Type: | Package |
Date: | 2025-09-08 |
Title: | Multivariate Hypothesis Tests |
Version: | 2.3.1 |
Author: | Hasan Bulut [aut, cre] |
Maintainer: | Hasan Bulut <hasan.bulut@omu.edu.tr> |
Description: | Multivariate hypothesis tests and confidence intervals... |
License: | GPL-2 |
Depends: | R (≥ 4.0) |
Imports: | stats, mvtnorm |
Suggests: | robustbase, rrcov |
Encoding: | UTF-8 |
LazyData: | true |
RoxygenNote: | 7.3.2 |
NeedsCompilation: | no |
Packaged: | 2025-09-08 18:44:30 UTC; hsn |
Repository: | CRAN |
Date/Publication: | 2025-09-08 21:20:17 UTC |
Bartlett's Test for One Sample Covariance Matrix
Description
Bcov
function tests whether the covariance matrix is equal to a
given matrix or not.
Usage
Bcov(data, Sigma)
Arguments
data |
a data frame. |
Sigma |
The covariance matrix in NULL hypothesis. |
Details
This function computes Bartlett's test statistic for the covariance matrix of one sample.
Value
a list with 3 elements:
ChiSquare |
The value of Test Statistic |
df |
The Chi-Square statistic's degree of freedom |
p.value |
p value |
Author(s)
Hasan BULUT <hasan.bulut@omu.edu.tr>
References
Rencher, A. C. (2003). Methods of multivariate analysis (Vol. 492). John Wiley & Sons.
Examples
data(iris)
S<-matrix(c(5.71,-0.8,-0.6,-0.5,-0.8,4.09,-0.74,-0.54,-0.6,
-0.74,7.38,-0.18,-0.5,-0.54,-0.18,8.33),ncol=4,nrow=4)
result <- Bcov(data=iris[,1:4],Sigma=S)
summary(result)
Box's M Test
Description
BoxM
function tests whether the covariance matrices of independent
samples are equal or not.
Usage
BoxM(data, group)
Arguments
data |
a data frame. |
group |
grouping vector. |
Details
This function computes Box-M test statistic for the covariance matrices of independent samples. The hypotheses are defined as H0:The Covariance matrices are homogeneous and H1:The Covariance matrices are not homogeneous
Value
a list with 3 elements:
ChiSquare |
The value of Test Statistic |
df |
The Chi-Square statistic's degree of freedom |
p.value |
p value |
Author(s)
Hasan BULUT <hasan.bulut@omu.edu.tr>
References
Rencher, A. C. (2003). Methods of multivariate analysis (Vol. 492). John Wiley & Sons.
Examples
data(iris)
results <- BoxM(data=iris[,1:4],group=iris[,5])
summary(results)
Bartlett's Sphericity Test
Description
Bsper
function tests whether a correlation matrix is equal to
the identity matrix or not.
Usage
Bsper(data)
Arguments
data |
a data frame. |
Details
This function computes Bartlett's test statistic for Sphericity Test.
The hypotheses are H0:R is equal to I
and H1:R is not equal to I.
Value
a list with 4 elements:
ChiSquare |
The value of Test Statistic |
df |
The Chi-Square statistic's degree of freedom |
p.value |
p value |
R |
Correlation matrix |
Author(s)
Hasan BULUT <hasan.bulut@omu.edu.tr>
References
Tatlidil, H. (1996). Uygulamali Cok Degiskenli Istatistiksel Yontemler. Cem Web.
Examples
data(iris)
results <- Bsper(data=iris[,1:4])
summary(results)
Coated
Description
The data set is given in Table 5.3 in Rencher (2003). The data set consists of 2 variables (Depth and Number), 2 treatments and 15 observations. The first column of the data is Location numbers.
Usage
Coated
Format
A data frame with 15 rows and 5 columns. The columns are as follows:
- Location
The location numbers of observations.
- Coating1.Depth1
The Depth values in the first treatment
- Coating1.Number1
The Number values in the first treatment
- Coating2.Depth2
The Depth values in the second treatment
- Coating2.Number2
The Number values in the second treatment
Source
The data set is used in the book entitled Methods of Multivariate Analysis (Rencher,2003).
References
Rencher, A. C. (2003). Methods of multivariate analysis (Vol. 492). John Wiley & Sons.
Pair-Wise comparison between hth and gth sample
Description
Pair-Wise comparison of covariance matrices between hth and gth sample
Usage
Mhg(Sh, Sg, S, nh, ng, n)
Arguments
Sh |
the robust covariance matrix of the hth sample |
Sg |
the robust covariance matrix of the gth sample |
S |
the robust pooled covariance matrix. |
nh |
the sample size of the hth sample |
ng |
the sample size of the gth sample |
n |
the sample size of the full data |
Details
Mhg
function computes proposed Mgh values as defined in the paper.
Value
a list with 1 elements:
Mhg |
Mgh value |
Author(s)
Hasan BULUT <hasan.bulut@omu.edu.tr>
References
Bulut, H (2024). A robust permutational test to compare covariance matrices in high dimensional data. (Unpublished)
Examples
if (requireNamespace("rrcov", quietly=TRUE)) {
x1<-mvtnorm::rmvnorm(n = 10,mean = rep(0,20),sigma = diag(20))
x2<-mvtnorm::rmvnorm(n = 10,mean = rep(0,20),sigma = 2*diag(20))
x3<-mvtnorm::rmvnorm(n = 10,mean = rep(0,20),sigma = 3*diag(20))
data<-rbind(x1,x2,x3)
group_label<-c(rep(1,10),rep(2,10),rep(3,10))
n <- nrow(data)
p <- ncol(data)
nk <- table(group_label)
g <- length(nk)
Levels <- unique(group_label)
Si.matrices<-lapply(1:g, function(i) rrcov::CovMrcd(data[(group_label==Levels[i]),],
alpha=0.9)@cov)
Spool <- Reduce("+", Map("*", nk, Si.matrices)) / n
#for the first and second groups
Mhg(Sh = Si.matrices[[1]], Sg = Si.matrices[[2]],S = Spool, nh = nk[1], ng = nk[2], n = n)}
Multivariate Paired Test
Description
Mpaired
function computes the value of test statistic based on
Hotelling T Square
approach in multivariate paired data sets.
Usage
Mpaired(T1, T2)
Arguments
T1 |
The first treatment data. |
T2 |
The second treatment data. |
Details
This function computes one sample Hotelling T^2 statistics for paired data sets.
Value
a list with 7 elements:
HT2 |
The value of Hotelling T^2 Test Statistic |
F |
The value of F Statistic |
df |
The F statistic's degree of freedom |
p.value |
p value |
Descriptive1 |
The descriptive statistics of the first treatment |
Descriptive2 |
The descriptive statistics of the second treatment |
Descriptive.Difference |
The descriptive statistics of the differences |
Author(s)
Hasan BULUT <hasan.bulut@omu.edu.tr>
References
Rencher, A. C. (2003). Methods of multivariate analysis (Vol. 492). John Wiley & Sons.
Examples
data(Coated)
X<-Coated[,2:3]; Y<-Coated[,4:5]
result <- Mpaired(T1=X,T2=Y)
summary(result)
One Sample Hotelling T^2 Test
Description
OneSampleHT2
computes one sample Hotelling T^2 statistics and gives
confidence intervals
Usage
OneSampleHT2(data, mu0, alpha = 0.05)
Arguments
data |
a data frame. |
mu0 |
mean vector that is used to test whether population mean parameter is equal to it. |
alpha |
Significance Level that will be used for confidence intervals.
|
Details
This function computes one sample Hotelling T^2 statistics that is used to
test whether population mean vector is equal to a vector given by a user.
When H0
is rejected, this function computes confidence intervals
for all variables.
Value
a list with 7 elements:
HT2 |
The value of Hotelling T^2 Test Statistic |
F |
The value of F Statistic |
df |
The F statistic's degree of freedom |
p.value |
p value |
CI |
The lower and upper limits of confidence intervals obtained for all variables |
alpha |
The alpha value using in confidence intervals |
Descriptive |
Descriptive Statistics |
Author(s)
Hasan BULUT <hasan.bulut@omu.edu.tr>
References
Rencher, A. C. (2003). Methods of multivariate analysis (Vol. 492). John Wiley & Sons.
Tatlidil, H. (1996). Uygulamali Cok Degiskenli Istatistiksel Yontemler. Cem Web.
Examples
data(iris)
mean0<-c(6,3,1,0.25)
result <- OneSampleHT2(data=iris[1:50,-5],mu0=mean0,alpha=0.05)
summary(result)
Robust Hotelling T^2 Test for One Sample in High Dimensional Data
Description
Robust Hotelling T^2 Test for One Sample in high Dimensional Data
Usage
RHT2(data, mu0, alpha = 0.75, d, q)
Arguments
data |
the data. It must be matrix or data.frame. |
mu0 |
the mean vector which will be used to test the null hypothesis. |
alpha |
numeric parameter controlling the size of the subsets over which the determinant is minimized. Allowed values are between 0.5 and 1 and the default is 0.75. |
d |
the constant in Equation (11) in the study by Bulut (2021). |
q |
the second degree of freedom value of the approximate F distribution in Equation (11) in the study by Bulut (2021). |
Details
RHT2
function performs a robust Hotelling T^2 test in high dimensional test based on the minimum regularized covariance determinant estimators.
This function needs the q and d values. These values can be obtained simRHT2
function.
For more detailed information, you can see the study by Bulut (2021).
Value
a list with 3 elements:
T2 |
The Robust Hotelling T^2 value in high dimensional data |
Fval |
The F value based on T2 |
pval |
The p value based on the approximate F distribution |
Author(s)
Hasan BULUT <hasan.bulut@omu.edu.tr>
References
Bulut, H (2021). A robust Hotelling test statistic for one sample case in high dimensional data, Communication in Statistics: Theory and Methods.
Examples
if (requireNamespace("rrcov", quietly = TRUE)) {
utils::data("octane", package = "rrcov")
mu.clean <- colMeans(octane[-c(25,26,36,37,38,39), ])
RHT2(data = octane, mu0 = mu.clean, alpha = 0.84, d = 1396.59, q = 1132.99)}
Robust CAT Algorithm
Description
RobCat
computes p value based on robust CAT algorithm to compare two means vectors
under multivariate Behrens-Fisher problem.
Usage
RobCat(X, Y, M = 1000, alpha = 0.75)
Arguments
X |
a matrix or data frame for first group. |
Y |
a matrix or data frame for second group. |
M |
iteration number and the default is 1000. |
alpha |
numeric parameter controlling the size of the subsets over which the determinant is minimized; roughly alpha*n, observations are used for computing the determinant. Allowed values are between 0.5 and 1 and the default is 0.75. |
Details
This function computes p value based on robust CAT algorithm to compare two means vectors under multivariate Behrens-Fisher problem. When p value<0.05, it means the difference of two mean vectors is significant statistically.
Value
a list with 2 elements:
Cstat |
Calculated value of test statistic |
pval |
The p value |
Author(s)
Hasan BULUT <hasan.bulut@omu.edu.tr>
Examples
data(iris)
if (requireNamespace("robustbase", quietly=TRUE)) {
RobCat(X=iris[1:20,-5],Y=iris[81:100,-5])}
Robust Permutation Test for Covariance Matrices
Description
Robust Permutation Test for Covariance Matrices in High Dimensional Data
Usage
RobPer_CovTest(x, group, N = 100, alpha = 0.75)
Arguments
x |
the data matrix |
group |
the grouping vector. It must be factor. |
N |
the permutation number and the default value is 100. |
alpha |
numeric parameter controlling the size of the subsets over which the determinant is minimized. Allowed values are between 0.5 and 1 and the default is 0.75. |
Details
RobPer_CovTest
function calculates directly p-value based on the calculated value of test statistics and the permutational distribution of test statistics for covariance matrices of two or more independent samples in high dimensional data based on the minimum regularized covariance determinant estimators.
Value
a list with 3 elements:
pval |
p-value of the robust permutation test process |
TM |
The calculated value of test statistics based on raw data |
Permutations_TM |
The calculated values of test statistics based on each permutational data |
Author(s)
Hasan BULUT <hasan.bulut@omu.edu.tr>
References
Bulut, H (2024). A robust permutational test to compare covariance matrices in high dimensional data. (Unpublished)
Examples
if (requireNamespace("rrcov", quietly=TRUE)) {
x1<-mvtnorm::rmvnorm(n = 10,mean = rep(0,20),sigma = diag(20))
x2<-mvtnorm::rmvnorm(n = 10,mean = rep(0,20),sigma = 2*diag(20))
x3<-mvtnorm::rmvnorm(n = 10,mean = rep(0,20),sigma = 3*diag(20))
data<-rbind(x1,x2,x3)
group_label<-c(rep(1,10),rep(2,10),rep(3,10))
RobPer_CovTest(x=data, group=group_label)}
Robust Test for Covariance Matrices
Description
Robust Test for Covariance Matrices in High Dimensional Data
Usage
Rob_CovTest(x, group, alpha = 0.75)
Arguments
x |
the data matrix |
group |
the grouping vector. It must be factor. |
alpha |
numeric parameter controlling the size of the subsets over which the determinant is minimized. Allowed values are between 0.5 and 1 and the default is 0.75. |
Details
Rob_CovTest
function computes the calculated value of the test statistic for covariance matrices of two or more independent samples in high dimensional data based on the minimum regularized covariance determinant estimators.
Value
a list with 1 elements:
TM |
The calculated value of test statistics based on raw data |
Author(s)
Hasan BULUT <hasan.bulut@omu.edu.tr>
References
Bulut, H (2024). A robust permutational test to compare covariance matrices in high dimensional data. (Unpublished)
Examples
if (requireNamespace("rrcov", quietly=TRUE)) {
x1<-mvtnorm::rmvnorm(n = 8,mean = rep(0,10),sigma = diag(10))
x2<-mvtnorm::rmvnorm(n = 8,mean = rep(0,10),sigma = 2*diag(10))
x3<-mvtnorm::rmvnorm(n = 8,mean = rep(0,10),sigma = 3*diag(10))
data<-rbind(x1,x2,x3)
group_label<-c(rep(1,8),rep(2,8),rep(3,8))
Rob_CovTest(x=data, group=group_label)}
Robust Permutation Hotelling T^2 Test in High Dimensional Data
Description
Robust Permutation Hotelling T^2 Test for Two Independent Samples in high Dimensional Data
Usage
RperT2(X1, X2, alpha = 0.75, N = 100)
Arguments
X1 |
the data matrix for the first group. It must be matrix or data.frame. |
X2 |
the data matrix for the first group. It must be matrix or data.frame. |
alpha |
numeric parameter controlling the size of the subsets over which the determinant is minimized. Allowed values are between 0.5 and 1 and the default is 0.75. |
N |
the permutation number |
Details
RperT2
function performs a robust permutation Hotelling T^2 test for two independent samples in high dimensional test based on the minimum regularized covariance determinant estimators.
Value
a list with 2 elements:
T2 |
The calculated value of Robust Hotelling T^2 statistic based on MRCD estimations |
p.value |
p value obtained from test process |
Author(s)
Hasan BULUT <hasan.bulut@omu.edu.tr>
References
Bulut et al. (2024). A Robust High-Dimensional Test for Two-Sample Comparisons, Axioms.
Examples
if (requireNamespace("rrcov", quietly=TRUE)) {
x<-mvtnorm::rmvnorm(n=10,sigma=diag(20),mean=rep(0,20))
y<-mvtnorm::rmvnorm(n=10,sigma=diag(20),mean=rep(1,20))
RperT2(X1=x,X2=y)$p.value}
Robust Hotelling T^2 Test Statistic
Description
Robust Hotelling T^2 Test Statistic for Two Independent Samples in high Dimensional Data
Usage
TR2(x1, x2, alpha = 0.75)
Arguments
x1 |
the data matrix for the first group. It must be matrix or data.frame. |
x2 |
the data matrix for the first group. It must be matrix or data.frame. |
alpha |
numeric parameter controlling the size of the subsets over which the determinant is minimized. Allowed values are between 0.5 and 1 and the default is 0.75. |
Details
TR2
function calculates the robust Hotelling T^2 test statistic for two independent samples in high dimensional data based on the minimum regularized covariance determinant estimators.
Value
a list with 2 elements:
TR2 |
The calculated value of Robust Hotelling T^2 statistic based on MRCD estimations |
Author(s)
Hasan BULUT <hasan.bulut@omu.edu.tr>
References
Bulut et al. (2024). A Robust High-Dimensional Test for Two-Sample Comparisons, Axioms
Examples
if (requireNamespace("rrcov", quietly=TRUE)) {
x<-mvtnorm::rmvnorm(n=10,sigma=diag(20),mean=rep(0,20))
y<-mvtnorm::rmvnorm(n=10,sigma=diag(20),mean=rep(1,20))
TR2(x1=x,x2=y)}
Two Independent Samples Hotelling T^2 Test
Description
TwoSamplesHT2
function computes Hotelling T^2 statistic for two
independent samples and gives confidence intervals.
Usage
TwoSamplesHT2(data, group, alpha = 0.05, Homogenity = TRUE)
Arguments
data |
a data frame. |
group |
a group vector consisting of 1 and 2 values. |
alpha |
Significance Level that will be used for confidence intervals. default=0.05 |
Homogenity |
a logical argument. If sample covariance matrices are
homogeneity,then |
Details
This function computes two independent samples Hotelling T^2 statistics
that is used to test
whether two population mean vectors are equal to each other.
When H0
is rejected, this function computes confidence intervals
for all variables to determine variable(s) affecting on rejection decision.
Moreover, when covariance matrices are not homogeneity, the approach proposed
by D. G. Nel and V. D. Merwe (1986) is used.
Value
a list with 8 elements:
HT2 |
The value of Hotelling T^2 Test Statistic |
F |
The value of F Statistic |
df |
The F statistic's degree of freedom |
p.value |
p value |
CI |
The lower and upper limits of confidence intervals obtained for all variables |
alpha |
The alpha value using in confidence intervals |
Descriptive1 |
Descriptive Statistics for the first group |
Descriptive2 |
Descriptive Statistics for the second group |
Author(s)
Hasan BULUT <hasan.bulut@omu.edu.tr>
References
Rencher, A. C. (2003). Methods of multivariate analysis (Vol. 492). John Wiley & Sons.
Tatlidil, H. (1996). Uygulamali Cok Degiskenli Istatistiksel Yontemler. Cem Web.
D.G. Nel & C.A. Van Der Merwe (1986) A solution to the multivariate behrens fisher problem, Communications in Statistics:Theory and Methods, 15:12, 3719-3735
Examples
data(iris)
G<-c(rep(1,50),rep(2,50))
# When covariances matrices are homogeneity
results1 <- TwoSamplesHT2(data=iris[1:100,1:4],group=G,alpha=0.05)
summary(results1)
# When covariances matrices are not homogeneity
results2 <- TwoSamplesHT2(data=iris[1:100,1:4],group=G,Homogenity=FALSE)
summary(results2)
Concordance Correlation Coefficient
Description
Classical Concordance Correlation Coefficient
Usage
ccc(x, y)
Arguments
x |
the vector which contains the first variable values |
y |
the vector which contains the second variable values |
Details
ccc
function calculates directly classical concordance correlation coefficient.
Value
a list with 1 elements:
coef |
The value of concordance correlation coeffient |
Author(s)
Hasan BULUT <hasan.bulut@omu.edu.tr>
References
Bulut, H (2025). A Robust Concordance Correlation Coefficient. (Unpublished)
Lin, L. I. "A Concordance Correlation-Coefficient to Evaluate Reproducibility." Biometrics 45, no. 1 (1989): 255-68.
Examples
x<-rnorm(50)
y<-2+3*x+rnorm(50,mean = 3)
ccc(x,y)
Iris Data
Description
The Iris dataset is consists of 4 variables, 3 groups and 150 observations. The last column of the data is Iris species.
Usage
iris
Format
A data frame with 150 rows and 5 columns. The columns are as follows:
- Sepal.Length
The Sepal length values of iris flowers
- Sepal.Width
The Sepal width values of iris flowers
- Petal.Length
The Petal length values of iris flowers
- Petal.Width
The Petal width values of iris flowers
- Species
The species of iris flowers
Source
https://archive.ics.uci.edu/ml/datasets/Iris
Robust Concordance Correlation Coefficient (rCCC)
Description
Computes a robust concordance correlation coefficient using Minimum Covariance Determinant (MCD) estimates.
Usage
rccc(x, y, alpha = 0.75)
Arguments
x |
Numeric vector; first variable. |
y |
Numeric vector; second variable. |
alpha |
Numeric in (0.5, 1]; MCD subset size proportion. Default 0.75. |
Details
The rCCC replaces means and (co)variances in Lin's CCC with their
MCD counterparts: \rho_c = \frac{2\sigma_{xy}}{\sigma_x^2+\sigma_y^2+(\mu_x-\mu_y)^2}
.
Value
A list with one element:
coef |
Robust concordance correlation coefficient |
Author(s)
Hasan BULUT <hasan.bulut@omu.edu.tr>
References
Bulut, H. (2025). A Robust Concordance Correlation Coefficient. (Unpublished)
Examples
if (requireNamespace("robustbase", quietly = TRUE)) {
set.seed(1)
x <- rnorm(50)
y <- 2 + 3*x + rnorm(50, mean = 3)
rccc(x, y)
}
Monte Carlo Simulation to obtain d and q constants for RHT2 function
Description
Monte Carlo Simulation to obtain d and q constants for RHT2 function
Usage
simRHT2(n, p, nrep = 500, alpha = 0.75)
Arguments
n |
the sample size |
p |
the number of variables |
nrep |
the number of iteration. The default value is 500. |
alpha |
numeric parameter controlling the size of the subsets over which the determinant is minimized. Allowed values are between 0.5 and 1 and the default is 0.75. |
Details
simRHT2
function computes d and q constants to construct an approximate
F distribution of robust Hotelling T^2 statistic in high dimensional data.
These constants are used in RHT2
function.
For more detailed information, you can see the study by Bulut (2021).
Value
a list with 2 elements:
q |
The q value |
d |
The d value |
Author(s)
Hasan BULUT <hasan.bulut@omu.edu.tr>
References
Bulut, H (2021). A robust Hotelling test statistic for one sample case in highdimensional data, Communication in Statistics: Theory and Methods.
Summarizing Results in MVTests Package
Description
summary.MVTests
function summarizes of results of functions in this
package.
Usage
## S3 method for class 'MVTests'
summary(object, ...)
Arguments
object |
an object of class |
... |
additional parameters. |
Details
This function prints a summary of the results of multivariate hypothesis
tests in the MVTests
package.
Value
the input object is returned silently.
Author(s)
Hasan BULUT <hasan.bulut@omu.edu.tr>
Examples
# One Sample Hotelling T Square Test
data(iris)
X<-iris[1:50,1:4]
mean0<-c(6,3,1,0.25)
result.onesample <- OneSampleHT2(data=X,mu0=mean0,alpha=0.05)
summary(result.onesample)
#Two Independent Sample Hotelling T Square Test
data(iris)
G<-c(rep(1,50),rep(2,50))
result.twosamples <- TwoSamplesHT2(data=iris[1:100,1:4],group=G,alpha=0.05)
summary(result.twosamples)
#Box's M Test
data(iris)
result.BoxM <- BoxM(data=iris[,1:4],group=iris[,5])
summary(result.BoxM)
#Barlett's Test of Sphericity
data(iris)
result.Bsper <- Bsper(data=iris[,1:4])
summary(result.Bsper)
#Bartlett's Test for One Sample Covariance Matrix
data(iris)
S<-matrix(c(5.71,-0.8,-0.6,-0.5,-0.8,4.09,-0.74,-0.54,-0.6,-0.74,
7.38,-0.18,-0.5,-0.54,-0.18,8.33),ncol=4,nrow=4)
result.bcov<- Bcov(data=iris[,1:4],Sigma=S)
summary(result.bcov)