--- title: "Introduction to Analitica" author: "Carlos Jiménez-Gallardo" date: "`r Sys.Date()`" output: rmarkdown::html_vignette: toc: true toc_depth: 2 number_sections: true vignette: > %\VignetteIndexEntry{Introduction to Analitica} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 7, fig.height = 5 ) library(Analitica) data(d_e, package = "Analitica") ``` # Overview The `Analitica` package provides essential tools for: - Descriptive statistical summaries - Exploratory visualizations - Homoscedasticity tests - Outlier detection - Parametric and non-parametric group comparisons It is suitable for researchers, educators, and analysts seeking quick and interpretable workflows. # 1. Descriptive Analysis Use `descripYG()` to explore a numeric variable, optionally grouped by a categorical variable: ```{r desc-example} data(d_e, package = "Analitica") descripYG(d_e, vd = Sueldo_actual) descripYG(d_e, vd = Sueldo_actual, vi = labor) ``` # 2. Homogeneity of Variance Tests You can assess variance assumptions using manual implementations: ```{r homo-tests} Levene.Test(Sueldo_actual ~ labor, data = d_e) BartlettTest(Sueldo_actual ~ labor, data = d_e) FKTest(Sueldo_actual ~ labor, data = d_e) ``` # 3. Outlier Detection Detect univariate outliers with Grubbs' test: ```{r outliers} res <- grubbs_outliers(d_e, Sueldo_actual) head(res[res$outL == TRUE, ]) ``` # 4. Multiple Comparisons (Post Hoc Tests) Fit an ANOVA model and apply post hoc tests: ```{r comparisons} mod <- aov(Sueldo_actual ~ as.factor(labor), data = d_e) resultado <- GHTest(mod) summary(resultado) plot(resultado) ``` Other methods include `TukeyTest()`, `ScheffeTest()`, `DuncanTest()`, `SNKTest()`, `T2Test()`, and `T3Test()`. # 5. Non-Parametric Tests When assumptions are violated, try: ```{r np-tests} g1 <- d_e$Sueldo_actual[d_e$labor == 1] g2 <- d_e$Sueldo_actual[d_e$labor == 2] MWTest(g1, g2) BMTest(g1, g2) BMpTest(g1, g2) ``` # Conclusion `Analitica` integrates descriptive analysis with robust comparison methods for applied data exploration. For detailed documentation, see `?Analitica` or function-specific help pages like `?GHTest` or `?descripYG`.