must always be provided:

moult.index ~ days | x1 + x2 | y1 + y2 | z1

On the left-hand-side of the ∼ the vector of moult indices (between 0 and 1, one for each individual) is given,
the first part after the ∼ requires a vector of corresponding days on which these individuals were observed
(number of days since, e.g., 1 July). The remaining three parts are optional, but are used to model any of the
three parameters as functions of covariates. Their order is important: the first part specifies the covariates for
the duration of moult, the second part covariates for the mean start date of moult, and the third a covariate
for the standard deviation in start date. These covariates can overlap, and quadratic terms, interactions,
etc. can be added to either part, using the standard R notation for model formulae (Chambers and Hastie
1992).

This is best demonstrated by a few examples. Taking colony to be a hypothetical (categorical) covariate,
assuming that observations came from individuals caught in two or more different colonies, we can fit the
following models.

m1 <- moult(m.index ~ days)

m2 <- moult(m.index ~ days | colony)

m3 <- moult(m.index ~ days | 1 | colony)

m4 <- moult(m.index ~ days | colony | colony)

m5 <- moult(m.index ~ days | colony | colony | colony)
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In m1 duration, mean start date and standard deviation in start date are assumed the same for all colonies;
in m2 only duration differs between colonies, while start dates are assumed equal for all colonies; in m3 only
mean start date differs between colonies; in m4 a different start date and a different duration are estimated
for each colony; in m5 all three parameters are assumed to differ between colonies. Similar covariates such as
sex or year, could be used, or continuous covariates such as average temperature or total rainfall during the
breeding season. The covariate for the standard deviation in start date of moult is restricted to be a single
categorical variable.

Starting values for parameter estimation can be specified through the start argument. If not specified
moult() will calculate its own starting values by using regression models of time on moult index.

The type argument allows the specification of different types of moult data as defined by Underhill and
Zucchini (1988) and Underhill et al. (1990). The data type should depend on which stages of moult were
representatively sampled. For type 1 and type 2 data it is required that pre-moult, in-moult and post-moult
individuals are all equally likely to have been sampled, i.e. sampling probability is independent of moult stage;
type 2 data requires the moult scores, type 1 only the categories pre-moult, in moult, post-moult. Type 3
data requires only that individuals in moult are a representative sample of the population. For type 4 data
the sample must be representative of the part of the population in moult and post-moult, and for type 5 of
the part of the population pre-moult and in moult (Underhill, Zucchini, and Summers 1990).

moult() constructs the likelihood and makes a call to R’s optim() function to maximise the log-likelihood,
using optim‘s ‘BFGS’ algorithm.

Examples

Sanderlings

The sanderlings data (Underhill and Zucchini 1988) are included with the moult package (Figure 2). The
moult scores in MIndex are proportions of feather mass grown. Day contains the number of days since July 1.

library("moult")

head(sanderlings)

R> Day MIndex

R> 1 117 0.000

R> 2 117 0.000

R> 3 117 0.000

R> 4 117 0.000

R> 5 117 0.000

R> 6 117 0.011

pdf("sanderling1.pdf")

plot(MIndex ~ Day, data = sanderlings, pch = 19,

xlab = "days since July 1", las = 1,

ylab = "proportion of feather mass grown")

dev.off()

To demonstrate the moult() function, we will fit three models, one for each of the data types 1 to 3 (see
Section 5). Even though the sanderlings data contains individuals not in moult, depending on type,
the function will discard non-moulting individuals (type 3) or the actual moult scores, only keeping the
information pre-moult',in moult’, or ‘post-moult’ (type 1).

m1 <- moult(MIndex ~ Day, data = sanderlings, type = 1)

m2 <- moult(MIndex ~ Day, data = sanderlings)

summary(m2)
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Figure 2: Sanderling moult scores versus time.
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R>

R> Call:

R> moult(formula = MIndex ~ Day, data = sanderlings)

R>

R>

R> Duration coefficients:

R> Estimate Std. Error

R> intercept.1 96.08 6.902

R>

R> Mean start date coefficients:

R> Estimate Std. Error

R> intercept 131.4 2.096

R>

R> Coefficients for standard deviation in start date:

R> Estimate Std. Error

R> (Intercept) 19.18 6.169

R>

R> Log-likelihood: -255 on 3 Df

m3 <- moult(MIndex ~ Day, data = sanderlings, type = 3)

summary(m3)

R>

R> Call:

R> moult(formula = MIndex ~ Day, data = sanderlings, type = 3)

R>

R>

R> Duration coefficients:

R> Estimate Std. Error

R> intercept.1 99.44 18.53

R>

R> Mean start date coefficients:

R> Estimate Std. Error

R> intercept 126.4 8.817

R>

R> Coefficients for standard deviation in start date:

R> Estimate Std. Error

R> (Intercept) 17.46 6.187

R>

R> Log-likelihood: -151.6 on 3 Df

Estimates obtained for m3 differ only slightly from those in Underhill and Zucchini (1988); the value obtained
for the log-likelihood is different to that in Underhill and Zucchini (1988) because we don’t approximate
the probabilities of individual observations by densities, but use an integral to approximate the probability
of observations. The log-likelihood values in the outputs from models m1, m2 and m3 are not comparable,
because different subsets or transformations of the observations (moult indices) were used in these three
models.

In model m2 mean start date was estimated as day number 131.4 (1 = 1 July). We can convert this to a date
as follows.

format(as.Date(coef(m2, "mean"), origin = "2012-06-30"), "%d %b")

R> intercept

R> "08 Nov"
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To obtain the intercept and slope for the moult trajectory line for a given duration and start date (Figure 1)
we write a function which converts duration and mean start date to intercept and slope:

durationmean2ab <- function(duration, mean)

{ ab <- c(- mean / duration, 1 / duration)

names(ab) <- c("intercept", "slope")

return(ab)

}

uz1 <- durationmean2ab(coef(m1, "duration"), coef(m1, "mean"))

The last line calculates slope and intercept of the moult trajectory line for an individual starting moult on
the mean start date estimated in model m1 (Figure 3).

Fitted values and predictions

predict() can be used on a moult object to predict the population average moult score on a specified day, a
frequency table of number of birds at different stages of moult, or the probability of being in a specified stage
of moult on a specified day. Moult stages can be categorised into intervals, e.g., pre-moult (moult index 0),
moult index between 0 and 0.1, between 0.1 and 0.2, . . . . The interval length can be changed through the
intervals argument in the predict function.

In the following code we predict, according to model m2, for each observation day the number of birds out of
those observed that should be in moult stages 0, (0, 0.25), [0.25, 0.5), [0.5, 0.75), [0.75, 1), 1.

day <- unique(sanderlings$Day)

p1 <- predict(m2, newdata = data.frame(day), intervals = 0.25)

nn <- as.numeric(table(sanderlings$Day))

p1$M * nn

R> 0 0 - 0.25 0.25 - 0.5 0.5 - 0.75 0.75 - 1 1

R> 117 4.638 1.224 0.132 0.006 0.000 0.000

R> 127 79.650 45.900 8.910 0.405 0.000 0.000

R> 152 0.141 0.429 0.353 0.073 0.004 0.000

R> 166 0.036 0.255 0.468 0.217 0.025 0.001

R> 184 0.003 0.065 0.338 0.439 0.144 0.012

R> 207 0.000 0.032 0.576 2.808 3.448 1.144

R> 238 0.000 0.000 0.001 0.035 0.256 0.709

R> 264 0.000 0.000 0.000 0.001 0.028 0.972

R> 269 0.000 0.000 0.000 0.000 0.045 2.955

R> 294 0.000 0.000 0.000 0.000 0.000 5.000

R> 302 0.000 0.000 0.000 0.000 0.000 2.000

The argument newdata in predict() must contain one column for dates, and one for each explanatory
variable used in the model. In this case predict will return estimated probabilities for any bird being in
moult stage i on the given day; rows sum to one. When multiplied by the number of birds observed on the
particular day (nn here), the expected number of birds in each moult stage on that day is obtained (see Table
6 in Underhill and Zucchini 1988). If the argument newdata is not supplied, predict will return estimates of
the expected moult score for each of the observed dates.

days2 <- seq(70, 310, by = 10)

p2 <- predict(m2, newdata = data.frame(days2))

p2$M * 100

The above code predicts the proportion of birds in each moult stage for days 70 to 310 (multiplied by 100 to
obtain percentages) (see Table 7 in Underhill and Zucchini 1988). See Section 6.3 for obtaining predictions
with covariates.

7



Probit analysis

Rothery and Newton (2002) realised that one could obtain estimates for mean start date and standard
deviation using a probit model (a generalized linear model with a binomial distribution and a probit link
function), referred to as the RN method henceforth. The distributional assumptions (normality) for the
start of moult are equivalent in the UZ and RN models. What differs in the RN method is that a second
probit analysis is required for the finishing date, but no assumptions are made about the functional form of
change in moult index. Thus in the RN method it is possible to obtain starting and finishing distributions
with different standard deviations. Average moult duration is estimated as the difference between mean
finishing and mean start dates. The RN method uses the same data twice, once to estimate the start and
once to estimate the end of moult. Development of the RN model was probably in part motivated by the lack
of user-friendly software for fitting UZ models since they are conceptually similar to the UZ type 1 model.
Below we demonstrate how the RN probit models can be fitted using R for the sanderlings data.

To estimate mean start date in the probit model, the moult scores are transformed to a binary variable with
categories have not started moult' (0), andhave started moult’ (1). Individuals with completed moult
are scored as 1. Then a probit model is fitted to these scores.

sanderlings$started <- ifelse (sanderlings$MIndex > 0, 1, 0)

m.start <- glm(started ~ Day, family = binomial(link = "probit"),

data = sanderlings)

R> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

summary(m.start)

R>

R> Call:

R> glm(formula = started ~ Day, family = binomial(link = "probit"),

R> data = sanderlings)

R>

R> Deviance Residuals:

R> Min 1Q Median 3Q Max

R> -1.0253 -1.0253 -0.5637 1.3376 1.9586

R>

R> Coefficients:

R> Estimate Std. Error z value Pr(>|z|)

R> (Intercept) -10.63391 6.47880 -1.641 0.101

R> Day 0.08192 0.05110 1.603 0.109

R>

R> (Dispersion parameter for binomial family taken to be 1)

R>

R> Null deviance: 227.13 on 163 degrees of freedom

R> Residual deviance: 187.99 on 162 degrees of freedom

R> AIC: 191.99

R>

R> Number of Fisher Scoring iterations: 10

This probit model models the probability of having started moult as a function of time (Day here). glm

issues a warning message here as a result of ‘Day’ being able to predict the response (started or not) almost
perfectly (see, Venables and Ripley 2002, e.g. pg. 197), but is not serious here. The slope and intercept
obtained have to be transformed as follows to obtain mean and standard deviation estimates for the start of
moult (Rothery and Newton 2002).

cfs <- as.numeric(coef(m.start))

sigma.hat1 <- 1 / cfs[2]

mu.hat1 <- - cfs[1] / cfs[2]
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c(mu.hat1, sigma.hat1)

R> [1] 129.8156 12.2077

format(as.Date(mu.hat1, origin = "2012-06-30"), "%d %b")

R> [1] "06 Nov"

To estimate mean and standard deviation for date of completion of moult the above is repeated but now
moult scores are transformed to 1 if moult is completed, and 0 otherwise.

sanderlings$finished <- ifelse (sanderlings$MIndex < 1, 0, 1)

m.end <- glm(finished ~ Day, family = binomial(link = "probit"),

data = sanderlings)

cfs <- as.numeric(coef(m.end))

sigma.hat2 <- 1 / cfs[2]

mu.hat2 <- - cfs[1] / cfs[2]

duration <- mu.hat2 - mu.hat1

c(duration, mu.hat2, sigma.hat2)

R> [1] 100.57376 230.38933 29.73703

format(as.Date(mu.hat2, origin = "2012-06-30"), "%d %b")

R> [1] "15 Feb"

nr1 <- durationmean2ab(duration, mu.hat1)

The last line above calculates the intercept and slope of the average moult trajectory.

Mean start date and mean completion date can also be estimated with a single model. This, however, requires
the assumption of equal standard deviations in starting and finishing dates, and an additional indicator
variable is required (x here), indicating whether we are considering starting date or finishing date.

scores <- c(sanderlings$started, sanderlings$finished)

x <- c(rep(0, times = length(sanderlings$started)),

rep(1, times = length(sanderlings$finished)))

ddays <- rep(sanderlings$Day, times = 2)

m.both <- glm(scores ~ ddays + x, family = binomial(link = "probit"))

summary(m.both)

R>

R> Call:

R> glm(formula = scores ~ ddays + x, family = binomial(link = "probit"))

R>

R> Deviance Residuals:

R> Min 1Q Median 3Q Max

R> -2.15506 -0.79254 -0.01047 0.00065 1.80419

R>

R> Coefficients:

R> Estimate Std. Error z value Pr(>|z|)

R> (Intercept) -5.021635 1.269464 -3.956 7.63e-05

R> ddays 0.037670 0.009944 3.788 0.000152

R> x -3.630548 1.035830 -3.505 0.000457

R>

R> (Dispersion parameter for binomial family taken to be 1)

9



R>

R> Null deviance: 389.28 on 327 degrees of freedom

R> Residual deviance: 204.51 on 325 degrees of freedom

R> AIC: 210.51

R>

R> Number of Fisher Scoring iterations: 9

cfs <- as.numeric(coef(m.both))

sigma.hat <- 1 / cfs[2]

mu.hat <- - cfs[1] / cfs[2]

mean.finish <- - (cfs[1] + cfs[3]) / cfs[2]

duration <- - cfs[3] / cfs[2]

c(duration, mu.hat, mean.finish, sigma.hat)

R> [1] 96.37801 133.30638 229.68439 26.54641

format(as.Date(c(mu.hat, mean.finish), origin = "2012-06-30"), "%d %b")

R> [1] "10 Nov" "14 Feb"

nr2 <- durationmean2ab(duration, mu.hat)

pdf("probitplots.pdf")

plot(MIndex ~ Day, data = sanderlings, pch = 16, cex = 0.5,

xlab = "days since July 1", ylab = "moult index (PFMG)")

abline(uz1, lwd = 2, col = "grey")

abline(nr1, lty = 2, lwd = 2)

abline(nr2, lty = 3, col = "red", lwd = 3)

legend(220, 0.3, lty = c(1, 2, 3), lwd = c(2, 2, 3),

col = c("grey", "black", "red"), bty = "n",

legend = c("UZ type 1", "NR separate", "NR combined"))

dev.off()

Because the NR method duplicates the data, the analysis is based on 2n non-independent data points. The
log-likelihood of the RN2 model and that of the UZ1 model are therefore not comparable. Figure 3 compares
estimates for timing and duration of moult obtained from the 2 NR models and the UZ model with type 1
data. UZ1 and NR2 give the same estimates. NR1 (with separate estimates for start and finish) estimates
start of moult to be slightly earlier, and duration slightly longer.

Weavers

Moult in South African weavers has been intensely studied by Oschadleus (2005). To demonstrate the use of
covariates in moult models, the moult package includes a dataset on Southern Masked Weavers (Ploceus

velatus), all caught in the Western Cape province of South Africa. In the Western Cape this species starts
to breed during late winter, with the main breeding season starting only once the large cold fronts, typical
for winter in this Mediterranean climate, have stopped. Like many other species it begins moult only after
breeding has been completed. Here we will investigate the effect of September (southern hemisphere spring)
rainfall on the timing of moult, assuming that total September rainfall (mm) can be taken as a measure of
breeding suitability, predicting later start of moult with more September rain. The data contains observations
from years 1988 to 2005, and from adult birds only.
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Figure 3: Observed moult scores (converted to ‘proportion of feather mass grown’) in sanderlings versus date.
The lines represent estimated moult trajectories of a bird starting to moult on the mean start date using
various models: UZ type 1 (solid grey line), NR with separate analyses for start and completion (dashed
black line), and NR with combined analysis for start and completion (dotted red line, on top of grey line).
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Preliminaries

In R reading in and converting from raw individual-feather moult scores can be tricky. If the moult scores
for all primary feathers are kept as a single character string (e.g., of the form 5444320000), one can ensure
that the column of moult scores is read in as a character vector by using the argument colClasses in
read.table(). R might otherwise convert these to scientific notation or eliminate leading zeroes.

We first convert from individual feather scores to the “proportion of feather mass grown” using function
ms2pfmg(). The proportion of feather mass grown is calculated by summing, over all feathers, the product of
the proportion of feather grown and the relative mass of the feather (Underhill and Zucchini 1988). Individual
feather masses for Southern Masked Weavers are given below (Craig et al. 2001). We use moult scores from
the first nine primaries because the tenth is very small in this species. date2days converts dates to days
since 1 August (= day 1). This startmonth is generally chosen as one in which no birds are in active moult.

data("weavers")

head(weavers)

R> RDate Sex Year Moult

R> 1 1999-07-24 2 1999 5555555555

R> 2 1999-07-24 1 1999 5555555555

R> 3 2000-05-19 1 2000 5555555555

R> 4 2002-10-21 1 2002 5555555555

R> 5 2003-11-19 2 2003 5555555555

R> 6 2004-12-03 4 2004 5555555555

if (is.numeric(weavers$Moult)) {

scores <- format(weavers$Moult, scientific = FALSE, trim = TRUE)

} else {

scores <- weavers$Moult

}

mscores <- substr(scores, 1, 9)

feather.mass <- c(10.4, 10.8, 11.5, 12.8, 14.4, 15.6, 16.3, 15.7, 15.7)

weavers$pfmg <- ms2pfmg(mscores, feather.mass)

## convert to days since 1 Aug, if earlier, convert to

## number of days since previous 1 Aug

weavers$day <-

ifelse(as.Date(weavers$RDate) < as.Date(paste(weavers$Year, "-08-01", sep = "")),

as.Date(weavers$RDate) - as.Date(paste(weavers$Year - 1, "-07-31", sep = "")),

as.Date(weavers$RDate) - as.Date(paste(weavers$Year, "-07-31", sep = "")))

## same, but date2days will be removed from future version

weavers$day <- date2days(weavers$RDate, dateformat = "yyyy-mm-dd",

startmonth = 8)

Two simple models

In many moult data sets individuals coded with all new feathers and/or all old feathers appear throughout
the year. This is also the case in our weaver data set (Figure 4). It becomes impossible to obtain a sensible
estimate for the standard deviation in start of moult (see output from model weav.t2 below). To avoid this
problem, one could change all 55555555 at the start to 000000000, and all 000000000 at the end to 555555555
(moult complete). In practice, it can be difficult to decide how close to the moult period this adjustment
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should be made. When the ratio of non-moulting birds compared to moulting birds is higher than expected,
sub-sampling of non-moulting birds can improve estimates [Bonnevie (2010)}. Here, we will only consider
birds actively moulting (data type 3).

## type 2 data

weav.t2 <- moult(pfmg ~ day, data = weavers)

summary(weav.t2)

R>

R> Call:

R> moult(formula = pfmg ~ day, data = weavers)

R>

R>

R> Duration coefficients:

R> Estimate Std. Error

R> intercept.1 83.46 2.971

R>

R> Mean start date coefficients:

R> Estimate Std. Error

R> intercept 181.5 2.839

R>

R> Coefficients for standard deviation in start date:

R> Estimate Std. Error

R> (Intercept) 146.7 23.05

R>

R> Log-likelihood: -7460 on 3 Df

## type 3 data

weav.t3 <- moult(pfmg ~ day, data = weavers, type = 3)

summary(weav.t3)

R>

R> Call:

R> moult(formula = pfmg ~ day, data = weavers, type = 3)

R>

R>

R> Duration coefficients:

R> Estimate Std. Error

R> intercept.1 84.48 11.95

R>

R> Mean start date coefficients:

R> Estimate Std. Error

R> intercept 152.7 6.427

R>

R> Coefficients for standard deviation in start date:

R> Estimate Std. Error

R> (Intercept) 31.88 8.326

R>

R> Log-likelihood: -2675 on 3 Df

## mean moult trajectory

traj.t3 <- durationmean2ab(coef(weav.t3, "duration"), coef(weav.t3, "mean"))
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Start and duration depend on sex

We now fit a model where we let start and duration of moult depend on sex.

ssex <- ifelse(weavers$Sex == 1 | weavers$Sex == 3, 'male',

ifelse(weavers$Sex == 2 | weavers$Sex == 4, 'female', NA))

weavers$ssex <- as.factor(ssex)

weav.mf <- moult(pfmg ~ day | ssex | ssex, data = weavers, type = 3)

summary(weav.mf)

R>

R> Call:

R> moult(formula = pfmg ~ day | ssex | ssex, data = weavers, type = 3)

R>

R>

R> Duration coefficients:

R> Estimate Std. Error

R> intercept.1 54.78 10.862

R> ssexmale 34.94 9.164

R>

R> Mean start date coefficients:

R> Estimate Std. Error

R> intercept 161.39 6.183

R> ssexmale -10.67 5.802

R>

R> Coefficients for standard deviation in start date:

R> Estimate Std. Error

R> (Intercept) 29.4 7.897

R>

R> Log-likelihood: -2411 on 5 Df

The coefficient ssexmale is an estimate of the difference between males and females, for both, duration and
mean start date. Thus males seem to take longer to moult but start earlier (Figure 4). Underhill and Zucchini
(1988) have noted that, especially for type 3 models, start and duration estimates are often highly negatively
correlated.

## females

fstart <- coef(weav.mf, "mean")[1]

fduration <- coef(weav.mf, "duration")[1]

female.traj <- durationmean2ab(fduration, fstart)

## males

mstart <- sum(coef(weav.mf, "mean")[1:2])

mduration <- sum(coef(weav.mf, "duration")[1:2])

male.traj <- durationmean2ab(mduration, mstart)

pdf("weaverplot2.pdf")

plot(pfmg ~ day, pch = 16, cex = 0.5, xlab = "days since August 1",

ylab = "proportion of feather mass grown", las = 1, col = "grey",

data = weavers)

abline(traj.t3, lwd = 2)

abline(male.traj, col = "blue", lty = 2, lwd = 3)

abline(female.traj, col = "red", lty = 4, lwd = 3)

legend("bottomright", lty = c(1, 2, 4), lwd = 2, col = c(1, "blue", "red"),
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Figure 4: Observed moult scores (converted to ‘proportion of feather mass grown’) of Southern Masked
Weavers versus date. The lines represent estimated moult trajectories of birds starting at the mean start date
for all birds (solid black line), females (dotted-and-dashed red line), and males (dashed blue line).

legend = c("combined", "males", "females"), bty = "n")

dev.off()

Start of moult depends on year

In the following example, year is defined as a factor, and the (mean) moult start date is allowed to vary
between years, duration of moult is assumed constant.

weavers$year.f <- as.factor(weavers$Year)

m88y <- moult(pfmg ~ day | 1 | year.f, data = weavers, type = 3)

summary(m88y)

R>

R> Call:

R> moult(formula = pfmg ~ day | 1 | year.f, data = weavers, type = 3)

R>

R>

R> Duration coefficients:

R> Estimate Std. Error

R> intercept.1 87.97 11.93

R>

R> Mean start date coefficients:
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R> Estimate Std. Error

R> intercept 147.41804 396.4

R> year.f1989 -28.95514 396.7

R> year.f1990 -23.34579 396.8

R> year.f1991 -15.34127 396.5

R> year.f1992 -5.11460 396.4

R> year.f1993 10.69091 396.4

R> year.f1994 5.53374 396.4

R> year.f1995 6.54268 396.4

R> year.f1996 21.93591 396.6

R> year.f1997 0.57239 396.5

R> year.f1998 10.34152 396.5

R> year.f1999 7.59767 396.4

R> year.f2000 -7.72685 396.4

R> year.f2001 -0.08902 396.4

R> year.f2002 5.46045 396.4

R> year.f2003 -4.37632 396.4

R> year.f2004 4.17356 396.4

R> year.f2005 17.16040 396.5

R>

R> Coefficients for standard deviation in start date:

R> Estimate Std. Error

R> (Intercept) 31.81 8.299

R>

R> Log-likelihood: -2409 on 20 Df

weavers$pfmg[weavers$Year == 1988]

R> [1] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

R> [8] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

R> [15] 0.0000000 0.0000000 0.0000000 0.9840706

With the above model the standard errors for the year effects could not be estimated, hence also the warning
message. The problem seems to be year 1988, which had only a single individual in active moult. We
next remove this year from the data frame. Using data = weavers[weavers$Year > 1988] here leads to
problems, because this results in a factor with unused levels (level 1988), therefore we create a new data
frame weav89.

weav89 <- weavers[weavers$Year >= 1989, ]

weav89$year.f <- as.factor(weav89$Year)

m89y <- moult(pfmg ~ day | 1 | year.f, data = weav89, type = 3)

summary(m89y)

R>

R> Call:

R> moult(formula = pfmg ~ day | 1 | year.f, data = weav89, type = 3)

R>

R>

R> Duration coefficients:

R> Estimate Std. Error

R> intercept.1 87.41 11.98

R>

R> Mean start date coefficients:

R> Estimate Std. Error

R> intercept 128.022 17.26

R> year.f1990 1.392 24.68
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R> year.f1991 5.165 18.85

R> year.f1992 15.112 17.48

R> year.f1993 29.139 17.91

R> year.f1994 25.209 16.88

R> year.f1995 27.274 16.84

R> year.f1996 36.837 23.81

R> year.f1997 19.013 20.10

R> year.f1998 28.330 19.86

R> year.f1999 27.065 18.46

R> year.f2000 10.668 18.50

R> year.f2001 19.334 17.48

R> year.f2002 25.212 17.34

R> year.f2003 15.405 16.91

R> year.f2004 23.129 16.86

R> year.f2005 34.719 18.81

R>

R> Coefficients for standard deviation in start date:

R> Estimate Std. Error

R> (Intercept) 31.65 8.278

R>

R> Log-likelihood: -2409 on 19 Df

The differences in mean starting date between years seem large, however the standard errors are also large.
Therefore it seems that there is no evidence for differences in starting dates between years. The year estimates
are differences (in days) compared to the reference year 1989.

To obtain the fitted values of mean start date of moult for each year, we can use the predict function:

pred.year <- predict(m89y, predict.type = "start",

newdata = data.frame(year.f = as.factor(1989:2005)))

Start of moult depends on rainfall

We now model start of moult as a function of a continuous covariate September rainfall at the Cape Town
Astronomical Observatory (South African Weather Service), first as a linear function, then as a quadratic
function of rainfall.

rainSep <- c(44.8, 110.2, 24.3, 84.4, 73.1, 10.5, 32.4, 3.8, 91.2,

8.1, 27.8, 112.4, 58.7, 111.5, 20, 66.3, 43, 14.5)

weavers$rain <- rainSep[match(weavers$Year, 1988:2005)]

m88r <- moult(pfmg ~ day | 1 | rain, data = weavers, type = 3)

m88r2 <- moult(pfmg ~ day | 1 | rain + I(rain^2), data = weavers, type = 3)

summary(m88r2)

R>

R> Call:

R> moult(formula = pfmg ~ day | 1 | rain + I(rain^2), data = weavers,

R> type = 3)

R>

R>

R> Duration coefficients:

R> Estimate Std. Error

R> intercept.1 86.67 11.98

R>
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R> Mean start date coefficients:

R> Estimate Std. Error

R> intercept 159.161681 7.621

R> rain -0.325919 0.196

R> I(rain^2) 0.001862 0.002

R>

R> Coefficients for standard deviation in start date:

R> Estimate Std. Error

R> (Intercept) 31.74 8.198

R>

R> Log-likelihood: -2416 on 5 Df

Comparing these models using Akaike’s information criterion:

AIC(m88y, weav.t3, m88r, m88r2)

R> df AIC

R> m88y 20 4857.593

R> weav.t3 3 5355.586

R> m88r 4 4840.891

R> m88r2 5 4841.382

weav.mf had many missing observations due to unknown sex, and is thus not included in the AIC comparison.
Out of the remaining models, the AIC selects model weav.t3 (constant start date), which confirms the above
conclusions that there is no clear evidence for differences between years, nor for a relationship between mean
starting date and September rainfall (Figure 5).

pdf("weaverplot1.pdf")

par(mar = c(7, 9, 1, 1), mgp = c(5, 1, 0))

plot(1988:2005, c(NA, pred.year[, 1]), type = "b", lwd = 1, pch = 19,

xlab = "", ylab = "mean start of moult",

ylim = c(70, 210), las = 1, yaxt = "n")

abline(h = coef(weav.t3, "mean"), col = "grey")

upp <- pred.year[, 1] + 1.96 * pred.year[, 2]

lwr <- pred.year[, 1] - 1.96 * pred.year[, 2]

arrows(x0 = 1989:2005, y0 = lwr, y1 = upp, code = 3, angle = 90,

length = 0.05)

ylab <- format(as.Date(seq(70, 210, by = 20), origin = "2012-07-31"), "%d %b")

axis(2, at = seq(70, 210, by = 20), labels = ylab, las = 1)

dev.off()

Discussion

More than 20 years ago Underhill and Zucchini (1988) published an improved method to analyse moult in
birds. These UZ models, and the probit models used by Rothery and Newton (2002), are still considered the
best way to analyse moult. However, easy-to-use software to fit the UZ models was not widely available. The
moult package for R aims to provide all functions required for the analysis of moult data in an easy-to-use
format. Here, we have demonstrated its functionality. In addition to the original moult models published
in Underhill and Zucchini (1988) and Underhill et al. (1990), in moult the duration, mean and standard
deviation of start of moult parameters can be modelled as functions of explanatory variables. This will allow
researchers to ask and answer important ecological questions, and can be seen as a further advantage of the
UZ models: because duration and mean start date (and standard deviation in start date) are the parameters
of the likelihood, it is straightforward to extend the likelihood to model these parameters as functions of
covariates.
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Figure 5: Estimated mean start dates of moult in Southern Masked Weavers, 1988-2005, from model with
year effect (m89y, solid black line), and model with constant mean start date (weav.t3, grey line). Error bars
are 95% confidence intervals.
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The UZ moult models can be sensitive to certain types of data problems. One of these problems is individuals
that start moulting markedly later or earlier than the bulk of the population. Such outliers can result in large
estimates of the standard deviation parameter σ, and may even lead to non-convergence. A second, common,
problem is the presence of zero (not started) or 1 (completed) moult scores throughout the season. In our
experience, for example, with the weaver data in this manuscript, it is not straightforward to choose cut-off
points to decide whether a bird not in moult has all old or all new feathers, and estimates can be sensitive to
these cut-off points. Optimization of the log-likelihood can be sensitive to starting values, especically for
standard deviation estimates, so it is advisable to try different starting values for complex models.

The critical assumption made by the UZ models of constant rate of change in moult index, or a linear increase
in moult index over time, may not hold in reality (Summers, Swann, and Nicoll 1980; Newton and Rothery
2000). This assumption is not required when using the probit model (Rothery and Newton 2002), or the UZ
models with type 1 data. Newton and Rothery (2000) compared the UZ models for data types 1 to 3 and
found that type 1 models gave more accurate estimates of timing and duration of moult, especially when the
linearity assumption was not met. The probit model and the UZ type 1 model are almost identical. The
advantage of the UZ model is that, because start and duration of moult are the parameters being estimated
directly, it is easier to add covariates.
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