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SUMMARY

The sandwich estimator of variance may be used to create robust Wald-type tests from estimating

equations that are sums of K independent or approximately independent terms. For example,

for repeated measures data on K individuals, each term relates to a different individual. These

tests applied to a parameter may have greater than nominal size if either K is small, or more

generally if the parameter to be tested is essentially estimated from a small number of terms in the

estimating equation. We offer some practical modifications to these robust Wald-type tests which

asymptotically approach the usual robust Wald-type tests. We show that one of these modifications

provides exact coverage for a simple case, and examine by simulation the modifications applied to

the generalized estimating equations of Liang and Zeger (1986), conditional logistic regression, and

the Cox proportional hazard model.

Keywords: Conditional logistic regression; Cox proportional hazards model; Generalized esti-

mating equations; Robust Wald statistics; Sandwich estimator; Small sample size
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1 Introduction

The sandwich estimator of variance has been used with many different types of data to provide

inferences robust to certain model misspecifications. We mention three examples, Liang and Zeger

(1986), using their generalized estimating equations (GEEs), applied sandwich estimators of vari-

ances to repeated measures data, Lin and Wei (1989) applied them to the Cox proportional hazards

model, and Fay, et al. (1998) applied them to conditional logistic regression. Each of these appli-

cations use estimating equations with K independent or approximately independent terms. The

Wald-type tests used with the sandwich estimator are valid as K goes to infinity. For finite samples

simulations have shown that these (unadjusted) Wald sandwich tests tend to be liberal (see Emrich

and Piedmonte, 1992; Fay et al. 1998; Gunsolley, Getchell, and Chinchilli, 1995; Lin and Wei,

1989; and Mancl and DeRouen, 2001). In this paper we consider finite sample adjustments for

Wald sandwich tests and apply them to quite general estimating equations which include the three

applications mentioned above.

Consider the data that motivated this research. Fay, et al. (1997) performed a meta analysis

to determine the effect of different types of dietary fat on the development of mammary tumors in

rodents. The analysis combined 146 experiments (“sets” in the terminology of Fay et al., 1997). Each

experiment has two or more groups of animals, each group receives the same intervention except for

diets, and the response is the number of animals in the group that develop tumors. Although within

an experiment there were only diet differences between the groups, between experiments there were

many differences. For example, the type and/or dose of carcinogen and the amount of follow-up time

varied between experiments. Thus, as detailed in Fay, et al. (1998), a conditional logistic regression

was used to condition out intercept differences between experiments, and a sandwich estimator of

variance was used to account for heterogeneity of the diet parameters. A random effects model

for the diet parameters was not tractable because each of the diet effects was not varied within
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each experiment. For example, Fay et al. (1997) measured effects of 4 types of fat, but one of the

types of fats, n-3 polyunsaturated fatty acid (n-3 PUFA), was rarely present except in very small

portions. Only 22 of the experiments had any dietary groups with greater than 1% of the dietary

fat equal to n-3 PUFA. Thus, it is difficult to estimate a random effect for the n-3 PUFA parameter

in all but these 22 experiments. The important aspect of these data for this paper is that even

though there is a large sample size of independent observations, i.e., 146 experiments that make up

the terms in the estimating equation, there is an effectively small sample size for testing the n-3

PUFA parameter. When a parameter is primarily estimated from a small proportion of the terms

in the estimating equations (e.g., the n-3 PUFA parameter in the diet data), we call the estimating

equations unbalanced for that parameter. We reanalyze the diet data in section 3.3.

We propose two types of adjustments. First, we use Taylor series approximations to adjust

for the bias of the sandwich estimator of variance. Mancl and DeRouen (2001) provide such an

adjustment for GEEs and compare it to many earlier bias corrections (see that paper for earlier

references). In this paper we propose a bias correction similar to that of Mancl and DeRouen (2001),

but our correction may be applied to more general estimating equations than the GEE. Our second

adjustment is to use an F (or t) distribution instead of a chi square (or a normal) distribution to

calculate significance. Others have used this adjustment with the canonical use of 1 and K − p

degrees of freedom, where p is the number of parameters describing the mean (see Lipsitz, et al.

1994 and Mancl and DeRouen, 2001, for the GEE case). As seen for the diet example above, these

canonical degrees of freedom may not be appropriate for estimating equations that are unbalanced

for certain parameters. This problem was noted by Chesher and Austin (1991) for the simple linear

model. We propose an estimator of degrees of freedom that produces different degrees of freedom

depending on which parameter (or combination of parameters) is being tested. These estimators

can more properly adjust for situations such as the diet example. Similar but not equivalent small

sample adjustments have been proposed for some special cases (see Fay, et al., 1998 for conditional
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logistic regression; Lipsitz and Ibrahim (1999) for linear regression; and Fai and Cornelius (1996)

for unbalanced split-plot experiments).

Because of the way we motivate our degrees of freedom estimators, we restrict ourselves to tests

of linear combinations of parameters. In other words if β is the parameter vector, then we are

restricted to tests with null hypotheses equal to CTβ = CTβ0, where β0 is known, and C is a vector

of constants (i.e., C is not allowed to be a matrix).

In section 2.1 we review the use of the sandwich estimator of variance and its associated Wald

test. In section 2.2 we propose our bias correction and compare it to that of Mancl and DeRouen

(2001), and in section 2.3 we propose some degrees of freedom estimators. In section 3 we examine

one special case where one of the modifications produces an exact test, and we perform simulations to

test these modifications when used with GEEs, conditional logistic regression, and Cox proportional

hazards models.

2 Main Result

2.1 Background

Consider estimating equations of the form,
∑K

i=1 Ui(β) = 0, where β is a p × 1 parameter vector.

Let β̂ be the solution to the estimating equations. Let Ui = Ui(β) and let a hat over any function

denote evaluation at β̂ (e.g., Ûi = Ui(β̂)). Assume E
{∑K

i=1 Ui(β0)
}

= 0 for some β0, and both

cov {Ui(β0), Uj(β0)} → 0 for i 6= j, and β̂−β0
P→ 0 as K →∞. We use a Taylor series approximation

about β̂ but replace the derivative by an estimator,

Ui ≈ Ûi − Ω̂i

(
β − β̂

)
, (1)

where Ω̂i is an estimator of −∂Ui/∂β evaluated at β̂. Summing over all clusters and rearranging

terms gives,

β̂ − β ≈ Vm

(
K∑
i=1

Ui

)
, (2)
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where Vm =
(∑K

i=1 Ω̂i

)−1
and will be called the “model-based” variance. If Vm is approximately

constant with small changes in β̂, then the variance of β̂ − β may be estimated with the sandwich

estimator, Vs = Vm
(∑K

i=1 ÛiÛ
T
i

)
Vm.

We consider hypotheses of the form, Null: CTβ = CTβ0 vs. Alternative: CTβ 6= CTβ0, where

C is a p × 1 vector of constants. For example, we test whether βj = 0 or not by letting C be all

zeros except for a one in the jth row and β0 = 0. The unadjusted Wald sandwich test rejects when

T 2
s =

{
CT (β̂ − β0)

}2
/CTVsC > (χ2

1)
−1

(1−α), where (χ2
1)
−1

(q) is the qth quantile of the chi-square

distribution with one degree of freedom.

2.2 A Bias-Corrected Sandwich Covariance Estimator

Mancl and DeRouen (2001) motivated a bias correction of Vs for the GEE case by using a first-order

Taylor series expansion of the ith residual vector together with approximation (2), to approximate

the expected value of the ith squared residuals. Analogously, we use a first-order Taylor series

expansion of Ui (approximation (1)) together with approximation (2), to obtain,

E
(
ÛiÛ

T
i

)
≈

(
Ip − Ω̂iVm

)
Ψi

(
Ip − Ω̂iVm

)T
+ Ω̂iVm

∑
j 6=i

Ψj

VmΩ̂i, (3)

where Ψi = cov(Ui) and Ip is a p× p identity matrix. For tractability, Mancl and DeRouen (2001)

motivated their bias correction by assuming the the last term in their expression (4) is small (note

there is a typo in expression (4) of Mancl and DeRouen (2001); the cov(yi) in last term should be

cov(yj)), which is analogous to assuming here that the last term in expression (3) is small.

We take a different approach to tractability. We consider a correction that is reasonable when

the working variance model is approximately within a scale factor of the true variance, i.e., when

Ψi ≈ cΩ̂i for all i and some constant c and the model-based variance is consistent. For example, in

the GEE case this would occur when the correlation model is correctly specified. When Ψi ≈ cΩ̂i,

approximation (3) simplifies to E
(
ÛiÛ

T
i

)
≈
(
Ip − Ω̂iVm

)
Ψi ≈ Ψi

(
Ip − VmΩ̂i

)
. To partially correct
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for this bias (i.e., E
(
ÛiÛ

T
i

)
6= Ψi) we estimate Ψi with Ψ̂i = HiÛiÛ

T
i H

T
i , where Hi is given

below and the form of the correction ensures that Ψ̂i is a symmetric nonnegative definite matrix.

In general,
(
Ip − Ω̂iVm

)
is not symmetric, so that the choice of Hi =

(
Ip − Ω̂iVm

)−1/2
may not

exist. Instead, we propose the simple bias correction of letting Hi be a p× p diagonal matrix with

jjth element equal to
{

1−min
(
b, {Ω̂iVm}jj

)}−1/2
, where b < 1 is a constant defined by the user.

Setting a bound, b, is a practical necessity to prevent extreme adjustments when the jjth element of

Ω̂iVm is very close to 1. (In fact it is possible for the jjth element of Ω̂iVm to be greater than 1, see

http://srab.cancer.gov/sandwich.) We arbitrarily use b = .75 for our simulations which ensures that

each diagonal element of Hi is less than or equal to 2. We write this adjusted sandwich estimator as

Va = Vm
(∑K

i=1HiÛiÛ
T
i Hi

)
Vm. Although the bound .75 is arbitrary, the bound of b = .75 is rarely

reached. For example, the simulations in section 3 gave almost exactly the same results (results not

shown) when run without any bound (i.e., the bound is infinity).

2.3 An Approximate F-Distribution

Let T 2
a be the Wald test statistic using Va instead of Vs. The main result motivated in this section

is

T 2
a =

{
CT (β̂ − β0)

}2
CTVaC

≈ UTB0U

UTB1U
·∼ F1,d (4)

where
·∼ denotes approximate distribution under the null hypothesis, UT = [UT

1 · · · UT
k ], B0 and

B1 are pK × pK matrices given in appendix A, F1,d is an F distribution with 1 and d degrees of

freedom, and we give estimators of d later. Following a standard derivation of the F distribution,

our F distribution approximation may be motivated by the following 3 approximate conditions: (1)

σ−2UTB0U
·∼ χ2

1, (2) σ−2dUTB1U
·∼ χ2

d, and (3) UTB0U and UTB1U are approximately indepen-

dent, where σ2 = var
{
CT

(
β̂ − β0

)}
. We discuss each of these approximations in appendix A.

In order to estimate d we need estimators of Ψi for i = 1, . . . , K. We estimate Ψi in one of
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two ways. First, we simply use Ψ̂i as in Section 2.2; this estimator tends to overestimate the

heterogeneity of the Ψi. One can see this by noting that even when all Ψi are equal, the Ψ̂i vary.

The associated estimator of d is

d̂H =

{
trace

(
Ψ̂B1

)}2
trace

(
Ψ̂B1Ψ̂B1

) , (5)

where Ψ̂ = block diagonal(Ψ̂1, · · · Ψ̂K) (see Appendix A ).

Alternatively, we propose the more complicated Ψ̃i = wi

(∑K
`=1w`

)−1 (∑K
j=1 Ψ̂j

)
where

wi = CT

{(∑
j 6=i Ω̂j

)−1
− Vm

}
C and wi (

∑
w`)
−1 represents the proportional reduction in the

model-based variance of CT (β̂ − β) due to adding the ith cluster. The idea behind the Ψ̃i is

that it smooths the extremely variable estimates Ψ̂j, j = 1, . . . , K, yet unlike the unweighted sum

(i.e., using K−1
∑

Ψ̂j to estimate each Ψi) it still accounts for some of the differences in cluster

variability associated with the working variance model. We estimate d̃H in a similar manner to d̂H

by replacing Ψ̂i with Ψ̃i in equation 5.

To see if the adjustment of section 2.2 is necessary, we estimate the distribution of T 2
s with an

F distribution with 1 and d (equal to either d̂ or d̃) degrees of freedom. Here d̂ is calculated the

same as d̂H except replace Hi with an identity matrix for all i. Similarly define d̃. We compare the

different methods in section 3.

The adjustments of this section do not affect the asymptotic properties of the unadjusted Wald

sandwich test. Under the assumption that the data are sufficiently regular such that Ω̂i

(∑
Ω̂j

)−1 P→

0 for all i and d→∞ as K →∞, then as K →∞,
(
Ip − Ω̂iVm

)−1 P→ Ip and Va−Vs
P→ 0. Further,

if d→∞ then the F1,d distribution approaches a chi square distribution with 1 degree of freedom.

Thus, even if the assumptions and approximations that motivate (4) are tenuous in some situations,

the adjustments of this section may likely be an improvement over the unadjusted Wald sandwich

test.
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3 Simulations and Special Cases

3.1 Normal Model with the Same Design for Each Cluster

Consider the (true) model Yi ∼ N(Xβ,Σ), where Yi is an n× 1 vector of responses, X is an n× p

full-rank design matrix, n ≥ p, and Σ is a p×p covariance matrix. We use independence estimating

equations (see Liang and Zeger, 1986), i.e., Ui = φ̂XT (Yi − Xβ), where φ̂−1 is a scalar dispersion

estimator. Under the null model for any non-degenerate Σ, X, and C, then T 2
a = {(K − 1)/K}T 2

s ∼

F1,K−1. Further, here the degrees of freedom estimators, d̃H and d̃, give K − 1, so that the test, say

δ5, that compares T 2
a with F1,d̃H

produces an exact test for any K (see Appendix B). In contrast,

for K = 20, the standard sandwich test, δ1 (T 2
s compared to χ2

1), has size .071, δ2 (T 2
s compared to

F
1,d̂

) has simulated size .034, δ3 (T 2
s compared to F1,d̃) has size .055, δ4 (T 2

a compared to F
1,d̂H

) has

simulated size .031, where the simulations had 100,000 replications. The associated test statistic of

Mancl and DeRouen (2001) is T 2
MD = {(K − 1)/K}2 T 2

s . For K = 20 comparing T 2
MD to χ2

1 has

size .059, while comparing it to F1,K−p with p = 1 has size .045, and comparing it to F1,K−p with

p = 2 has size .044. Thus, in this case δ5 performs best, but δ3 and the tests of Mancl and DeRouen

(2001) have close to nominal size.

3.2 Generalized Estimating Equations

Consider GEEs of the form (see Liang and Zeger, 1986),
∑K

i=1 Ui(β) =
∑K

i=1D
T
i (β)V −1i (β) {Yi − µi(β)},

where Yi is a ni×1 vector of responses, µi is the model of E(Yi), Di = ∂µi(β)/∂β and Vi(β) estimates

the “working variance” of Yi. The function Vi(β) has a complicated form. (It is denoted Ṽi(β) in

Liang and Zeger, 1986. See that paper for details). Let our estimate of −∂Ui/∂β be Ω̂i = D̂T
i V̂
−1
i D̂i,

and Vs is the sandwich estimator proposed by Liang and Zeger (1986). To test the GEE models we

simulated both Poisson and binomial data and tested the GEE model with both independence and

exchangeable working correlation within cluster.
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For the Poisson case we simulated 4 types of data sets all with K = 20 clusters. Each type of

data set is denoted by one level of each of 2 descriptors, the variance (either Poisson or overdispersed

Poisson), and the treatment assignment (either changed within cluster or fixed within cluster). For

the models that changed treatment assignments within cluster we used the working independence

variance and for those that did not we used the working exchangeable variance. For the model-

based variance we included a scalar overdispersion term as described in Liang and Zeger (1986);

it is the default in the yags software which we modified to use for this simulation (the yags func-

tion written in Splus by V. Carey, is reviewed in Horton and Lipsitz, 1999, and can be found at

http://biosun1.harvard.edu/˜carey/index.ssoft.html). The details of the data generation are listed

with the results in Table 1. We see that δ1 is liberal in all 4 cases, δ3 is less liberal, while δ5 appears

to have values closer to the nomial level. The test δ6 (T 2
MD compared to F1,K−p) appears to per-

form well, although perhaps slightly conservatively. The tests δ2 and δ4 can be very conservative

especially in the cases with both treatments in each cluster. We see in the last column of the first

row that δm may perform very poorly when the model is misspecified. All of the modified tests

(δ2, δ3, δ4, δ5, and δ6) appear to have sizes that come closer to maintaining the nominal level than

the standard sandwich test, and the average length of the confidence intervals give a crude measure

of the price paid to achieve those sizes.

We modeled the simulation for logistic regression after real data. Preisser and Qaqish (1999)

have made available data from the Guidelines for Urinary Incontinence Discussion and Evaluation

(GUIDE) study at http://www.phs.wfubmc.edu/data/uipreiss.html. Preisser and Qaqish (1999) use

5 covariates measured from a baseline survey to predict whether individual patients will respond yes

or no that they are bothered by accidental loss of urine. There are 137 patients in the study from

38 practices, and 54 patients responded that they were bothered by their urinary incontinence. We

fit a logistic model without each of the five covariates in the model and used each of the five sets

of fitted values as the true probability of response. Then simulated binary responses using those
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probabilities. Thus each of the five sets of simulated data come from a logistic model with one of the

parameters equal to zero. We then test whether that parameter equals zero. For this simulation we

let the working correlation be the independence model. The results are presented in Table 2. In this

case the model based variance is correctly specified and δm performs well, δ1 is appears consistently

liberal, while δ4 and δ5, and appear quite conservative, with δ2 and δ6 slightly less conservative. In

this case, δ3 appears to be the best of the sandwich tests.

In Table 3 we list the sample variance of the parameter estimate and compare it to the mean of

the variance estimates for the four variance estimates, Vm, Vs, VMD (Mancl and DeRouen’s, 2001,

adjustment), and Va. We bold the variance estimator with mean closest to the sample variance of

the parameter estimate. When the model is misspecified (see the fourth row), Vm underestimates the

variance, but otherwise Vm does well. The estimator Vs tends to underestimate the variance. The

neither of the corrected sandwich variance estimates, VMD and Va, appears to regularly outperform

the other. In many situations both VMD and Va appear to overcorrect for bias.

3.3 Conditional Logistic Regression

For conditional logistic regression, we have binary responses grouped into clusters, and within each

cluster we condition on the total number of positive responses. The estimating equations can be

written in terms of the sufficient statistic for β, ti, i.e., Ui(β) = ti − E(ti|β), where E(ti|β) is the

modeled value for ti given β. Then Ωi(β) = −∂Ui/∂β. For details see e.g., Fay, et al. (1998).

We repeat 4 sets of the simulations from Fay et al. (1998) which were motivated by a meta-

analysis. We briefly describe the simulations using the same terminology as Fay et al. (1998); see

that paper for more details. Each simulation estimates β = [β1 β2]
T from K clusters of 60 binary

responses, and here we test whether β1 is equal to zero or not. Each of the 4 sets of simulations

is described by both the “Design” (either A or D) and the “Case” (either 1 or 4), and consists of

1000 simulations. Design A has K = 20 clusters and by design 1/4 of the clusters do not contribute
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the estimation of β1 because of conditioning, while similarly Design D has K = 40 clusters but

37/40 of the clusters do not contribute the estimation of β1. The responses are all generated with

a random intercept term for each cluster. For Case 1 the effects for β are fixed, while for Case 4

these effects are random. Thus, the conditional logistic model is correctly specified for Case 1 but

not for Case 4. All simulations are under the null hypothesis. The results are presented in Table 4.

Note that Design D shows that δ1 can be very liberal in extreme cases.

We return to the meta analysis of Fay, et al. (1997) mentioned in the introduction. The 6

different tests that the effect of the n-3 PUFA is different from zero give two-sided p-values of

p = 0.0134 for δm, p = 0.3377 for δ1, p = 0.4136 for δ2, p = 0.3590 for δ3, p = 0.4320 for δ4, and

p = 0.3824 for δ5. If there is a random effect of the n-3 PUFA the usual sandwich test, δ1, gives

better coverage than the model based test, δm, but judging from our simulations may be slightly

liberal. Based on our simulations, the modified sandwich tests (δ2, δ3, δ4, and δ5) appear more likely

to have nominal coverage. We recommend the use of either δ3 or δ5 for having better coverage than

δ1 while (usually) not being overly conservative. For details of the biological issues and the full

model see Fay, et al. (1997).

3.4 Cox Proportional Hazards

The Cox model uses the partial likelihood for right censored failure time data. Let the associated

efficient score statistic for β be written as
∑K

i=1 U
•
i (β), where the summation is over theK individuals

whose failure time may or may not be right censored (see Appendix C for details of the notation).

The terms U•i are not independent, but Lin and Wei (1989) showed that the estimating equation

may be written as
∑K

i=1 U
•
i (β) =

∑K
i=1 Ui(β), where the Ui are asymptotically independent, Ui =

U•i + U◦i , and where
∑K

i=1 U
◦
i (β) = 0 for all β. Then Vm = −

{∑K
i=1 ∂U

•
i /∂β + ∂U◦i /∂β

}−1
=(∑K

i=1−∂U•i /∂β
)−1

and the sandwich estimator of Lin and Wei (1989) is Vs.

Although we do not need to define Ωi, our estimator of−∂Ui/∂β, for the calculation of Vm and Vs,
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for our adjustments we do need to define Ωi for i = 1, . . . , K. To do this we use numerical derivatives,

similar to the method that Gail, Lubin, and Rubinstein (1981) used to calculate ∂U•i /∂β. We let the

abth element of Ω̂i be
{

Ωi(β̂)
}
ab

= (4h)−1
{
Uia(β̂ + hb)− Uia(β̂ − hb) + Uib(β̂ + ha)− Uib(β̂ − ha)

}
,

where Uia is the ath element of Ui, ha is a vector of length p with all zeros except the ath row which

has a value of h, and h is some small number. We use h = 0.0001 for our simulations.

We performed simulations on 3 true models, (1) a proportional hazards model, (2) model 10

from Table 1 of Lin and Wei (1989) in which the model-based test (δm) performed worst for K = 50,

and (3) model 11 from the same table in which the sandwich test (δ1) performed worst for K = 50.

We give the details of the models and the results in Table 5. Again the modified sandwich tests

(δ2, δ3, δ4, and δ5) appear closer to the nominal level than the standard sandwich test, δ1, although

δ3 appears quite liberal for K = 20 for models 10 and 11.

4 Discussion

We have examined 4 new modifications to the standard Wald test with a sandwich estimator of

variance. These modifications were necessary because the standard sandwich test is liberal when

the parameter to be tested is essentially estimated from a small number of terms in the estimating

equation. This liberalness can occur when either K, the number of terms in the estimating equation,

is small, or when primarily a small proportion of terms are used to estimate the parameter (or

linear combination of parameters). We have referred to the latter type of estimating equations as

unbalanced for that parameter.

In all of our simulations the 4 new modifications had estimated size less than the liberal size of

the standard sandwich test. In the simple balanced normal model, δ5 is exact, and δ5 did reasonably

well in the other balanced cases (see Tables 1 and 5, and Design A from Table 4). However, in

more unbalanced cases (see Table 2 and Design D from Table 4), δ5 appeared to produce a quite

conservative test. For this reason, unless the data are fairly well balanced, we favor the use of δ3,
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which appears to be less liberal than δ1 but not overly conservative even for unbalanced equations.

The difference between δ5 and δ3 is that δ5 includes a bias correction for the variance, while δ3 does

not. In our simulations on the GEE case, the standard sandwich estimator regularly underestimated

the variance, while both our adjusted variance estimator, Va, and that proposed by Mancl and

DeRouen (2001), VMD, appeared less biased in the balanced cases (see top section of Table 3). In

the more unbalanced cases (see bottom section of Table 3), both Va and VMD appeared to overcorrect

for bias in most cases, and this overcorrection in Va may be the source of the conservativeness of δ5.

Further work is required on correcting the bias of the sandwich variance estimator in unbalanced

data. For the balanced cases the advantage of Va over VMD is that it may be applied to other cases

besides the GEE case.

Although not listed in the tables, we included in our simulations a test comparing T 2
s to F1,K−p

as has been used in the literature (see e.g., Lipsitz,et al. 1994). This test gave estimated sizes

that were always less than the standard sandwich test (δ1), but at least as large as the 4 new

tests (δ2, δ3, δ4, and δ5). As expected this test does reasonably well with balanced data but not

with unbalanced data. For example, for Table 4 the 4 estimated sizes (to test β1 = 0) were .078

(Design A, Case 1), .073 (Design A, Case 4), .245 (Design D, Case 1), and .248 (Design D, Case 4).

For insight into this, note the failure of that method to address the degrees of freedom differences

in the parameters in Design D, where β1 is estimated from only 3 clusters, while β2 is estimated

from 39 clusters (see Fay, et al., 1998). The degrees of freedom estimate, K − p, does not properly

account for this data structure and compares both the T 2
s statistic for testing β1 = 0 and the T 2

s

statistic for testing β2 = 0 against the same distribution, F1,K−p. The complete simulation results of

the tests comparing T 2
s to F1,K−p along with Splus functions that perform our adjustments and the

Splus programs used to perform all the simulations are given at http://srab.cancer.gov/sandwich.
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A Details of Degrees of Freedom Approximation

Using approximation (2), we write
{
CT

(
β̂ − β0

)}2
≈ UTB0U , where B0 = FVmCC

TVmF
T , and

F T = [Ip · · · Ip]. Rewrite CTVaC as

CTVaC =
K∑
i=1

CTVm
(
HiÛiÛ

T
i Hi

)
VmC =

K∑
i=1

ÛT
i

(
HiVmCC

TVmHi

)
Ûi,
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where the second equality uses the fact that CTVmHiÛi is a scalar; this is why we require C to be

a vector. We rewrite this as CTVaC = ÛTMÛ , where M is a pK × pK block diagonal matrix with

ith block equal to HiVmCC
TVmHi. We combine the Taylor series approximations for the Ûi to get

Û ≈ GU , where G = IpK − Ω̂VmF
T and Ω̂T = [Ω̂1 · · · Ω̂K ]. Thus, CTVaC ≈ UTB1U , where

B1 = GTMG.

Now consider the 3 conditions:

(1) σ−2UTB0U
·∼ χ2

1: Assume CTVmUi has mean 0 and unknown variance σ2
i (where we allow σ2

i =

0 for some i), that the CTVmUi are independent, and that the approximation 2 holds. Provided

some regularity conditions are true, by the Liapunouv central limit theorem σ−1CT
(
β̂ − β0

)
→

N(0, 1) as K → ∞, where σ2 =
∑K

i=1 σ
2
i . Thus, σ−2

{
CT

(
β̂ − β0

)}2
is asymptotically chi-

squared with 1 degree of freedom.

(2) σ−2dUTB1U
·∼ χ2

d: Assume U is distributed normal with mean 0 and variance Ψ = block di-

agonal (Ψ1, . . . ,ΨK). Under these assumptions, UTB1U has a distribution described by a

weighted sum of chi square random variables; however, we approximate its distribution with a

(much simpler) Gamma distribution with the same mean and variance, i.e., with mean equal to

trace(ΨB1) and variance equal to 2trace(ΨB1ΨB1) (see Searle, 1982, p. 355). Since UTB1U is

an approximately unbiased estimator of σ2 we estimate σ2 with trace(ΨB1), so that σ−2UTB1U

is approximately Gamma with mean 1 and variance 2trace(ΨB1ΨB1)/ {trace(ΨB1)}−2 or

equivalently σ−2dUTB1U
·∼ χ2

d where d = {trace(ΨB1)}2 /trace(ΨB1ΨB1).

(3) UTB0U and UTB1U are independent: Assume that U is normal with mean 0 and variance

Ψ, with rank(Ψ) = pK. Under correct model specification, i.e., Ψi ≈ cΩ̂i for all i. Then

B0ΨB1 ≈ 0 and UTB0U and UTB1U are approximately independent. (See Searle, 1982,

p.356).
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B Details: Normal Model with Identical Designs

Refer to structure defined in section 3.1. Let Zi = K−1/2σ−1
{
CT (XTX)−1XTYi − CTβ0

}
where

σ2 = var
{
CT

(
β̂ − β0

)}
= K−1CT (XTX)−1XTΣX(XTX)−1C. Under the null hypothesis assump-

tions of the model, the Zi are independent standard normal random variables. Then, K−1
∑K

i=1 Zi =

Z̄ = K−1/2σ−1CT (β̂ − β0), and
∑K

i=1(Zi − Z̄)2 = σ−2KCTVSC = σ−2(K − 1)CTVaC. The

last step comes because Hi = Ip {K/(K − 1)}1/2 for all i. Thus, under the null hypothesis,

Ta =
√
KZ̄

{
(K − 1)−1

∑K
i=1(Zi − Z̄)2

}−1/2
and is distributed tK−1 by the standard derivation of

the t-test, and T 2
a is distributed F1,K−1. All proposed estimators of d use equation 5 with different

estimators of Ψi and different values of M (for d̂ and d̃ the value Hi is set to Ip in the definition of

M). Let Ψ̇i (Ψ̇) be an arbitrary estimator of Ψi (Ψ) and Mi be an arbitrary block diagonal element

of M . Then because the Ω̂i = φ̂XTX are all equal, trace(Ψ̇B1) = {(K − 1)/K}∑K
i=1 trace(Ψ̇iMi)

and trace(Ψ̇B1Ψ̇B1) = {(K − 2)/K}∑K
i=1 trace(Ψ̇iMiΨ̇iMi)+K

−2∑K
i=1

∑K
j=1 trace(Ψ̇iMiΨ̇jMj). To

simplify these expressions we use the theorem that trace(AB) = trace(BA) for any matrices A and

B for which AB and BA are defined, so that the traces may be written as scalars. Then we can

show equation 5 gives K − 1 for both d̃ and d̃H , while d̂ and d̂H may both be written as

R

1 + R−1
(K−1)2

where R =

{∑K
i=1(Zi − Z̄)2

}2
∑K

i=1(Zi − Z̄)4
,

and the Zi are the same independent standard normal random variables as in the previous expression

for Ta.

C Notation for Cox Proportional Hazards Model

We use standard notation for counting processes, so that the notation Yi, Zi, Xi, and δi is dif-

ferent in this section than in the rest of the paper. Let X1, . . . , XK be the time until failure or

right-censoring, with δi = 1 when Xi represents a failure and δi = 0 otherwise. Let Zi(t) be the co-

variate vector for the ith observation observed at time t. Then U•i = δi
{
Zi(Xi)− Z̄(β,Xi)

}
where
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Z̄(β, t) =
[∑K

i=1 Yi(t)Zi(t) exp {β′Zi(t)}
]
/
[∑K

j=1 Yj(t) exp {β′Zj(t)}
]

and here Yi(t) = 1 if Xi ≥ t

and 0 otherwise. Further,

U◦i = −
K∑
j=1

[
δjYi(Xj) exp {β′Zi(Xj)}

{
Zi(Xj)− Z̄(β,Xj)

}]
/

[
K∑

h=1

Yh(Xj) exp {β′Zh(Xj)}
]
, and

−∂U•i
∂β

= δi

 K∑
j=1

Yj(Xi) exp {β′Zj(Xi)}
{
Zj(Xi)− Z̄(β,Xi)

}⊗2 / [ K∑
h=1

Yh(Xi) exp {β′Zh(Xi)}
] ,

where A⊗2 = AAT , for any vector, A.
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Table 1: Simulations for Poisson GEE: Proportion Rejected at α = .05 level (average length of
Confidence Intervals) for 1000 simulations

One Treatment Both Treatments
Test Per Cluster for each Cluster

Distribution Ri =Exchangeable Ri =Independence
Test Variance (df) τ = 0∗ τ = 1/2 τ = 0 τ = 1/2
δm Vm χ2(1) .090 (.079) .091 (.424) .043 (.060) .330 (.115)
δ1 Vs χ2(1) .103 (.079) .089 (.421) .075 (.058) .074 (.227)

δ2 Vs F (1, d̂) .052 (.097) .040 (.555) .028 (.071) .029 (.325)

δ3 Vs F (1, d̃) .066 (.087) .067 (.451) .053 (.062) .055 (.244)

δ4 Va F (1, d̂H) .042 (.101) .039 (.570) .022 (.073) .024 (.335)

δ5 Va F (1, d̃H) .059 (.091) .064 (.463) .046 (.064) .048 (.251)
δ6 VMD F (1, K − p) .041 (.098) .047 (.501) .043 (.066) .041 (.258)

∗ For this column, 991 out of 1000 converged (see http://srab.cancer.gov/sandwich for a non-
converging data set); results relate to those 991 simulations. All other columns had 1000 converged
simulations.
Data are simulated by Yij ∼ Poisson(µij), i = 1, . . . , 20; j = 1, . . . , ni1 + ni2 where µij =
exp (log(10) + xijbij) , xij = 1 for j ≤ ni1, xij = −1 for j > ni1, and bij are independent
pseudo-normal random variates with mean 0 and standard deviation, τ . All models of means are
µij = exp (β0 + β1xij). We test whether β1 = 0 and the average length of confidence intervals are
for β1 only. “Both treatments for each cluster” is nia = ceiling(Nia), for a = 1, 2, where Nia is
distributed pseudo-Gamma with mean 10 and variance 20, and ceiling(X) gives the smallest integer
greater than or equal to X. “One treatment per cluster” uses the same method for generating the
nia then sets ni2 = 0 for i ≤ 10 and sets ni1 = 0 for i > 10.

Table 2: Simulations for Logistic Independence Estimating Equations derived from GUIDE data:
Proportion Rejected at α = .05 level (average length of Confidence Intervals) for 1000 simulations

Test Model Model Model Model Model
Distn without without without without without

Test Var (df) FEMALE AGE DAYACC SEVERE TOILET
δm Vm χ2(1) .048 (2.58) .052 (2.38) .049 (.258) .051 (1.42) .055 (.350)
δ1 Vs χ2(1) .078 (2.41) .067 (2.32) .076 (.242) .062 (1.36) .080 (.330)

δ2 Vs F (1, d̂) .038 (3.06) .039 (2.68) .044 (.286) .029 (1.62) .040 (.405)

δ3 Vs F (1, d̃) .051 (2.70) .057 (2.46) .058 (.269) .049 (1.46) .056 (.375)

δ4 Va F (1, d̂H) .018 (3.47) .018 (3.06) .031 (.329) .010 (1.87) .016 (.636)

δ5 Va F (1, d̃H) .026 (3.02) .029 (2.74) .037 (.296) .017 (1.69) .028 (.551)
δ6 VMD F (1, K − p) .042 (2.87) .039 (2.63) .040 (.289) .033 (1.56) .042 (.408)
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Table 3: Comparison of Simulated Variance Estimators

Sample Mean Mean Mean Mean
Variance of of of of

of β̂i Vm Vs VMD Va
Poisson GEE (Table 1)

Ri=Exchangeable, τ = 0∗ 0.00051 0.00043 0.00042 0.00056 0.00045
Ri=Exchangeable, τ = 1/2 0.01410 0.01237 0.01201 0.01482 0.01264
Ri=Independence, τ = 0 0.00023 0.00024 0.00023 0.00025 0.00024
Ri=Independence, τ = 1/2 0.00405 0.00087 0.00376 0.00424 0.00398

Logistic Independence Estimating Equations (Table 2)
Model without FEMALE 0.47065 0.43737 0.39234 0.51774 0.47954
Model without AGE 0.40968 0.37511 0.35659 0.42700 0.44090
Model without DAYACC 0.00466 0.00434 0.00390 0.00521 0.00455
Model without SEVERE 0.12409 0.13186 0.12274 0.15042 0.16223
Model without TOILET 0.00898 0.00806 0.00732 0.01050 0.01101
∗ For this row, 991 out of 1000 converged; statistics calculated from only those 991 simulations. All
other rows had 1000 converged simulations.
The bold value in each row represents the closest mean to the sample variance of β̂i.

Table 4: Simulations for Conditional Logistic Regression: Proportion Rejected at α = .05 level
(average length of Confidence Intervals) for 1000 simulations

Test Design A Design A Design D Design D
Test Var Distn (df) Case 1 Case 4 Case 1 Case 4
δm Vm χ2(1) .049 (.577) .430 (.601) .027 (2.60) .345 (2.80)
δ1 Vs χ2(1) .098 (.534) .090 (1.36) .252 (1.85) .253 (4.02)

δ2 Vs F (1, d̂) .042 (.681) .045 (1.74) .044 (5.35) .054 (12.00)

δ3 Vs F (1, d̃) .072 (.590) .065 (1.51) .047 (4.45) .038 (10.19)

δ4 Va F (1, d̂H) .033 (.708) .038 (1.82) .025 (6.92) .030 (16.33)

δ5 Va F (1, d̃H) .066 (.613) .056 (1.57) .021 (5.77) .019 (13.79)
All simulations test whether β1 = 0, and average confidence interval lengths are for β1 only. In
Design A β1 is estimated from 15 clusters, while in Design D β1 is estimated from 3 clusters. For
Case 1 the effects for β1 are fixed, while for Case 4 these effects are random.
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Table 5: Simulations for Cox Regression: Proportion Rejected at α = .05 level (average length of
Confidence Intervals) for 1000 simulations

Proportional Hazards Model 10 Model 11
Test K = 20 K = 50 K = 20 K = 50 K = 20 K = 50
δm .051 (1.13) .042 (.614) .180 (1.71) .195 (1.02) .104 (1.13) .073 (.614)
δ1 .103 (0.99) .063 (.567) .119 (2.26) .079 (1.47) .137 (1.01) .091 (.593)
δ2 .055 (1.33) .037 (.672) .047 (3.29) .049 (1.67) .076 (1.38) .049 (.729)
δ3 .051 (1.25) .043 (.625) .080 (2.89) .063 (1.59) .089 (1.28) .066 (.656)
δ4 .038 (1.48) .032 (.715) .039 (3.69) .044 (1.72) .059 (1.55) .039 (.780)
δ5 .043 (1.37) .037 (.652) .068 (3.13) .059 (1.63) .073 (1.40) .054 (.686)

All simulations modeled the hazard proportional to exp(β1z1 + β2z2) and tested whether β1 = 0
or not. True models with t =time to event: (proportional hazards) t = exp(z2)ε2; (model 10)
t = exp (−.5z2 − z21 + .5ε1); (model 11) t = exp (−.5z2) + .5ε1; where z1, z2, and ε1 are independent
standard normal pseudo-random variables (p-r.v.), with z1 and z2 truncated at ±5, and ε2 is a
standard exponential p-r.v.
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