## ----------------------------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- # library(dplyr) # library(tibble) # library(kableExtra) # library(tidyr) library(LikertMakeR) ## ----------------------------------------------------------------------------- # reliability( # data, # include = "none", # ci = FALSE, # ci_level = 0.95, # n_boot = 1000, # na_method = c("pairwise", "listwise"), # min_count = 2, # digits = 3, # verbose = TRUE # ) ## ----------------------------------------------------------------------------- # include = c("lambda6", "polychoric") ## ----------------------------------------------------------------------------- # ordinal_diagnostics(result) ## ----------------------------------------------------------------------------- # example correlation matrix my_cor <- LikertMakeR::makeCorrAlpha( items = 4, alpha = 0.80 ) # example correlated dataframe my_data <- LikertMakeR::makeScales( n = 64, means = c(2.75, 3.00, 3.25, 3.50), sds = c(1.25, 1.50, 1.30, 1.25), lowerbound = rep(1, 4), upperbound = rep(5, 4), cormatrix = my_cor ) ## ----------------------------------------------------------------------------- # $\alpha$ and $\omega$ reliability(my_data) ## ----------------------------------------------------------------------------- # $\alpha$, $\omega$ (total), $\lambda 6$, $\omega_h$, and ordinal variants reliability( my_data, include = c("lambda6", "omega_h", "polychoric") ) ## ----------------------------------------------------------------------------- library(knitr) library(kableExtra) decision_table <- data.frame( Situation = c( "Legacy comparison, simple reporting", "Single-factor scale, unequal loadings", "Strength of general factor", "Likert items with skew or ceiling effects", "Teaching or demonstration", "Ordinal data, small samples or sparse categories" ), `Recommended coefficient` = c( "$\\alpha$, Cronbach's alpha", "$\\omega$, McDonalds omega", "$\\omega_h$, Coefficient H", "Ordinal $\\omega$", "$\\alpha$ and $\\omega$", "$\\omega$ (Pearson-based)" ) ) kable( decision_table, format = "html", escape = FALSE, align = c("l", "l") ) |> column_spec(1, width = "60%") |> column_spec(2, width = "40%")