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1 Introduction

1.1 The multivariate ARMA and the ARMAX model

The ARMA model

Let t denote (discrete) time. Consider a k-variate random vector yt of observations and, correspondingly,
a k-variate random vector, ut, of unknown innovations:

yt =


y1,t
y2,t
. . .
yk,t

 , and ut =


u1,t
u2,t
. . .
uk,t

 , t = {1, 2, . . . , N} (1)

Further suppose that the random vector yt is generated through the model

yt + φ1yt−1 + · · ·+ φpyt−p = ut + θ1ut−1 + · · ·+ θqut−q (2)

where the coefficient matrices φ1, . . . , φp and θ1, . . . , θq all are of dimension k × k.

The ARMAX model

If external x-variables are to be included, the model may be extended the following way:

yt + φ1yt−1 + · · ·+ φpyt−p + β1xt−1 + · · ·+ βkxt−p = ut + θ1ut−1 + · · ·+ θqut−q (3)

where yt again represents the (multivariate) observations, and xt represents the (multivariate) x-variables.
Proper definition of models like (3) can be accomplished by means of the routine define.model.

In marima the inclusion of the x-variables is done by treating all y and x variables as AR variables (and
impose proper restrictions on the modeling of the x-variables (by means of define.model)). An example
of such an ARMAX model is described in the present document at page 20.

Generally, it is assumed that the series of innovations, ut, is without autocorrelation, but the individual
elements (coordinates) need not be, for example, uncorrelated. The covariance matrix of ut will be
referred to as Var(ut) = Σu, and it does not depend on t.

Here we will refer to the lefthand side of equation (2) (or (3)) as the autoregressive or AR part of the
model, while the righthand side is called the moving average or MA part of the model. p is the order of
the AR part, and q is the order of the MA part. The model is here called the ARMA(p, q) model even
in cases where one or more x-variables occur in the AR part of the model.

1.2 Organisation of time series

If the matrix of the k-dimensional observations is called y (which generally includes both the y and the
x variables), then y should be organised as a k × n matrix. For example, it can be initialised using NA:
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y <- matrix(NA, nrow=k, ncol=N).

2 Operator form of the ARMA(p,q) model

2.1 Matrix polynomials used in marima

Define the k-variate backwards shift operator B such that if B is multiplied on a time indexed k-variate
random variable, the result is to be interpreted as the variable lagged one timestep. Thus, in general,
lagging r time steps is accomplished using:

Bryt = yt−r

Introduce the operator B into model (2) which then can be written as

(I + φ1B + · · ·+ φpB
p)yt = (I + θ1B + · · ·+ θqB

q)ut ,

where I is the k× k unity matrix. Also, define the matrix polynomials φ(B) = I + φ1B+ · · ·+ φpB
p and

θ(B) = I + θ1B + · · ·+ θqB
q. This leads to the general multivariate ARMA(p,q) model in operator form

φ(B)yt = θ(B)ut , (4)

Similarly the ARMAX model (3) can be written[
φ(B) β(B)

] [ yt
xt

]
= θ(B)ut (5)

It is seen, that the models (4) and (5) can be analysed in the same framework. This is accpomplished by
requiering that MA parameters corresponding to the x-variables are 0 (zero) and by defining the AR part
of the model such that coefficients that correspond to influence on the x-variables from other variables
are 0 (zero) (by means of the routine define.model)).

2.2 Averages and their representation in the arma model

Generally the averages of the variables in yt (and/or xt) are subtracted before the model estimation.
When reconstructing or forecasting the measured series analysed by marima, the averages of the original
data can be reintroduced.

Suppose (in model (2), for example) that the vector yt has been means-adjusted, such that yt = vt − η,
where vt represents the original measurements, and η is the (estimated) vector of averages: E{vt} = η.
Suppose now, that φ(B)yt = θ(B)ut or, equivalently:

φ(B)(vt − η) = θ(B)ut

φ(B)vt = µ+ θ(B)ut ; µ = φ(B)η

µ =

[
p∑

i=0

φi

]
η (6)

Note that equation (6) applies for any transformation of the form yt = zt − η .
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2.3 Inverse matrix polynomials and alternative forms

It is convenient to be able to write the ARMA model (4) in the following form:

yt = ut + ψ1ut−1 + · · ·+ ψ`ut−` + · · · = ψ(B)ut (7)

Given the model (4), the model (7) can be determined if we are able to calculate the left inverse polynomial
φ−1(B) of the polynomial φ(B), such that

φ−1(B)φ(B) = I (8)

In general, if φ(B) is a finite order polynomial, the inverse, φ−1(B) is of infinite order.

Pre-multiplying with φ−1(B) on both sides of the equals sign in model (4) gives

yt = φ−1(B)θ(B)Ut = ψ(B)ut (9)

This form is called the random shock form, and, generally (if the model includes a nonzero AR term),
the new polynomial ψ(B) is of infinite length with decreasing coefficients, such that ψ(`)→ 0 for `→∞.
If, more precisely,

∑∞
i=0 ψ(z) converges for all |z| ≤ 1 the model (9) is said to be stationary.

Similarly if θ−1(B) is the left inverse of θ(B), we may pre-multiply with θ−1(B) on both sides of the
equals sign in model (4). This gives the socalled inverse form:

π(B)yt = ut (10)

where π(B) = θ−1(B)φ(B). If, similarly,
∑∞

i=0 π(z) converges for all |z| ≤ 1 the model (10) is said to be
invertible.

3 Some marima concepts in R

3.1 Organisation of matrix polynomials in R

A p-order matrix polynomial, such as φ(B) above, is represented by an array(.) with dimension k ×
k × (1 + p) holding the matrix-coefficients of the polynomial, {φ0, φ1, φ2, . . . , φp}, in that φ0 = I. The
array can, for example, be initialised with NAs using

dependent <- paste("y", c(1:k))

regressor <- paste("r", c(1:k))

order <- paste("o", c(0:p))

phi <-

array(data=NA, dim=c(k,k,(1+p)), dimnames=list(dependent,regressor,order))

in which case you will get convenient labels on the polynomial.

In the `’th coefficient matrix, the element φi,j,` (that is the i’th row and the j’th column), for example,
represents the influence (regression) from variable j, lagged ` time units, on the present variable i (being
the dependent variable, so to speak).
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3.2 Simple operations for matrix polynomials using R

As noted, the 0’th order coefficient matrix of phi, φ0, (that is phi[,,1]), is the k × k unity matrix.

The marima package includes the basic routines for inverting and multiplying matrix polynomials, namely
pol.inv and pol.mul.

The left inverse of phi is computed as, say, inv.phi <- pol.inv(phi, L) which will result in an array
of dimension k × k × (1 + L) holding the k × k unity matrix followed by the first L matrix coefficients of
the left inverse of phi. If the leading term of phi is not the unity matrix the computations performed by
pol.inv will be carried out with a leading unity matrix inserted. The resulting inverse polynomial will
include the proper leading unity matrix followed by the first L matrix coefficients.

The product of two matrix polynomials, φ(B) and θ(B), is computed as pol.mul(phi,theta,L) which
will result in an array of dimension k × k × (1 + L) holding the k × k unity matrix followed by the
first L matrix coefficients of the product φ(B)θ(B). If the leading terms of phi and theta are not
unity matrices the computations will be carried out with leading unity matrices inserted. The resulting
product polynomial will include the proper leading unity matrix followed by the first L matrix coefficients
of φ(B)θ(B).

Equation (9) can be carried out using, for example, psi<-pol.mul(pol.inv(phi,L), theta, L) giving
the unity matrix of order k × k followed by the first L matrix terms of the ψ(.) polynomium. The array
psi will have dimension k × k × (1 + L).

Using, for example, pol.mul(pol.inv(phi,L=5), phi, L=5) will result in a unity matrix followed by 5
(zero-) matrices, all matrices having dimension k × k, provided that phi is a proper matrix polynomial
of order L ≥ 1. You may try:

phi<-array(rnorm(48), dim=(c(4,4,3))) # no leading unity matrix

# generated. Not necessary.

inv.phi<-pol.inv(phi, L=5)

prod.phi<-pol.mul(inv.phi, phi, L=5)

Order<-pol.order(prod.phi, digits=12)

prod.phi<-prod.phi[,,(Order+1)]

prod.phi # print result

4 Differencing multivariate time series

4.1 Differencing operators

4.1.1 Single time step differencing

The polynomial ∇(B) = (I −B) can be used to difference the time series one time step, for example

zt = ∇(B)yt = yt − yt−1 (11)
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If, for example, yt = {y1,t, y2,t}T is bivariate then the ∇ polynomial for differencing both variables once
is

∇(B) =

(
1 0
0 1

)
−
(

1 0
0 1

)
B =

(
1 0
0 1

)
−
(
B 0
0 B

)

The inverse of ∇(B) is called ∇−1(B), and it corresponds to the (infinite) sum ∇−1(B) = I+B+B2+. . . ,
so that

zt = ∇−1(B)yt = yt + yt−1 + yt−2 + . . . (12)

Sometimes it may be necessary to difference a time series twice. This is done by using ∇(B) twice i.e.
zt = ∇(B)∇(B)yt = yt − 2yt−1 + yt−2.

4.1.2 Seasonal differencing

The polynomial ∇(Bs) = (I −Bs) is used if a seasonal differencing with seasonality s is wanted:

zt = ∇(Bs)yt = yt − yt−s (13)

The polynomial for s timesteps seasonal differencing is

∇(Bs) =

(
1 0
0 1

)
−
(
Bs 0
0 Bs

)

4.1.3 Mixed differencing

When a multivariate time series is at hand, it may be necessary to difference the individual series differ-
ently.

Suppose again, that yt = {y1,t, y2,t}T is bivariate, and that we want to difference over time periods
s = {s1, s2}. Then we may define, a little more generally,

∇(Bs) =

(
1 0
0 1

)
−
(
Bs1 0

0 Bs2

)
and

∇(Bs)

(
y1,t
y2,t

)
=

(
y1,t
y2,t

)
−
(
y1,t−s1
y2,t−s2

)

The routine define.dif(...) can perform mixed differencing of a multivariate series. The routine
define.sum(...) does the reverse, that is summing a multivariate series. See the following section
(4.2).

4.2 Differencing and summing in marima

4.2.1 Differencing

If differencing (seasonal or other) is to be used, a function define.dif is available. The function performs
the differencing wanted and generates the corresponding autoregressive representation, which later can
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be used when forecasting the original time series in the not-differenced form.

The user specifies a differencing pattern in the form of a matrix, called difference, with 2 rows and
m columns, where m is number of differencing operations to be performed. Each column in difference

specifies 2 numbers: 1) number of the variable to be differenced, and 2) differencing length (S) for that
variable.

As an example, consider yt = {y1,t, y2,t}T , and suppose it is wanted to difference y1,t ordinarily (S = 1)
twice, and to difference y2,t once with seasonality S = 12. Then the differencing pattern is specified as:

difference =

(
1 1 2
1 1 12

)
or in R-code: difference <- matrix(c(1,1,1,1,2,12), nrow=2).

Output from define.dif is the differenced time series, the autoregressive representation of the differenc-
ing and the averages of the variables in the time series (which are subtracted from the variables before
the differencing is performed).

When analysing the resulting time series with marima the first values should be disregarded in the usual
way. In the above example the first 12 values should be left out, because the first 12 values are obtained
by differencing in relation to previous (unknown) values (taken to be equal to the average of the variable
in question). You may try

y <- matrix(rnorm(48), nrow=2)

difference <- matrix(c(1,1,1,1,2,12), nrow=2)

Y <- define.dif(y, difference=difference)

names(Y)

y.dif <- Y$y.dif

y.lost <- Y$y.lost

dif.poly <- Y$dif.poly

averages <- Y$averages

4.2.2 The aggregated model

The differencing polynomium based on the above example, difference =

(
1 1 2
1 1 12

)
, for a bivariate

series can be written

∇(B) =

(
1 0
0 1

)
−
(

2 0
0 0

)
B +

(
1 0
0 0

)
B2 −

(
0 0
0 1

)
B12

The differenced series is called zt, and zt = ∇(B)yt. Suppose now that zt is analysed by marima and that

the estimated model for zt is φ̂(B)zt = θ̂(B)ut. The estimated aggregated (nonstationary) model for the

observed time series, yt, is then φ̂(B)∇(B)yt = θ̂(B)ut.

The estimated ar-polynomium, φ̂(B) (for zt), is returned by marima and saved in, say, ..$ar.estimates,
and the differencing polynomium, ∇(B), is returned from the differencing function define.dif and saved
in, say, ..$dif.poly.

The estimated aggregated ar-polynomium is then calculated as
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ar.aggregated <- pol.mul(..$ar.estimates, ..$dif.poly, L=...).

4.3 Analysis of non-stationary models

Non-stationarity is often handled (see Hamilton (1994)) by means of differencing by which one or more
unit roots are removed from the autoregressive part of the arma model. A simple example of a unit root
appears in the model yt = yt−1 + εt, where εt represents some process (as opposed to yt = φyt−1 + εt
where |φ| < 1). Similarly, if yt = yt−s + εt, the non-stationarity corresponds to a seasonal period unit
root for the time difference s.

These simple types of non-stationarity are handled by differencing the timeseries before it is analysed.
In the first example we use ∇(B) = 1 − B and ∇(B)yt = yt − yt−1 = εt. In the second example
∇s(B) = 1−Bs and ∇s(B)yt = yt − yt−s = εt.

As described in the above, this can be accomplished by differencing the time series properly (by means
of the routine define.dif) before analysing it with marima. Suppose y is the k-variate time series, and
suppose the differencing wanted is given in the same way as described at page 8, where, for example,
difference=matrix(c(1,1,2,1,3,12),nrow=2)

(meaning single time step differencing for variables 1 and 2 , and 12 time steps differencing for variable
3). The proper R-code could be something like:

dy <- define.dif(y,difference=difference)

# Now the object ’dy’ contains dy$y.dif, dy$y.lost and dy$dif.poly

# and dy$averages (the averages of the original time series).

# Here dy$dif.poly is the ar-representation of the differencing

# polynomial, and dy$y.dif is the differenced time series. Note

# that, in general, dy$y.dif is shorter than the original

# time series, y. Now use, for example:

estimate = marima(dy$y.dif, ar=c(...),ma=c(...), etc...)

# and finally:

ar.aggregated <- pol.mul( estimate$ar.estimate, dy$dif.poly,

L = ( max(ar) + dim( dif.poly)[3] ) )

# will yield the aggregated (non-stationary) ar-part of the model wanted.

4.3.1 More about the aggregated model

Suppose that the procedure described in (4.2.2) is being used, and ∇(B) is used for differencing the time
series yt and that a model for ∇(B)yt = zt is derived by means of marima. Further assume that ∇(B)
defines differencing of all the variables in yt. In that case any mean vector of yt, µy, will not appear in
zt, because then ∇(B)(yt−µy) = ∇(B)yt. If some of the variables in yt are not differenced by ∇(B), the
averages of these variables will, of course, be retained in zt.

The differenced time series zt = ∇(B)yt is supposed to have mean E(zt) = µz which is estimatet by the
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average of zt (as µ̂z) and the average of zt is taken out of the analysis made in marima

Then the estimated model will be:

φ̂(B)(zt − µ̂z) = φ̂(B)∇(B)(yt − µ̂y)− φ̂(B)µ̂z = θ̂(B)ut

or

φ̂(B)∇(B)yt − Ĉ = θ̂(B)ut, where Ĉ =

p∑
i=0

φ̂iµ̂z (14)

It is seen that the model constant Ĉ is estimated from the averages of the variables in zt and the estimated
autoregressive part of the arma model for zt. As described in the above the averages of those variables
in yt that are differenced do not influence Ĉ.

The residuals corresponding to the estimated model (14) and the estimated constant, Ĉ, will appear in
the marima object based on the analysis of zt = ∇(B)yt.

5 Long term lagging

Sometimes it is impractical to apply autoregression with very high order or seasonal dependence with
very long seasonality. Instead it may be more convenient to apply lagging in combination with regression
modeling.

5.1 Principles of lagging

Consider the bivariate time series yt = {y1,t, y2,t}T , and suppose it is wanted to model an autocorrelation
over a relatively long time period, say S, from y1,t, such that the present values in yt depend on a previous
value S time units ago. As an example a new variable generated from y1,t, is introduced by lagging S− 1
time steps as y3,t = y1,t−(S−1), and expanding the original time series with the new variable, Y3,t, to:

yt =

 y1,t
y2,t
y3,t

 =

 y1,t
y2,t

y1,t−(S−1)

 (15)

In theory one may model this new three-variate series as a usual three-dimensional series. However,
the autoregression is generally considered to unidirectional, such that the present values depend only on
previous values, but not vice versa. Then, both y1,t and y2,t are assumed to depend linearly on y3,t.

The first order autoregression term in the standard marima model for the original variables and the
introduced lagged variable could then have the following appearance:

φ1yt−1 =

 a1,1,1 a1,2,1 a1,3,1
a2,1,1 a2,2,1 a2,3,1

0 0 0

 y1,t−1
y2,t−1
y3,t−1

 (16)
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where y3,t−1 = y1,t−S .

Note that, if the introduced lagged variable, y3, is lagged S−1 positions, then the (first order) regression
variable in the regression equation for yt,1 and yt,2 in the example will be lagged further one position to
totally S positions. Therefore, if seasonality S is to be modelled, the new variable can be introduced by
lagging S − 1 positions.

Most often no model is specified for the lagged variable(s), and it (they) is (are) used as pure regression
variable(s), although this is not a strict requirement. Anyway, a reasonable model specification including
the lagged variable(s) should be restricted, so that the original series depends on the lagged variable(s),
but not the other way around. Definition of such models including e.g. regression variables is conveniently
made using the function define.model, see section (6).

Finally, the user must make sure, that there is created a complete time series when lagged variables
are defined, created and added to the original time series. If the function season.lagging is used for
introducing lagged variables this is automatically taken care of.

5.2 Creating lagged variables

A function called season.lagging can be used: Y <- season.lagging(y,lagging) where y is the
original k×N time series and lagging is the lagging pattern wanted. The new (expanded) series which
later can be handled in marima is found by, say, y.lag<-Y$y.lag .

The input parameter lagging is a matrix with 3 rows and m columns, where m is the number of (new)
lagged variables. Each column in lagging contains 3 numbers: 1) number of one of the original variables,
2) number of new varible (>k), and 3) number of positions the new variable is lagged, namely (S − 1)
positions for seasonality S.

Example: Suppose yt is bivariate, and we want to generate two new lagged variables, no. 3 and 4 based
on variables 1 and 2 by lagging. Suppose seasonalities S1 = 6 and S2 = 12 are the seasonalities that we
want to model. Then, variable 3 and 4 are to be generated from the variables 1 and 2 in the original time
series, y1,t, by lagging 6-1 and 12-1 time units, respectively:

lagging =

 1 2
3 4

6-1 12-1

 or in R-code: lagging <- matrix(c(1,3,6-1,2,4,12-1), nrow=3).

This lagging pattern says that ”Use variable 1 and create variable 3 as lagged (6-1) positions. Use variable
2 and create variable 4 as lagged (12-1) positions”.

The new time series will be a four-variate time series, and it will initially have the following appearance:

y1,1 . . . y1,N−1 y1,N NA . . . NA NA NA . . .
y2,1 . . . y2,N−1 y2,N NA . . . NA NA NA . . .
NA . . . y1,N−1−5 y1,N−1−4 y1,N−1−3 . . . y1,N y1,1 y1,2 . . .
NA . . . y2,N−1−11 y2,N−1−10 y2,N−1−9 . . . y2,N−1−5 y2,N−1−4 . . . y2,N

The new series will have leading NA’s for the generated lagged variables, and it will be expanded with
the most present values of these variables. All variables, except the one with the longest lagging period,
will be expanded with the first observations repeatedly, until all lagged variables have the same length as
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the variable based on the longest lagging period (variable 4 in the example).

Estimation by marima can be performed only for the part of the new series which is complete, that is the
new series without the first observations and the future observations containing NA’s.

The part of the new expanded series which is complete is saved (by season.lagging) in a matrix called
y.lag. The first unusable observations are saved in y.lost, and similarly the future observations are
saved in y.future.

The ’future’ values of the expanded series containing the most present values of the lagged variables are
retained in order to enable forecasting using the lagged observations and an estimated model. You may
try

y <- matrix(rnorm(48), nrow=2)

lagging <- matrix(c(1,3,6-1,2,4,12-1), nrow=3)

Y <- season.lagging(y, lagging=lagging)

names(Y)

y.lagged <- Y$y.lagged

y.lost <- Y$y.lost

y.future <- Y$y.future

6 Model selection in marima

6.1 Defining the marima and the marima-x model

Defining models (with or witout external variables) in marima is done by means of the routine define.model
by creating proper 0/1-indicator arrays corresponding to the ar-part (which, if wanted, includes the x-part)
and the ma-part of the model. These arrays are organised the same way as the model polynomials wanted.
Suppose the ar-indicator array is called ar.pattern. Then the value at position ar.pattern[i,j,`+ 1]
is the indicator for the {i, j}’th element in the lag=` ar-parameter matrix φ` = {φi,j}` .

The value 1 (one) indicates that a parameter is to be estimated at that position. The value 0 indicates
that the parameter corresponding to that position is 0. The function define.model can be used for
setting up these indicator arrays properly.

Examples of the use of define.model are obtained with library(marima); example(define.model).

6.2 Estimation and identification of a marima model

As described by Spliid (1983), the estimation of the model is done with a pseudo-regression method. In
the present implementation the R-procedure lm(...) is used for doing the regression calculations. This
choice enables marima to utilize the step(...) procedure in order to search for a good (reduced) model
in a stepwise manner.

The key parameter in step is the k-factor used in Akaike’s criterion (where k=2 is Akaike’s suggestion).
The k-factor is set when calling marima by specifying the input parameter penalty to a suitable k-value
(around 1 or 2, for example).
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After having estimated the marima-model as defined with the use of, for example, define.model, the
value penalty=0 causes marima to do no search for a (reduced) model. If penalty=2 the usual AIC is
used to identify a reduced model and in a stepwise manner.

This is repeated a few times and from then on, marima iterates on the selected model until (hopefully)
convergence.

Experience has shown that a first choice penalty=1 often results in a model which gives a good overview
of which coefficients are the most important ones and which are less important. Approximate F-test
values for the individual parameter estimates are given in the output object, and they serve the same
purpose.

7 Case study

7.1 Australian firearms legislation

Baker & McPhedran (2007) discuss the effect of the Australian firearms legislation of (implemented) 1997
on death rates. Four different (maybe related?) death rates (firearm suicides, firearm homicides, other
suicides and other homicides) are considered. Baker & McPhedran analysed the data by conventional
univariate ARIMA models with separate models for each of the four death rates. All models estimated
were univariate arma(1,1) models, i.e. arma models of order (ar=1,ma=1) and without differerencing.

Here, we shall illustrate the use af marima along the same lines, although it is by no means claimed that
the results obtained are optimal or represent the best analysis of these data.

7.1.1 Data

The data for the study can be accessed using, for example,
library(marima); data(austr); all.data <- austr .

The data.frame austr has the following appearance, in that the last 10 lines correspond to not observed
future values:

Year suic.fire homi.fire suic.other homi.other leg acc.leg

1 1915 4.031636 0.5215052 9.166456 1.303763 0 0

2 1916 3.702076 0.4248284 7.970589 1.416094 0 0

3 1917 3.056176 0.4250311 7.104091 1.052458 0 0

4 1918 3.280707 0.4771938 6.621064 1.312283 0 0

5 1919 2.984728 0.8280212 7.529215 1.309429 0 0

. . . . . . . .

. . . . . . . .

80 1994 2.4027240 0.2744370 9.297252 1.3385800 0 0

81 1995 2.2023310 0.3209428 10.397440 1.4829770 0 0

82 1996 2.1025940 0.5406671 10.900720 1.1632530 1 1

83 1997 1.7982930 0.4050209 12.901270 1.3284680 1 2

84 1998 1.2024840 0.2885961 13.099060 1.2345500 1 3

85 1999 1.4002010 0.3275942 11.698280 1.4847410 1 4
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86 2000 1.2008320 0.3132606 11.099870 1.3365790 1 5

87 2001 1.2980830 0.2575562 11.301570 1.3392920 1 6

88 2002 1.0997420 0.2138386 10.702110 1.4052250 1 7

89 2003 1.0013770 0.1861856 10.099310 1.3334910 1 8

90 2004 0.8361743 0.1592713 9.591119 1.1497400 1 9

91 2005 NA NA NA NA 1 10

92 2006 NA NA NA NA 1 11

. . . . . . . .

. . . . . . . .

100 2014 NA NA NA NA 1 19

It is noted that the data.frame is organised columnwise, while the time series generally should be organised
rowwise (see 1.2). This is (if needed) taken care of in marima such that the datamatrix is transposed if
the number of rows is larger than the number of columns.

The column leg indicates whether legislation has been imposed or not (1 or 0). The column acc.leg

accumulates the legislation.

Note, that leg is set to 1 already in 1996. This is because the first effect of leg will be for the year
after 1996 (namely 1997). This is a general feature in time series models where present values depend on
previous values. The first year where leg can (is believed to) have an effect is therefore 1997.

7.2 Estimation of the four-variate time series (ARMA model)

We will estimate the four univariate the models for the four death rates for the period from 1915 to
1996 (both included) as discussed by Baker & McPhedran. In order to define the model the procedure
define.model is used, and subsequently marima is called using the data from the period 1915 to 1996:

rm(list=ls())

library(marima)

data(austr)

old.data <- t(austr)[, 1:83]

ar<-c(1)

ma<-c(1)

# Define the proper model:

Model1 <- define.model(kvar=7, ar=ar, ma=ma, rem.var=c(1,6,7), indep=c(2:5))

# Now call marima:

Marima1 <- marima(old.data,means=1,

ar.pattern=Model1$ar.pattern, ma.pattern=Model1$ma.pattern,

Check=FALSE, Plot="none", penalty=0.0)

short.form(Marima1$ar.estimates, leading=FALSE) # print estimates

short.form(Marima1$ma.estimates, leading=FALSE)

# Can be check’ed using:

arima(x = old.data[2, ], order = c(1,0,1))

# arima(x = old.data[3, ], order = c(1,0,1))

# arima(x = old.data[4, ], order = c(1,0,1))

# arima(x = old.data[5, ], order = c(1,0,1))

Using define.model the variables in the data which are irrelevant for the analyses are taken out,
rem.var=c(1, 6, 7), and indep=c(2:5) results in the variables 2, 3, 4 and 5 being analysed inde-
pendently. The estimated model is as follows:
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> short.form(Marima1$ar.estimates, leading=FALSE)

, , Lag=0 (unity matrix, not printed here (leading=FALSE))

, , Lag=1

x1=y1 x2=y2 x3=y3 x4=y4 x5=y5 x6=y6 x7=y7

y1 0 0.0 0.0 0.0 0.0 0 0

y2 0 -0.7932 0.0 0.0 0.0 0 0

y3 0 0.0 -0.7848 0.0 0.0 0 0

y4 0 0.0 0.0 -0.887 0.0 0 0

y5 0 0.0 0.0 0.0 -0.9809 0 0

y6 0 0.0 0.0 0.0 0.0 0 0

y7 0 0.0 0.0 0.0 0.0 0 0

> short.form(Marima1$ma.estimates, leading=FALSE)

, , Lag=0 (unity matrix, not printed here (leading=FALSE))

, , Lag=1

x1=y1 x2=y2 x3=y3 x4=y4 x5=y5 x6=y6 x7=y7

y1 0 0.0 0.0 0.0 0.0 0 0

y2 0 -0.1317 0.0 0.0 0.0 0 0

y3 0 0.0 -0.4162 0.0 0.0 0 0

y4 0 0.0 0.0 0.0163 0.0 0 0

y5 0 0.0 0.0 0.0 -0.7104 0 0

y6 0 0.0 0.0 0.0 0.0 0 0

y7 0 0.0 0.0 0.0 0.0 0 0

Further statistics are saved in the object Marima1. For example the covariance matrix of the residuals
(Marima1$cov.u):

> round(Marima1$resid.cov[2:5,2:5], 4)

u2 u3 u4 u5

u2 0.1083 0.0161 0.0354 0.0112

u3 0.0161 0.0146 0.0041 0.0020

u4 0.0354 0.0041 0.6582 -0.0041

u5 0.0112 0.0020 -0.0041 0.0224

and the covariance matrix of the original variables (Marima1$cov.y):

> round(Marima1$data.cov[2:5,2:5], 4)

y2 y3 y4 y5

y2 0.2348 0.0425 0.1110 0.0296

y3 0.0425 0.0199 0.0552 0.0097

y4 0.1110 0.0552 2.3522 0.0790

y5 0.0296 0.0097 0.0790 0.0573

The multiple correlations for the 4 variables are:

> round(1-(diag(Marima1$resid.cov[2:5,2:5])/diag(Marima1$data.cov[2:5,2:5])),2)

u2 u3 u4 u5

0.54 0.27 0.72 0.61
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The data (lines) and the predictions (circles) are shown in the following plots (1915-1996):
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Some relevant model control plots corresponding to the estimated model for the (most) relevant variable
(suicides using firearms) are shown below:
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We may now estimate the general four-variate arma(1,1) model. The only modification in comparison
with the above analysis is the model (Model2) definition statement where indep=c(2:5) is taken out
(indep=NULL).

ar<-c(1)

ma<-c(1)

Model2 <- define.model(kvar=7, ar=ar, ma=ma, rem.var=c(1,6,7), indep=NULL)

Marima2 <- marima(old.data, means=1, ar.pattern=Model2$ar.pattern,

ma.pattern=Model2$ma.pattern, Check=FALSE, Plot="none", penalty=0)

> short.form(Marima2$ar.estimates,leading=FALSE)

, , Lag=1

x1=y1 x2=y2 x3=y3 x4=y4 x5=y5 x6=y6 x7=y7

y1 0 0.0 0.0 0.0 0.0 0 0

y2 0 -0.5916 -0.8260 0.0545 -0.0583 0 0

y3 0 -0.0933 -0.0868 -0.0034 -0.0861 0 0

y4 0 1.2875 -4.1046 -0.8282 -0.6410 0 0

y5 0 0.1222 -0.6610 0.0164 -0.9458 0 0

y6 0 0.0 0.0 0.0 0.0 0 0

y7 0 0.0 0.0 0.0 0.0 0 0

> short.form(Marima2$ma.estimates,leading=FALSE)

, , Lag=1

x1=y1 x2=y2 x3=y3 x4=y4 x5=y5 x6=y6 x7=y7

y1 0 0.0 0.0 0.0 0.0 0 0

y2 0 0.0378 -0.1077 0.1750 -0.2258 0 0
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y3 0 -0.0146 0.2216 0.0415 -0.0097 0 0

y4 0 1.0700 -2.3897 0.0523 -0.2860 0 0

y5 0 0.0885 -0.5220 0.0308 -0.6557 0 0

y6 0 0.0 0.0 0.0 0.0 0 0

y7 0 0.0 0.0 0.0 0.0 0 0

In order to evaluate the improvement in taking into account the correlations between the four variables
we may compute

> round(diag(Marima2$resid.cov/Marima1$resid.cov)[2:5], 2)

u2 u3 u4 u5

0.84 0.89 0.85 1.00

so that, for example, the residual variance of the predictions for the first variable (suicides by firearms)
estimated by the 4-dimensional model is (only) 84% of the corresponding residual variance for the 4-
independent variables model. For the fourth variable (homicides by firearms) there is practically no
improvement using the 4-dimensional model.

The observations and the predictions for all four varibles are shown below
(lines=predictions, points=data).

1920 1940 1960 1980

0
1

2
3

4

Year

s
u
ic

id
e
s
.f
ir
e
a
r
m

var=2

1920 1940 1960 1980

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Year

h
o
m

ic
id

e
s
.f
ir
e
a
r
m

e
d

var=3

1920 1940 1960 1980

0
5

1
0

1
5

Year

s
u
ic

id
e
s
.o

th
e
r

var=4

1920 1940 1960 1980

0
1

2
3

4
5

Year

h
o
m

ic
id

e
s
.o

th
e
r

var=5

A comparison of the residuals from the univariate models and the 4-dimensional model is shown in the
following figure. It is seen that the major differences are for the variable no. 2 (suicides using firearms):
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The following plots are the same model control plots as shown above for the ’suicides using firearms’
data:
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It is seen that except for the pronounced improvement in residual variance (by about 14%) the residual
autocorrelations and the partial autocorrelations are not very different from the values based on univariate
estimation.

7.3 Estimation of legislation effect (ARMAX model)

We shall now estimate a regression model in which variables 6 and 7 are acting as a regression variables
(use reg.var=c(6,7) when calling the model definition procedure define.model).

7.3.1 Multivariate model with legislation regression

library(marima)

data(austr)

all.data<-t(austr)[,1:90]

ar<-c(1)

ma<-c(1)

Model3 <- define.model(kvar=7, ar=ar, ma=ma, rem.var=c(1), reg.var=c(6,7))

Marima3 <- marima(all.data,means=1, ar.pattern=Model3$ar.pattern,

ma.pattern=Model3$ma.pattern, Check=FALSE, Plot="none", penalty=0)
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, , Lag=1

> short.form(Marima3$ar.estimates,leading=FALSE)

x1=y1 x2=y2 x3=y3 x4=y4 x5=y5 x6=y6 x7=y7

y1 0 0.0 0.0 0.0 0.0 0.0 0.0

y2 0 -0.3922 -1.6062 0.0532 -0.0742 0.7155 -0.0163

y3 0 -0.0569 -0.2544 -0.0024 -0.0812 0.0773 0.0107

y4 0 0.8260 -2.7354 -0.7853 -0.5335 -0.9404 0.3087

y5 0 0.1167 -0.6289 0.0140 -0.9501 -0.0257 0.0084

y6 0 0.0 0.0 0.0 0.0 0.0 0.0

y7 0 0.0 0.0 0.0 0.0 0.0 0.0

> short.form(Marima3$ma.estimates,leading=FALSE)

, , Lag=1

x1=y1 x2=y2 x3=y3 x4=y4 x5=y5 x6=y6 x7=y7

y1 0 0.0 0.0 0.0 0.0 0 0

y2 0 0.2052 -0.8038 0.1557 -0.3363 0 0

y3 0 0.0176 0.0605 0.0374 -0.0181 0 0

y4 0 0.7415 -1.0624 0.0903 -0.0894 0 0

y5 0 0.0879 -0.4930 0.0221 -0.6900 0 0

y6 0 0.0 0.0 0.0 0.0 0 0

y7 0 0.0 0.0 0.0 0.0 0 0

One can assess the model coefficients by means of the Marima3$ar.fvalues and Marima3$ma.fvalues

giving:

> round(short.form(Marima3$ar.fvalues, leading=FALSE), 2)

, , Lag=1

x1=y1 x2=y2 x3=y3 x4=y4 x5=y5 x6=y6 x7=y7

y1 0 0.00 0.00 0.00 0.00 0.00 0.00

y2 0 1.70 1.03 1.75 0.11 5.57 0.10

y3 0 0.25 0.18 0.03 0.89 0.46 0.30

y4 0 1.22 0.48 61.98 0.89 1.56 5.66

y5 0 0.61 0.64 0.50 71.42 0.03 0.11

y6 0 0.00 0.00 0.00 0.00 0.00 0.00

y7 0 0.00 0.00 0.00 0.00 0.00 0.00

> short.form(Marima3$ma.fvalues, leading=FALSE)

, , Lag=1

x1=y1 x2=y2 x3=y3 x4=y4 x5=y5 x6=y6 x7=y7

y1 0 0.00 0.00 0.00 0.00 0 0

y2 0 0.41 0.25 6.50 1.03 0 0

y3 0 0.02 0.01 2.62 0.02 0 0

y4 0 0.87 0.07 0.35 0.01 0 0

y5 0 0.31 0.39 0.53 17.77 0 0

y6 0 0.00 0.00 0.00 0.00 0 0

y7 0 0.00 0.00 0.00 0.00 0 0
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7.3.2 Multivariate model with legislation regression, ’penalty’ reduced

A model reduction/identification can be performed using the option ’penalty’, for example penalty=1.
We consider all data, including the period where the legislation may have effect.

library(marima)

data(austr)

all.data<-t(austr)[,1:90]

ar<-c(1)

ma<-c(1)

Model4 <- define.model(kvar=7, ar=ar, ma=ma, rem.var=1, reg.var=c(6,7))

Marima4 <- marima(all.data, means=1, ar.pattern=Model4$ar.pattern,

ma.pattern=Model4$ma.pattern, Check=FALSE, Plot="none", penalty=1)

The means=1 declaration (default) ensures that all variables are means adjusted before analysis. It is
equivalent to means=c(1,1,1,1,1,1,1).

round(short.form(Marima4$ar.estimates,leading=FALSE),4)

, , Lag=1

x1=y1 x2=y2 x3=y3 x4=y4 x5=y5 x6=y6 x7=y7

y1 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

y2 0 -0.5619 -0.8153 0.0342 0.0000 0.5733 0.0000 (suicide with f.a.)

y3 0 -0.0608 -0.3171 0.0000 -0.0669 0.0966 0.0000 (homicide with f.a.)

y4 0 0.6533 -1.6631 -0.8268 -0.4720 -0.9667 0.3253 (suicide without f.a.)

y5 0 0.0000 0.0000 0.0000 -0.9801 0.0000 0.0000 (homicide without f.a.)

y6 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

y7 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

> round(short.form(Marima4$ma.estimates,leading=FALSE),4)

, , Lag=1

x1=y1 x2=y2 x3=y3 x4=y4 x5=y5 x6=y6 x7=y7

y1 0 0.0000 0 0.0000 0.0000 0 0

y2 0 0.0000 0 0.1303 -0.2351 0 0

y3 0 0.0000 0 0.0391 0.0000 0 0

y4 0 0.5857 0 0.0000 0.0000 0 0

y5 0 0.0000 0 0.0000 -0.7163 0 0

y6 0 0.0000 0 0.0000 0.0000 0 0

y7 0 0.0000 0 0.0000 0.0000 0 0

It is seen that generally many of the regression coefficients for the intervention (x6) and the regression
(x7) in the penalty=1 reduced model are 0 (zero). For variable y2 (suicides with firearms) a constant
decrease of 0.5733 and no annual decrease or increase from 1997 and onwards is found. For variable 3
(homicide with firearms) a small constant increase of 0.0966 and practically no annual change is found.
For variable 4 (suicide without use of firearms) a constant increase of 0.9667 and an annual decrease of
0.3253 per year is found, but no change of level. For variable 5 (homicide without use of firearms) no
effect from the legislation is found.

One might conclude that the level of the rate of suicides using firearms is decreased by about 0.5733 with
no annual effect. But suicides without using firearms decreases by about 0.3253 per year after an initial
increase of about 0.9667. The rate of homicides (with or without the use of firearms) is generally not
affected by the legislation.
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In order to asses the significance of the model found one may use the F-values of the ar-part of the
estimated model:

> round(short.form(Marima4$ar.fvalues, leading=FALSE), 2)

, , Lag=1

x1=y1 x2=y2 x3=y3 x4=y4 x5=y5 x6=y6 x7=y7

y1 0 0.00 0.00 0.00 0.00 0.00 0.00

y2 0 36.96 6.79 1.43 0.00 8.53 0.00

y3 0 3.04 7.54 0.00 1.44 2.14 0.00

y4 0 5.11 4.55 181.42 1.59 1.88 6.48

y5 0 0.00 0.00 0.00 138.38 0.00 0.00

y6 0 0.00 0.00 0.00 0.00 0.00 0.00

y7 0 0.00 0.00 0.00 0.00 0.00 0.00

An F-value=2.85, having 1 and around 90 degrees of freedom (length of time series), corresponds to
a p-value'10% . Therefore, the dependence of the legislation is only highly significant for variables 2
(suicides with firearms) and 4 (homicide with firearms) with p-values below 1% (1-pf(6.48,1,90)'1.3%).

Further, it is seen that variable 5 does not seem to depend on any of the other variables (2, 3, 4), neither
in the autoregressive nor in the moving average part of the model:

(y5,t − 1.104)− 0.5619 · (y5,t−1 − 1.104) = u5,t − 0.7163 · u5,t−1

in that the mean of the observed y5, 1.104, was subtracted from the observations before the marima-
estimation.

One may analyse the identified model a little further by taking out the arma-part of the model, calculate
its random shock form with many lags (100 say), and print the 25th term:

AR <- Marima4$ar.estimates[2:5, 2:5, 1:2]

MA <- Marima4$ma.estimates[2:5, 2:5, 1:2]

RS <- rand.shock(ar=AR, ma=MA, L=100)

colnames(RS) <- rownames(RS)<-c(2:5)

# Note that dim(RS)=(4,4,100+1)

> round(RS[,,25+1], 4)

2 3 4 5

2 0.0085 -0.0008 -0.0047 -0.0385

3 0.0009 -0.0001 -0.0005 0.0130

4 -0.0607 0.0062 0.0339 0.7906

5 0.0000 0.0000 0.0000 0.1628

It is seen that, for example, the coefficient [4,4] corresponding to the autoregressive term for ’homicide
without use of firearms’ is not close to 0. This indicates that the identified model for ’homicide without
use of firearms’ may be close to being non-stationary. For lag=100 (position 100+1) we find:

> round(RS[,,100+1], 6)

2 3 4 5

2 2.0e-06 0e+00 -1e-06 -0.009376

3 0.0e+00 0e+00 0e+00 0.002780

4 -1.3e-05 1e-06 7e-06 0.181099

5 0.0e+00 0e+00 0e+00 0.036041

which, again, demonstrates that the arma-part of the model is close to being non-stationary. For example,
the code
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> plot(RS[4,4,2:101], type="l", xlab="lag+1", ylim=c(0.0,0.30),

+ main="Plot of (4,4) term in random shock form")
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gives an almost perfectly exponentially, but very slowly, decreasing plot of the (4,4) coefficients in the
random shock representation of the arma model.

7.4 Prediction of timeseries

The routine called arma.forecast is used. We start by estimating our model (as before), and then (using
the prediction-prepared data) we use arma.forecast, and all output is saved in the object created:

library(marima)

# Four variate timeseries of order ARMA(1, 1) with intervention/regression:

data(austr)

all.data <- t(austr)

# austr data.frame been prepared so that future values of regression

# are put in the future positions (from no. 91 and onwards (2005-2014)):

Model4 <- define.model(kvar=7, ar=c(1), ma=c(1), rem.var=c(1), reg.var=6:7)

Marima4 <- marima(all.data[, 1:90], Model5$ar.pattern, Model5$ma.pattern

, Check=FALSE, Plot="none", penalty=1)

# call the forecasting function using Marima and the prepared data:

Forecasts <-

arma.forecast(all.data[, 1:100], nstart=90, nstep=10, marima=Marima4)

### From here on the plot is constructed ###

Year<-all.data[1, 91:100];

Predict <- Forecasts$forecasts[2, 91:100]

stdv <- sqrt(Forecasts$pred.var[2, 2, ])

upper.lim <- Predict + stdv * 1.645

lower.lim <- Predict - stdv * 1.645

Out <- rbind(Year, Predict, upper.lim, lower.lim)

print(Out)

# plot results:

plot(all.data[1, 1:100], Forecasts$forecasts[2, 1:100], type="l",

xlab="Year", ylab="Rate of armed suicides",

main="Prediction of suicides by firearms", ylim=c(0.0, 4.1))

lines(all.data[1, 1:90], all.data[2, 1:90], type="p")

grid(lty=2, lwd=1, col="black")

Years <- 2005:2014

lines(Years, Predict , type="l")
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lines(Years, upper.lim, type="l")

lines(Years, lower.lim, type="l")

lines(c(2004, 2004), c(0, 2) )

The data (o), the 1-step-ahead forecasts (–) and the nstep=10 forecast (–) and a 90% prediction interval
for the forecast are shown in the plot below. Note, that the prediction interval is computed from the
marima-estimates and without taking the estimation uncertainty into account.
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