| Type: | Package | 
| Title: | Normalize Gene Expression Data using Evaluated Methods | 
| Version: | 0.1.1 | 
| Author: | Zhenfeng Wu , Shan Gao | 
| Maintainer: | Shan Gao <gao_shan@mail.nankai.edu.cn> | 
| Description: | It provides a framework and a fast and simple way for researchers to evaluate methods (particularly some data-driven methods or their own methods) and then select a best one for data normalization in the gene expression analysis, based on the consistency of metrics and the consistency of datasets. Zhenfeng Wu, Weixiang Liu, Xiufeng Jin, Deshui Yu, Hua Wang, Gustavo Glusman, Max Robinson, Lin Liu, Jishou Ruan and Shan Gao (2018) <doi:10.1101/251140>. | 
| License: | Artistic-2.0 | 
| Encoding: | UTF-8 | 
| LazyData: | true | 
| NeedsCompilation: | no | 
| Packaged: | 2024-03-19 12:30:07 UTC; wuzf | 
| Depends: | R (≥ 2.10) | 
| Repository: | CRAN | 
| Date/Publication: | 2024-03-20 04:40:02 UTC | 
CV2AUCVC
Description
Please refer to the file /inst/doc/readme.pdf.
Usage
CV2AUCVC(data, cvResolution = 0.005)
Arguments
| data | Please refer to the file /inst/doc/readme.pdf. | 
| cvResolution | Please refer to the file /inst/doc/readme.pdf. | 
Examples
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.
## The function is currently defined as
function (data, cvResolution = 0.005)
{
    cv_cutoff <- NULL
    uniform_genes_counts <- NULL
    for (i in seq(0, 1, cvResolution)) {
        cv_cutoff <- c(cv_cutoff, i)
        gene_number <- length(which(data <= i))
        uniform_genes_counts <- c(uniform_genes_counts, gene_number)
    }
    getArea(cv_cutoff, uniform_genes_counts)
  }
bkRNA18
Description
Please refer to the file /inst/doc/readme.pdf.
Usage
data("bkRNA18")Format
A data frame with 57955 observations on the following 18 variables.
- col36l6_1
- a numeric vector 
- col38l6_3
- a numeric vector 
- col39l6_5
- a numeric vector 
- col40l6_7
- a numeric vector 
- col44l6_9
- a numeric vector 
- col45l6_11
- a numeric vector 
- col47l6_13
- a numeric vector 
- col48l6_97
- a numeric vector 
- col52l6_17
- a numeric vector 
- col36l6_2
- a numeric vector 
- col38l6_4
- a numeric vector 
- col39l6_6
- a numeric vector 
- col40l6_8
- a numeric vector 
- col44l6_10
- a numeric vector 
- col45l6_12
- a numeric vector 
- col47l6_14
- a numeric vector 
- col48l6_98
- a numeric vector 
- col52l6_18
- a numeric vector 
Examples
data(bkRNA18)
## maybe str(bkRNA18) ; plot(bkRNA18) ...
bkRNA18_factors
Description
Please refer to the file /inst/doc/readme.pdf.
Usage
data("bkRNA18_factors")Format
A data frame with 18 observations on the following 13 variables.
- HG7
- a numeric vector 
- ERCC
- a numeric vector 
- TN
- a numeric vector 
- TC
- a numeric vector 
- CR
- a numeric vector 
- NR
- a numeric vector 
- DESeq
- a numeric vector 
- UQ
- a numeric vector 
- TMM
- a numeric vector 
- TU
- a numeric vector 
- NCS
- a numeric vector 
- ES
- a numeric vector 
- GAPDH
- a numeric vector 
Examples
data(bkRNA18_factors)
## maybe str(bkRNA18_factors) ; plot(bkRNA18_factors) ...
calcFactorRLE
Description
Please refer to the file /inst/doc/readme.pdf.
Usage
calcFactorRLE(data, p = p)
Arguments
| data | Please refer to the file /inst/doc/readme.pdf. | 
| p | Please refer to the file /inst/doc/readme.pdf. | 
Examples
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.
## The function is currently defined as
function (data, p = p)
{
    gm <- exp(rowMeans(.log(data), na.rm = TRUE))
    apply(data, 2, function(u) quantile((u/gm)[u != 0], na.rm = TRUE,
        p = p))
  }
calcFactorUpperquartile
Description
Please refer to the file /inst/doc/readme.pdf.
Usage
calcFactorUpperquartile(data, lib.size, p = p)
Arguments
| data | Please refer to the file /inst/doc/readme.pdf. | 
| lib.size | Please refer to the file /inst/doc/readme.pdf. | 
| p | Please refer to the file /inst/doc/readme.pdf. | 
Examples
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.
## The function is currently defined as
function (data, lib.size, p = p)
{
    y <- t(t(data)/lib.size)
    f <- apply(y, 2, function(x) quantile(x[x != 0], p = p))
  }
calcFactorWeighted
Description
Please refer to the file /inst/doc/readme.pdf.
Usage
calcFactorWeighted(obs, ref, libsize.obs, libsize.ref, logratioTrim,
sumTrim, doWeighting, Acutoff)
Arguments
| obs | Please refer to the file /inst/doc/readme.pdf. | 
| ref | Please refer to the file /inst/doc/readme.pdf. | 
| libsize.obs | Please refer to the file /inst/doc/readme.pdf. | 
| libsize.ref | Please refer to the file /inst/doc/readme.pdf. | 
| logratioTrim | Please refer to the file /inst/doc/readme.pdf. | 
| sumTrim | Please refer to the file /inst/doc/readme.pdf. | 
| doWeighting | Please refer to the file /inst/doc/readme.pdf. | 
| Acutoff | Please refer to the file /inst/doc/readme.pdf. | 
Examples
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.
## The function is currently defined as
function (obs, ref, libsize.obs = NULL, libsize.ref = NULL, logratioTrim = 0.3,
    sumTrim = 0.05, doWeighting = TRUE, Acutoff = -1e+10)
{
    if (all(obs == ref))
        return(1)
    obs <- as.numeric(obs)
    ref <- as.numeric(ref)
    if (is.null(libsize.obs))
        nO <- sum(obs)
    else nO <- libsize.obs
    if (is.null(libsize.ref))
        nR <- sum(ref)
    else nR <- libsize.ref
    logR <- log2((obs/nO)/(ref/nR))
    absE <- (log2(obs/nO) + log2(ref/nR))/2
    v <- (nO - obs)/nO/obs + (nR - ref)/nR/ref
    fin <- is.finite(logR) & is.finite(absE) & (absE > Acutoff)
    logR <- logR[fin]
    absE <- absE[fin]
    v <- v[fin]
    n <- length(logR)
    loL <- floor(n * logratioTrim) + 1
    hiL <- n + 1 - loL
    loS <- floor(n * sumTrim) + 1
    hiS <- n + 1 - loS
    keep <- (rank(logR) >= loL & rank(logR) <= hiL) & (rank(absE) >=
        loS & rank(absE) <= hiS)
    if (doWeighting) {
        2^(sum(logR[keep]/v[keep], na.rm = TRUE)/sum(1/v[keep],
            na.rm = TRUE))
    }
    else {
        2^(mean(logR[keep], na.rm = TRUE))
    }
  }
change_colours
Description
Please refer to the file /inst/doc/readme.pdf.
Usage
change_colours(p, palette, type)
Arguments
| p | Please refer to the file /inst/doc/readme.pdf. | 
| palette | Please refer to the file /inst/doc/readme.pdf. | 
| type | Please refer to the file /inst/doc/readme.pdf. | 
Examples
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.
## The function is currently defined as
function (p, palette, type)
{
    n <- nlevels(p$data[[deparse(p$mapping$group)]])
    tryCatch(as.character(palette), error = function(e) stop("be vector",call. = FALSE))
    if (n > length(palette))
        stop("Not enough colours in palette.")
    if (missing(type))
        type <- grep("colour|fill", names(p$layers[[1]]$mapping),
            value = TRUE)[1]
    pal <- function(n) palette[seq_len(n)]
    p + discrete_scale(type, "foo", pal)
  }
estimateSizeFactorsForMatrix
Description
Please refer to the file /inst/doc/readme.pdf.
Usage
estimateSizeFactorsForMatrix(data, p = p)
Arguments
| data | Please refer to the file /inst/doc/readme.pdf. | 
| p | Please refer to the file /inst/doc/readme.pdf. | 
Examples
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.
## The function is currently defined as
function (data, p = p)
{
    loggeomeans <- rowMeans(.log(data), na.rm = TRUE)
    apply(data, 2, function(cnts) exp(quantile(.log(cnts) - loggeomeans,
        na.rm = TRUE, p = p)))
  }
filteredZero
Description
Please refer to the file /inst/doc/readme.pdf.
Usage
filteredZero(data, nonzeroRatio)
Arguments
| data | Please refer to the file /inst/doc/readme.pdf. | 
| nonzeroRatio | Please refer to the file /inst/doc/readme.pdf. | 
Examples
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.
## The function is currently defined as
function (data, nonzeroRatio)
{
    nozeroCount <- apply(data, 1, function(x) length(which(x !=
        0)))
    geneIndex <- which(nozeroCount >= ncol(data) * nonzeroRatio)
    return(geneIndex)
  }
findGenes
Description
Please refer to the file /inst/doc/readme.pdf.
Usage
findGenes(g, qlower = NULL, qupper = NULL, pre_ratio = NULL)
Arguments
| g | Please refer to the file /inst/doc/readme.pdf. | 
| qlower | Please refer to the file /inst/doc/readme.pdf. | 
| qupper | Please refer to the file /inst/doc/readme.pdf. | 
| pre_ratio | Please refer to the file /inst/doc/readme.pdf. | 
Examples
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.
## The function is currently defined as
function (g, qlower = NULL, qupper = NULL, pre_ratio = NULL)
{
    gene_name <- rownames(g)
    g <- unlist(g)
    seen <- which(g >= qlower & g <= qupper)
    counts <- length(seen)
    if (counts >= pre_ratio * length(g)) {
        gene_name
    }
  }
gatherCVs
Description
Please refer to the file /inst/doc/readme.pdf.
Usage
gatherCVs(data,nonzeroRatio,HG7,ERCC,TN,TC,CR,NR,
DESeq,UQ,TMM,TU,GAPDH,cvNorm,cvResolution)
Arguments
| data | Please refer to the file /inst/doc/readme.pdf. | 
| nonzeroRatio | Please refer to the file /inst/doc/readme.pdf. | 
| HG7 | Please refer to the file /inst/doc/readme.pdf. | 
| ERCC | Please refer to the file /inst/doc/readme.pdf. | 
| TN | Please refer to the file /inst/doc/readme.pdf. | 
| TC | Please refer to the file /inst/doc/readme.pdf. | 
| CR | Please refer to the file /inst/doc/readme.pdf. | 
| NR | Please refer to the file /inst/doc/readme.pdf. | 
| DESeq | Please refer to the file /inst/doc/readme.pdf. | 
| UQ | Please refer to the file /inst/doc/readme.pdf. | 
| TMM | Please refer to the file /inst/doc/readme.pdf. | 
| TU | Please refer to the file /inst/doc/readme.pdf. | 
| GAPDH | Please refer to the file /inst/doc/readme.pdf. | 
| cvNorm | Please refer to the file /inst/doc/readme.pdf. | 
| cvResolution | Please refer to the file /inst/doc/readme.pdf. | 
Examples
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.
## The function is currently defined as
function (data, nonzeroRatio = NULL, HG7 = NULL, ERCC = NULL,
    TN = NULL, TC = NULL, CR = NULL, NR = NULL, DESeq = NULL,
    UQ = NULL, TMM = NULL, TU = NULL, GAPDH = NULL, cvNorm = TRUE,
    cvResolution = 0.005)
{
    if (is.null(nonzeroRatio)) {
        stop("Please provide nonzeroRatio!")
    }
    methodsList <- list(HG7 = HG7, ERCC = ERCC, TN = TN, TC = TC,
        CR = CR, NR = NR, DESeq = DESeq, UQ = UQ, TMM = TMM,
        TU = TU, GAPDH = GAPDH)
    specifiedMethods <- methodsList[!unlist(lapply(methodsList,
        is.null))]
    numMethod <- length(specifiedMethods)
    method_range_tmp <- seq(1, numMethod, 1)
    cv_range_tmp <- seq(0, 1, cvResolution)
    method_range_times <- length(cv_range_tmp)
    cv_range_times <- length(method_range_tmp)
    method_range <- rep(method_range_tmp, each = round(method_range_times))
    cv_range <- rep(cv_range_tmp, times = round(cv_range_times))
    nozeroIndex <- filteredZero(data, nonzeroRatio = nonzeroRatio)
    for (j in method_range_tmp) {
        norm.matrix <- getNormMatrix(data, specifiedMethods[[j]])
        dataUse2CV <- norm.matrix[nozeroIndex, ]
        cv.result <- getCV(dataUse2CV, cvNorm = cvNorm)
        assign(paste(names(specifiedMethods)[j], ".cv", sep = ""),
            cv.result)
    }
    cv_uniform <- NULL
    cv_uniform_all <- mapply(function(i, j) {
        cv.result <- paste(names(specifiedMethods)[j], ".cv",
            sep = "")
        gene_number <- length(which(get(cv.result) <= i))
        cv_uniform_row <- c(i, gene_number, names(specifiedMethods)[j])
        rbind(cv_uniform, cv_uniform_row)
    }, cv_range, method_range)
    cv_uniform_all <- t(cv_uniform_all)
    colnames(cv_uniform_all) <- c("Cutoff", "Counts", "Methods")
    return(cv_uniform_all)
  }
gatherCVs4Matrices
Description
Please refer to the file /inst/doc/readme.pdf.
Usage
gatherCVs4Matrices(..., raw_matrix, nonzeroRatio , cvNorm , cvResolution = 0.005)
Arguments
| ... | Please refer to the file /inst/doc/readme.pdf. | 
| raw_matrix | Please refer to the file /inst/doc/readme.pdf. | 
| nonzeroRatio | Please refer to the file /inst/doc/readme.pdf. | 
| cvNorm | Please refer to the file /inst/doc/readme.pdf. | 
| cvResolution | Please refer to the file /inst/doc/readme.pdf. | 
Examples
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.
## The function is currently defined as
function (..., raw_matrix, nonzeroRatio = NULL, cvNorm = TRUE,
    cvResolution = 0.005)
{
    if (is.null(nonzeroRatio)) {
        stop("Please provide nonzeroRatio!")
    }
    matrices <- list(...)
    matrices_name <- names(matrices)
    numMethod <- length(matrices)
    method_range_tmp <- seq(1, numMethod, 1)
    cv_range_tmp <- seq(0, 1, cvResolution)
    method_range_times <- length(cv_range_tmp)
    cv_range_times <- length(method_range_tmp)
    method_range <- rep(method_range_tmp, each = round(method_range_times))
    cv_range <- rep(cv_range_tmp, times = round(cv_range_times))
    nozeroIndex <- filteredZero(raw_matrix, nonzeroRatio = nonzeroRatio)
    for (j in method_range_tmp) {
        dataUse2CV <- matrices[[j]][nozeroIndex, ]
        cv.result <- getCV(dataUse2CV, cvNorm = cvNorm)
        assign(paste(matrices_name[j], ".cv", sep = ""), cv.result)
    }
    cv_uniform <- NULL
    cv_uniform_all <- mapply(function(i, j) {
        cv.result <- paste(matrices_name[j], ".cv", sep = "")
        gene_number <- length(which(get(cv.result) <= i))
        cv_uniform_row <- c(i, gene_number, matrices_name[j])
        rbind(cv_uniform, cv_uniform_row)
    }, cv_range, method_range)
    cv_uniform_all <- t(cv_uniform_all)
    colnames(cv_uniform_all) <- c("Cutoff", "Counts", "Methods")
    return(cv_uniform_all)
  }
gatherCors
Description
Please refer to the file /inst/doc/readme.pdf.
Usage
gatherCors(data, cor_method = c("spearman", "pearson", "kendall"),
HG7 = NULL, ERCC = NULL, TN = NULL, TC = NULL, CR = NULL, NR = NULL,
DESeq = NULL, UQ = NULL, TMM = NULL, TU = NULL, GAPDH = NULL,
pre_ratio = 0.5, lower_trim = 0.05, upper_trim = 0.65, rounds = 1e+06)
Arguments
| data | Please refer to the file /inst/doc/readme.pdf. | 
| cor_method | Please refer to the file /inst/doc/readme.pdf. | 
| HG7 | Please refer to the file /inst/doc/readme.pdf. | 
| ERCC | Please refer to the file /inst/doc/readme.pdf. | 
| TN | Please refer to the file /inst/doc/readme.pdf. | 
| TC | Please refer to the file /inst/doc/readme.pdf. | 
| CR | Please refer to the file /inst/doc/readme.pdf. | 
| NR | Please refer to the file /inst/doc/readme.pdf. | 
| DESeq | Please refer to the file /inst/doc/readme.pdf. | 
| UQ | Please refer to the file /inst/doc/readme.pdf. | 
| TMM | Please refer to the file /inst/doc/readme.pdf. | 
| TU | Please refer to the file /inst/doc/readme.pdf. | 
| GAPDH | Please refer to the file /inst/doc/readme.pdf. | 
| pre_ratio | Please refer to the file /inst/doc/readme.pdf. | 
| lower_trim | Please refer to the file /inst/doc/readme.pdf. | 
| upper_trim | Please refer to the file /inst/doc/readme.pdf. | 
| rounds | Please refer to the file /inst/doc/readme.pdf. | 
Examples
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.
## The function is currently defined as
function (data, cor_method = c("spearman", "pearson", "kendall"),
    HG7 = NULL, ERCC = NULL, TN = NULL, TC = NULL, CR = NULL,
    NR = NULL, DESeq = NULL, UQ = NULL, TMM = NULL, TU = NULL,
    GAPDH = NULL, pre_ratio = 0.5, lower_trim = 0.05, upper_trim = 0.65,
    rounds = 1e+06)
{
    methodsList <- list(HG7 = HG7, ERCC = ERCC, TN = TN, TC = TC,
        CR = CR, NR = NR, DESeq = DESeq, UQ = UQ, TMM = TMM,
        TU = TU, GAPDH = GAPDH)
    specifiedMethods <- methodsList[!unlist(lapply(methodsList,
        is.null))]
    numMethod <- length(specifiedMethods)
    method_range <- seq(1, numMethod, 1)
    ubq_genes <- identifyUbq(data, pre_ratio = pre_ratio, lower_trim = lower_trim,
        upper_trim = upper_trim, min_ubq = 100)
    cor_value_method <- NULL
    for (j in method_range) {
        norm.matrix <- getNormMatrix(data, specifiedMethods[[j]])
        dataUse2Cor <- norm.matrix[ubq_genes, ]
        cor.result <- getCor(dataUse2Cor, method = cor_method,
            rounds = rounds)
        cor_vm <- cbind(cor.result, rep(names(specifiedMethods)[j],
            times = round(rounds)))
        cor_value_method <- rbind(cor_value_method, cor_vm)
    }
    colnames(cor_value_method) <- c("Value", "Methods")
    return(cor_value_method)
  }
gatherCors4Matrices
Description
Please refer to the file /inst/doc/readme.pdf.
Usage
gatherCors4Matrices(..., raw_matrix, cor_method = c("spearman", "pearson", "kendall"),
pre_ratio = 0.5, lower_trim = 0.05, upper_trim = 0.65, rounds = 1e+06)
Arguments
| ... | Please refer to the file /inst/doc/readme.pdf. | 
| raw_matrix | Please refer to the file /inst/doc/readme.pdf. | 
| cor_method | Please refer to the file /inst/doc/readme.pdf. | 
| pre_ratio | Please refer to the file /inst/doc/readme.pdf. | 
| lower_trim | Please refer to the file /inst/doc/readme.pdf. | 
| upper_trim | Please refer to the file /inst/doc/readme.pdf. | 
| rounds | Please refer to the file /inst/doc/readme.pdf. | 
Examples
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.
## The function is currently defined as
function (..., raw_matrix, cor_method = c("spearman", "pearson",
    "kendall"), pre_ratio = 0.5, lower_trim = 0.05, upper_trim = 0.65,
    rounds = 1e+06)
{
    matrices <- list(...)
    numMethod <- length(matrices)
    method_range <- seq(1, numMethod, 1)
    ubq_genes <- identifyUbq(raw_matrix, pre_ratio = pre_ratio,
        lower_trim = lower_trim, upper_trim = upper_trim, min_ubq = 100)
    cor_value_method <- NULL
    for (j in method_range) {
        dataUse2Cor <- matrices[[j]][ubq_genes, ]
        cor.result <- getCor(dataUse2Cor, method = cor_method,
            rounds = rounds)
        cor_vm <- cbind(cor.result, rep(names(matrices)[j], times = round(rounds)))
        cor_value_method <- rbind(cor_value_method, cor_vm)
    }
    colnames(cor_value_method) <- c("Value", "Methods")
    return(cor_value_method)
  }
gatherFactors
Description
Please refer to the file /inst/doc/readme.pdf.
Usage
gatherFactors(data,
methods = c("HG7", "ERCC", "TN", "TC", "CR", "NR", "DESeq", "UQ", "TMM", "TU"),
HG7.size = NULL, ERCC.size = NULL, TN.size = NULL, TC.size = NULL,
CR.size = NULL, NR.size = NULL, pre_ratio = 0.5,
lower_trim = 0.05, upper_trim = 0.65, min_ubq = 100)
Arguments
| data | Please refer to the file /inst/doc/readme.pdf. | 
| methods | Please refer to the file /inst/doc/readme.pdf. | 
| HG7.size | Please refer to the file /inst/doc/readme.pdf. | 
| ERCC.size | Please refer to the file /inst/doc/readme.pdf. | 
| TN.size | Please refer to the file /inst/doc/readme.pdf. | 
| TC.size | Please refer to the file /inst/doc/readme.pdf. | 
| CR.size | Please refer to the file /inst/doc/readme.pdf. | 
| NR.size | Please refer to the file /inst/doc/readme.pdf. | 
| pre_ratio | Please refer to the file /inst/doc/readme.pdf. | 
| lower_trim | Please refer to the file /inst/doc/readme.pdf. | 
| upper_trim | Please refer to the file /inst/doc/readme.pdf. | 
| min_ubq | Please refer to the file /inst/doc/readme.pdf. | 
Examples
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.
## The function is currently defined as
function (data, methods = c("HG7", "ERCC", "TN", "TC", "CR",
    "NR", "DESeq", "UQ", "TMM", "TU"), HG7.size = NULL, ERCC.size = NULL,
    TN.size = NULL, TC.size = NULL, CR.size = NULL, NR.size = NULL,
    pre_ratio = 0.5, lower_trim = 0.05, upper_trim = 0.65, min_ubq = 100)
{
    method1 <- as.list(methods)
    numMethod <- length(method1)
    method_range <- seq(1, numMethod, 1)
    for (i in method_range) {
        if (method1[[i]] == "HG7" || method1[[i]] == "ERCC" ||
            method1[[i]] == "TN" || method1[[i]] == "TC" || method1[[i]] ==
            "CR" || method1[[i]] == "NR") {
            size.name <- paste(method1[[i]], ".size", sep = "")
            out.name1 <- paste(method1[[i]], ".factors", sep = "")
            if (is.null(size.name)) {
                stop("Please provide", size.name, "!")
            }
            else {
                assign(out.name1, getFactors(data, method = "sizefactor",
                  lib.size = get(size.name)))
            }
        }
        if (method1[[i]] == "DESeq" || method1[[i]] == "RLE" ||
            method1[[i]] == "UQ" || method1[[i]] == "TMM") {
            out.name2 <- paste(method1[[i]], ".factors", sep = "")
            assign(out.name2, getFactors(data, method = method1[[i]]))
        }
        if (method1[[i]] == "TU") {
            TU.factors <- getFactors(data, method = "TU", pre_ratio = pre_ratio,
                lower_trim = lower_trim, upper_trim = upper_trim,
                min_ubq = min_ubq)
        }
    }
    factors.list <- NULL
    for (m in methods) {
        m.factors <- paste(m, ".factors", sep = "")
        factors.list <- c(factors.list, m.factors)
    }
    factors.result <- NULL
    for (i in method_range) {
        factors.result <- cbind(factors.result, get(factors.list[i]))
    }
    colnames(factors.result) <- methods
    return(factors.result)
  }
getAUCVC
Description
Please refer to the file /inst/doc/readme.pdf.
Usage
getAUCVC(data, nonzeroRatio = NULL, cvNorm = TRUE, cvResolution = 0.005)
Arguments
| data | Please refer to the file /inst/doc/readme.pdf. | 
| nonzeroRatio | Please refer to the file /inst/doc/readme.pdf. | 
| cvNorm | Please refer to the file /inst/doc/readme.pdf. | 
| cvResolution | Please refer to the file /inst/doc/readme.pdf. | 
Examples
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.
## The function is currently defined as
function (data, nonzeroRatio = NULL, cvNorm = TRUE, cvResolution = 0.005)
{
    nozeroIndex <- filteredZero(data, nonzeroRatio = nonzeroRatio)
    dataUse2CV <- data[nozeroIndex, ]
    cv.result <- getCV(dataUse2CV, cvNorm = cvNorm)
    CV2AUCVC(cv.result, cvResolution = cvResolution)
  }
getAUCVCs
Description
Please refer to the file /inst/doc/readme.pdf.
Usage
getAUCVCs(..., nonzeroRatio = NULL, cvNorm = TRUE, cvResolution = 0.005)
Arguments
| ... | Please refer to the file /inst/doc/readme.pdf. | 
| nonzeroRatio | Please refer to the file /inst/doc/readme.pdf. | 
| cvNorm | Please refer to the file /inst/doc/readme.pdf. | 
| cvResolution | Please refer to the file /inst/doc/readme.pdf. | 
Examples
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.
## The function is currently defined as
function (..., nonzeroRatio = NULL, cvNorm = TRUE, cvResolution = 0.005)
{
    matrices <- list(...)
    numMethod <- length(matrices)
    method_range <- seq(1, numMethod, 1)
    result <- NULL
    for (i in method_range) {
        AUCVC.result <- getAUCVC(matrices[[i]], nonzeroRatio = nonzeroRatio,
            cvNorm = cvNorm, cvResolution = cvResolution)
        result <- c(result, AUCVC.result)
        names(result)[i] <- names(matrices)[i]
    }
    sorted_AUCVCs <- sort(result, decreasing = TRUE)
    return(sorted_AUCVCs)
  }
getArea
Description
Please refer to the file /inst/doc/readme.pdf.
Usage
getArea(x, y)
Arguments
| x | Please refer to the file /inst/doc/readme.pdf. | 
| y | Please refer to the file /inst/doc/readme.pdf. | 
Examples
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.
## The function is currently defined as
function (x, y)
{
    x <- x/max(x)
    y <- y/max(y)
    if (!(is.numeric(x) || is.complex(x)) || !(is.numeric(y) ||
        is.complex(y))) {
        stop("Arguments 'x' and 'y' must be real or complex vectors.")
    }
    if (length(x) != length(y)) {
        stop("The length of two input vectors should be equal!")
    }
    m <- length(x)
    n <- 2 * m
    xp <- c(x, x[m:1])
    yp <- c(numeric(m), y[m:1])
    p1 <- sum(xp[1:(n - 1)] * yp[2:n]) + xp[n] * yp[1]
    p2 <- sum(xp[2:n] * yp[1:(n - 1)]) + xp[1] * yp[n]
    return(0.5 * (p1 - p2))
  }
getCV
Description
Please refer to the file /inst/doc/readme.pdf.
Usage
getCV(data, cvNorm = TRUE)
Arguments
| data | Please refer to the file /inst/doc/readme.pdf. | 
| cvNorm | Please refer to the file /inst/doc/readme.pdf. | 
Examples
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.
## The function is currently defined as
function (data, cvNorm = TRUE)
{
    if (!is.matrix(data))
        data <- as.matrix(data)
    if (cvNorm) {
        rawCV <- apply(data, 1, function(x) {
            sd(log2(x[x != 0]))/mean(log2(x[x != 0]))
        })
        (rawCV - min(rawCV))/(max(rawCV) - min(rawCV))
    }
    else {
        apply(data, 1, function(x) {
            sd(x)/mean(x)
        })
    }
  }
getCor
Description
Please refer to the file /inst/doc/readme.pdf.
Usage
getCor(data, method = c("spearman", "pearson", "kendall"), rounds = 1e+06)
Arguments
| data | Please refer to the file /inst/doc/readme.pdf. | 
| method | Please refer to the file /inst/doc/readme.pdf. | 
| rounds | Please refer to the file /inst/doc/readme.pdf. | 
Examples
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.
## The function is currently defined as
function (data, method = c("spearman", "pearson", "kendall"),
    rounds = 1e+06)
{
    sp_result <- NULL
    method <- match.arg(method)
    for (i in 1:rounds) {
        rg1 <- sample(1:nrow(data), size = 1)
        rg2 <- sample(1:nrow(data), size = 1)
        while (rg1 == rg2) {
            rg2 <- sample(1:nrow(data), size = 1)
        }
        gene1 <- unlist(data[rg1, ])
        gene2 <- unlist(data[rg2, ])
        sp_value <- cor(gene1, gene2, method = method)
        sp_result <- c(sp_result, sp_value)
    }
    return(sp_result)
  }
getCorMedians
Description
Please refer to the file /inst/doc/readme.pdf.
Usage
getCorMedians(data)
Arguments
| data | Please refer to the file /inst/doc/readme.pdf. | 
Examples
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.
## The function is currently defined as
function (data)
{
    if (!is.data.frame(data))
        data <- data.frame(data)
    if (is.factor(data$Value))
        data$Value <- as.numeric(as.character(data$Value))
    sorted_result <- sort(tapply(data$Value, data$Methods, median),
        decreasing = FALSE)
    return(sorted_result)
  }
getFactors
Description
Please refer to the file /inst/doc/readme.pdf.
Usage
getFactors(data, method = c("sizefactor", "DESeq", "RLE", "UQ", "TMM", "TU"),
lib.size = NULL, pre_ratio = 0.5, lower_trim = 0.05, upper_trim = 0.65, min_ubq = 100)
Arguments
| data | Please refer to the file /inst/doc/readme.pdf. | 
| method | Please refer to the file /inst/doc/readme.pdf. | 
| lib.size | Please refer to the file /inst/doc/readme.pdf. | 
| pre_ratio | Please refer to the file /inst/doc/readme.pdf. | 
| lower_trim | Please refer to the file /inst/doc/readme.pdf. | 
| upper_trim | Please refer to the file /inst/doc/readme.pdf. | 
| min_ubq | Please refer to the file /inst/doc/readme.pdf. | 
Examples
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.
## The function is currently defined as
function (data, method = c("sizefactor", "DESeq", "RLE", "UQ",
    "TMM", "TU"), lib.size = NULL, pre_ratio = 0.5, lower_trim = 0.05,
    upper_trim = 0.65, min_ubq = 100)
{
    if (!is.matrix(data))
        data <- as.matrix(data)
    if (any(is.na(data)))
        stop("NA counts not permitted")
    if (is.null(lib.size))
        libsize <- colSums(data)
    else libsize <- lib.size
    if (any(is.na(libsize)))
        stop("NA libsizes not permitted")
    method <- match.arg(method)
    i <- apply(data <= 0, 1, all)
    if (any(i))
        data <- data[!i, , drop = FALSE]
    f <- switch(method, sizefactor = 1e+06/libsize, DESeq = 1/estimateSizeFactorsForMatrix(data,
        p = 0.5), RLE = calcFactorRLE(data, p = 0.5)/libsize,
        UQ = calcFactorUpperquartile(data, lib.size = libsize,
            p = 0.75), TMM = {
            fq <- calcFactorUpperquartile(data = data, lib.size = libsize,
                p = 0.75)
            refColumn <- which.min(abs(fq - mean(fq)))
            if (length(refColumn) == 0 | refColumn < 1 | refColumn >
                ncol(data)) refColumn <- 1
            f <- rep(NA, ncol(data))
            for (i in 1:ncol(data)) {
                f[i] <- calcFactorWeighted(obs = data[, i], ref = data[,
                  refColumn], libsize.obs = libsize[i], libsize.ref = libsize[refColumn],
                  logratioTrim = 0.3, sumTrim = 0.05, doWeighting = TRUE,
                  Acutoff = -1e+10)
            }
            f
        }, TU = {
            if (!is.data.frame(data)) data <- data.frame(data)
            ubq_genes <- identifyUbq(data, lower_trim = lower_trim,
                upper_trim = upper_trim, pre_ratio = pre_ratio,
                min_ubq = min_ubq)
            ubq_sums <- colSums(data[ubq_genes, ])
            mean(ubq_sums)/ubq_sums
        }, )
    if (method == "RLE" || method == "UQ" || method == "TMM") {
        f <- 1e+06/libsize/f
    }
    norm.factors <- f/exp(mean(base::log(f)))
    round(norm.factors, digits = 5)
  }
getNormMatrix
Description
Please refer to the file /inst/doc/readme.pdf.
Usage
getNormMatrix(data, norm.factors)
Arguments
| data | Please refer to the file /inst/doc/readme.pdf. | 
| norm.factors | Please refer to the file /inst/doc/readme.pdf. | 
Examples
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.
## The function is currently defined as
function (data, norm.factors)
{
    data * matrix(rep(norm.factors, dim(data)[1]), nrow = dim(data)[1],
        ncol = length(norm.factors), byrow = T)
  }
gridAUCVC
Description
Please refer to the file /inst/doc/readme.pdf.
Usage
gridAUCVC(data, dataType = c("bk", "sc"), HG7 = NULL, ERCC = NULL, TN = NULL,
TC = NULL, CR = NULL, NR = NULL, DESeq = NULL, UQ = NULL, TMM = NULL, TU = 0,
GAPDH = NULL, nonzeroRatios = c(0.7, 0.8, 0.9, 1), cvNorm = TRUE, cvResolution = 0.005)
Arguments
| data | Please refer to the file /inst/doc/readme.pdf. | 
| dataType | Please refer to the file /inst/doc/readme.pdf. | 
| HG7 | Please refer to the file /inst/doc/readme.pdf. | 
| ERCC | Please refer to the file /inst/doc/readme.pdf. | 
| TN | Please refer to the file /inst/doc/readme.pdf. | 
| TC | Please refer to the file /inst/doc/readme.pdf. | 
| CR | Please refer to the file /inst/doc/readme.pdf. | 
| NR | Please refer to the file /inst/doc/readme.pdf. | 
| DESeq | Please refer to the file /inst/doc/readme.pdf. | 
| UQ | Please refer to the file /inst/doc/readme.pdf. | 
| TMM | Please refer to the file /inst/doc/readme.pdf. | 
| TU | Please refer to the file /inst/doc/readme.pdf. | 
| GAPDH | Please refer to the file /inst/doc/readme.pdf. | 
| nonzeroRatios | Please refer to the file /inst/doc/readme.pdf. | 
| cvNorm | Please refer to the file /inst/doc/readme.pdf. | 
| cvResolution | Please refer to the file /inst/doc/readme.pdf. | 
Examples
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.
## The function is currently defined as
function (data, dataType = c("bk", "sc"), HG7 = NULL, ERCC = NULL,
    TN = NULL, TC = NULL, CR = NULL, NR = NULL, DESeq = NULL,
    UQ = NULL, TMM = NULL, TU = 0, GAPDH = NULL, nonzeroRatios = c(0.7,
        0.8, 0.9, 1), cvNorm = TRUE, cvResolution = 0.005)
{
    grid_result <- NULL
    if (length(TU) == 1 && TU == 1) {
        colnames_paraMatrix <- c("nonzeroRatio", "pre_ratio",
            "lower_trim", "upper_trim")
        write.table(t(as.matrix(colnames_paraMatrix)), file = "bestPara.txt",
            sep = "\t", row.names = FALSE, col.names = FALSE)
    }
    for (i in nonzeroRatios) {
        if (dataType == "sc") {
            if ((ncol(data) * i) <= 100) {
                cat("nonzeroRatio:", i, " is too small!\n")
                stop("We suggest that the minimal counts of
                nonzero samples should be greater than 100!")
            }
        }
        result <- nonzeroRatio2AUCVC(data = data, dataType = dataType,
            HG7 = HG7, ERCC = ERCC, TN = TN, TC = TC, CR = CR,
            NR = NR, DESeq = DESeq, UQ = UQ, TMM = TMM, TU = TU,
            GAPDH = GAPDH, nonzeroRatio = i, cvNorm = cvNorm,
            cvResolution = cvResolution)
        nonzeroM <- matrix(i, 1, 1, TRUE)
        colnames(nonzeroM) <- "NonzeroRatio"
        grid_record <- cbind(nonzeroM, result)
        grid_result <- rbind(grid_result, grid_record)
    }
    return(grid_result)
  }
gridAUCVC4Matrices
Description
Please refer to the file /inst/doc/readme.pdf.
Usage
gridAUCVC4Matrices(..., nonzeroRatios = NULL, cvNorm = TRUE, cvResolution = 0.005)
Arguments
| ... | Please refer to the file /inst/doc/readme.pdf. | 
| nonzeroRatios | Please refer to the file /inst/doc/readme.pdf. | 
| cvNorm | Please refer to the file /inst/doc/readme.pdf. | 
| cvResolution | Please refer to the file /inst/doc/readme.pdf. | 
Examples
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.
## The function is currently defined as
function (..., nonzeroRatios = NULL, cvNorm = TRUE, cvResolution = 0.005)
{
    if (is.null(nonzeroRatios)) {
        stop("Please provide nonzeroRatios!")
    }
    matrices <- list(...)
    numMethod <- length(matrices)
    grid_result <- NULL
    for (i in nonzeroRatios) {
        result.sorted <- getAUCVCs(..., nonzeroRatio = i, cvNorm = cvNorm,
            cvResolution = cvResolution)
        grid_record <- c(i, result.sorted)
        names(grid_record)[1] <- "NonzeroRatio"
        grid_result <- c(grid_result, names(grid_record), grid_record)
    }
    grid_result2 <- matrix(grid_result, ncol = numMethod + 1,
        byrow = TRUE)
    return(grid_result2)
  }
identifyUbq
Description
Please refer to the file /inst/doc/readme.pdf.
Usage
identifyUbq(data, pre_ratio = 0.5, lower_trim = 0.05, upper_trim = 0.65, min_ubq = 100)
Arguments
| data | Please refer to the file /inst/doc/readme.pdf. | 
| pre_ratio | Please refer to the file /inst/doc/readme.pdf. | 
| lower_trim | Please refer to the file /inst/doc/readme.pdf. | 
| upper_trim | Please refer to the file /inst/doc/readme.pdf. | 
| min_ubq | Please refer to the file /inst/doc/readme.pdf. | 
Examples
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.
## The function is currently defined as
function (data, pre_ratio = 0.5, lower_trim = 0.05, upper_trim = 0.65,
    min_ubq = 100)
{
    qlower <- apply(data, 2, function(x) quantile(x[x != 0],
        p = lower_trim))
    qupper <- apply(data, 2, function(x) quantile(x[x != 0],
        p = upper_trim))
    ubq_genes <- NULL
    for (i in 1:nrow(data)) {
        genes_finded <- findGenes(data[i, ], qlower = qlower,
            qupper = qupper, pre_ratio = pre_ratio)
        ubq_genes <- c(ubq_genes, genes_finded)
    }
    if (length(ubq_genes) < min_ubq) {
        cat("Parameters range", lower_trim, "-", upper_trim,
            "...identified too few ubiquitous genes (", length(ubq_genes),
            "), trying range 5-95  instead", "\n")
        ubq_genes <- identifyUbqRepeat(data, pre_ratioC = pre_ratio,
            lower_trimC = 0.05, upper_trimC = 0.95)
    }
    return(ubq_genes)
  }
identifyUbqRepeat
Description
Please refer to the file /inst/doc/readme.pdf.
Usage
identifyUbqRepeat(data, pre_ratioC = NULL, lower_trimC = NULL, upper_trimC = NULL)
Arguments
| data | Please refer to the file /inst/doc/readme.pdf. | 
| pre_ratioC | Please refer to the file /inst/doc/readme.pdf. | 
| lower_trimC | Please refer to the file /inst/doc/readme.pdf. | 
| upper_trimC | Please refer to the file /inst/doc/readme.pdf. | 
Examples
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.
## The function is currently defined as
function (data, pre_ratioC = NULL, lower_trimC = NULL, upper_trimC = NULL)
{
    qlower <- apply(data, 2, function(x) quantile(x[x != 0],
        p = lower_trimC))
    qupper <- apply(data, 2, function(x) quantile(x[x != 0],
        p = upper_trimC))
    ubq_genes <- NULL
    for (i in 1:nrow(data)) {
        genes_finded <- findGenes(data[i, ], qlower = qlower,
            qupper = qupper, pre_ratio = pre_ratioC)
        ubq_genes <- c(ubq_genes, genes_finded)
    }
    return(ubq_genes)
  }
nonzeroRatio2AUCVC
Description
Please refer to the file /inst/doc/readme.pdf.
Usage
nonzeroRatio2AUCVC(data, dataType = c("bk", "sc"),
HG7 = NULL, ERCC = NULL, TN = NULL, TC = NULL, CR = NULL, NR = NULL, DESeq = NULL,
UQ = NULL, TMM = NULL, TU = 0, GAPDH = NULL, nonzeroRatio = NULL, cvNorm = TRUE,
cvResolution = 0.005)
Arguments
| data | Please refer to the file /inst/doc/readme.pdf. | 
| dataType | Please refer to the file /inst/doc/readme.pdf. | 
| HG7 | Please refer to the file /inst/doc/readme.pdf. | 
| ERCC | Please refer to the file /inst/doc/readme.pdf. | 
| TN | Please refer to the file /inst/doc/readme.pdf. | 
| TC | Please refer to the file /inst/doc/readme.pdf. | 
| CR | Please refer to the file /inst/doc/readme.pdf. | 
| NR | Please refer to the file /inst/doc/readme.pdf. | 
| DESeq | Please refer to the file /inst/doc/readme.pdf. | 
| UQ | Please refer to the file /inst/doc/readme.pdf. | 
| TMM | Please refer to the file /inst/doc/readme.pdf. | 
| TU | Please refer to the file /inst/doc/readme.pdf. | 
| GAPDH | Please refer to the file /inst/doc/readme.pdf. | 
| nonzeroRatio | Please refer to the file /inst/doc/readme.pdf. | 
| cvNorm | Please refer to the file /inst/doc/readme.pdf. | 
| cvResolution | Please refer to the file /inst/doc/readme.pdf. | 
Examples
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.
## The function is currently defined as
function (data, dataType = c("bk", "sc"), HG7 = NULL, ERCC = NULL,
    TN = NULL, TC = NULL, CR = NULL, NR = NULL, DESeq = NULL,
    UQ = NULL, TMM = NULL, TU = 0, GAPDH = NULL, nonzeroRatio = NULL,
    cvNorm = TRUE, cvResolution = 0.005)
{
    nozeroIndex <- filteredZero(data, nonzeroRatio = nonzeroRatio)
    methodsList <- list(HG7 = HG7, ERCC = ERCC, TN = TN, TC = TC,
        CR = CR, NR = NR, DESeq = DESeq, UQ = UQ, TMM = TMM,
        TU = TU, GAPDH = GAPDH)
    specifiedMethods <- methodsList[!unlist(lapply(methodsList,
        is.null))]
    if (length(TU) == 1 && TU == 0) {
        specifiedMethods$TU <- NULL
    }
    if (length(TU) == 1 && TU == 1) {
        if (dataType == "bk") {
            optimalPara <- optTU(data, nonzeroRatio = nonzeroRatio,
                pre_ratio_range = c(1, 1), prResolution = 0.1,
                lower_range = c(0.05, 0.4), upper_range = c(0.6,
                  0.95), qResolution = 0.05, min_ubq = 1000,
                cvNorm = cvNorm, cvResolution = cvResolution)
        }
        else {
            optimalPara <- optTU(data, nonzeroRatio = nonzeroRatio,
                pre_ratio_range = c(0.2, 0.6), prResolution = 0.1,
                lower_range = c(0.05, 0.4), upper_range = c(0.6,
                  0.95), qResolution = 0.05, min_ubq = 100, cvNorm = cvNorm,
                cvResolution = cvResolution)
        }
        optimalPara <- as.matrix(optimalPara)
        lower_trim <- optimalPara["lower", 1]
        upper_trim <- optimalPara["upper", 1]
        pre_ratio <- optimalPara["ratio", 1]
        para <- c(nonzeroRatio, pre_ratio, lower_trim, upper_trim)
        names(para)[1] <- "nonzeroRatio"
        paraMatrix <- t(as.matrix(para))
        write.table(paraMatrix, file = "bestPara.txt", sep = "\t",
            row.names = FALSE, col.names = FALSE, append = TRUE)
        TU.factors <- getFactors(data, method = "TU", lower_trim = lower_trim,
            upper_trim = upper_trim, pre_ratio = pre_ratio, min_ubq = 100)
        norm.matrix <- getNormMatrix(data, TU.factors)
        dataUse2CV <- norm.matrix[nozeroIndex, ]
        cv.result <- getCV(dataUse2CV, cvNorm = cvNorm)
        TU.AUCVC <- CV2AUCVC(cv.result, cvResolution = cvResolution)
        specifiedMethods$TU <- NULL
    }
    numMethod <- length(specifiedMethods)
    if (numMethod >= 1) {
        method_range <- seq(1, numMethod, 1)
        for (i in method_range) {
            norm.matrix <- getNormMatrix(data, specifiedMethods[[i]])
            dataUse2CV <- norm.matrix[nozeroIndex, ]
            cv.result <- getCV(dataUse2CV, cvNorm = cvNorm)
            assign(names(specifiedMethods)[i], CV2AUCVC(cv.result,
                cvResolution = cvResolution))
        }
        AUCVC.result <- NULL
        for (i in method_range) {
            AUCVC.result <- cbind(AUCVC.result, get(names(specifiedMethods)[i]))
        }
        colnames(AUCVC.result) <- names(specifiedMethods)
        if (length(TU) == 1 && TU == 1) {
            AUCVC.result <- cbind(AUCVC.result, TU.AUCVC)
            colnames(AUCVC.result) <- c(names(specifiedMethods),
                "TU")
        }
    }
    if (numMethod == 0 && TU == 0)
        stop("Please specify at least one method!")
    if (numMethod == 0 && TU == 1) {
        AUCVC.result <- as.matrix(TU.AUCVC)
        colnames(AUCVC.result) <- "TU"
    }
    return(AUCVC.result)
  }
optTU
Description
Please refer to the file /inst/doc/readme.pdf.
Usage
optTU(data, nonzeroRatio = NULL, pre_ratio_range = c(0.2, 0.6), prResolution = 0.1,
lower_range = c(0.05, 0.4), upper_range = c(0.6, 0.95),
qResolution = 0.05, min_ubq = 100, cvNorm = TRUE, cvResolution = 0.005)
Arguments
| data | Please refer to the file /inst/doc/readme.pdf. | 
| nonzeroRatio | Please refer to the file /inst/doc/readme.pdf. | 
| pre_ratio_range | Please refer to the file /inst/doc/readme.pdf. | 
| prResolution | Please refer to the file /inst/doc/readme.pdf. | 
| lower_range | Please refer to the file /inst/doc/readme.pdf. | 
| upper_range | Please refer to the file /inst/doc/readme.pdf. | 
| qResolution | Please refer to the file /inst/doc/readme.pdf. | 
| min_ubq | Please refer to the file /inst/doc/readme.pdf. | 
| cvNorm | Please refer to the file /inst/doc/readme.pdf. | 
| cvResolution | Please refer to the file /inst/doc/readme.pdf. | 
Examples
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.
## The function is currently defined as
function (data, nonzeroRatio = NULL, pre_ratio_range = c(0.2,
    0.6), prResolution = 0.1, lower_range = c(0.05, 0.4), upper_range = c(0.6,
    0.95), qResolution = 0.05, min_ubq = 100, cvNorm = TRUE,
    cvResolution = 0.005)
{
    if (is.null(nonzeroRatio)) {
        stop("Please provide nonzeroRatios!")
    }
    pre_ratio_times <- (pre_ratio_range[2] - pre_ratio_range[1] +
        prResolution) * 10
    lower_times <- (upper_range[2] - upper_range[1] + qResolution)/qResolution
    lower_range_tmp <- rep(seq(lower_range[1], lower_range[2],
        qResolution), each = round(lower_times))
    lower_range2 <- rep(lower_range_tmp, times = round(pre_ratio_times))
    upper_times <- (lower_range[2] - lower_range[1] + qResolution)/qResolution
    upper_range_tmp <- rep(seq(upper_range[1], upper_range[2],
        qResolution), times = round(upper_times))
    upper_range2 <- rep(upper_range_tmp, times = round(pre_ratio_times))
    lower_upper_tmp_len <- length(lower_range_tmp)
    pre_ratio_range2 <- rep(seq(pre_ratio_range[1], pre_ratio_range[2],
        0.1), each = round(lower_upper_tmp_len))
    nozeroIndex <- filteredZero(data, nonzeroRatio = nonzeroRatio)
    all_aucvc <- mapply(function(lower_trim, upper_trim, pre_ratio) {
        factors.TU <- getFactors(data, method = "TU", lower_trim = lower_trim,
            upper_trim = upper_trim, pre_ratio = pre_ratio, min_ubq = min_ubq)
        norm.TU <- getNormMatrix(data, factors.TU)
        dataUse2CV <- norm.TU[nozeroIndex, ]
        cv.TU <- getCV(dataUse2CV, cvNorm = cvNorm)
        TU.AUCVC <- CV2AUCVC(cv.TU, cvResolution = cvResolution)
        return(c(TU.AUCVC = TU.AUCVC, lower = lower_trim, upper = upper_trim,
            ratio = pre_ratio))
    }, lower_range2, upper_range2, pre_ratio_range2)
    all_aucvc2 <- t(all_aucvc)
    max_index <- which(max(all_aucvc2[, "TU.AUCVC"]) == all_aucvc2[,
        "TU.AUCVC"])
    return(all_aucvc2[max_index, ])
  }
plotCVs
Description
Please refer to the file /inst/doc/readme.pdf.
Usage
plotCVs(data, methods = c("None", "HG7", "ERCC", "TN", "TC", "CR", "NR",
"DESeq", "UQ", "TMM", "TU"), legend.position = c(0.85, 0.48))
Arguments
| data | Please refer to the file /inst/doc/readme.pdf. | 
| methods | Please refer to the file /inst/doc/readme.pdf. | 
| legend.position | Please refer to the file /inst/doc/readme.pdf. | 
Examples
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.
## The function is currently defined as
function (data, methods = c("None", "HG7", "ERCC", "TN", "TC",
    "CR", "NR", "DESeq", "UQ", "TMM", "TU"), legend.position = c(0.85,
    0.48))
{
    if (!is.data.frame(data))
        data <- data.frame(data)
    if (is.factor(data$Cutoff))
        data$Cutoff <- as.numeric(as.character(data$Cutoff))
    if (is.factor(data$Counts))
        data$Counts <- as.numeric(as.character(data$Counts))
    data$Methods <- factor(data$Methods, levels = methods, labels = methods)
    change_colours(ggplot(data = data, aes(x = Cutoff, y = Counts)) +
        geom_line(aes(group = Methods, color = Methods), size = 3) +
        xlab("Normalized CV cutoff") + ylab("Number of uniform genes") +
        theme_bw() + theme(panel.grid.minor = element_blank(),
        axis.title.x = element_text(size = 48), axis.title.y = element_text(size = 48),
        axis.text.x = element_text(size = 38), axis.text.y = element_text(size = 38),
        legend.text = element_text(size = 39), legend.title = element_text(size = 43),
        legend.position = legend.position, legend.background = element_blank(),
        legend.key = element_blank(), legend.key.height = unit(1.8,
            "cm"), plot.margin = unit(c(0.5, 0.5, 0.5, 0.5),
            "cm")) + scale_x_continuous(breaks = seq(0, 1, 0.2)) +
        scale_y_continuous() + guides(color = guide_legend(title = NULL)),
        c("olivedrab", "blue", "red", "violet", "orange", "yellow",
            "magenta", "peru", "black", "maroon", "lightblue",
            "darkslateblue", "seashell4", "tan2", "darkgreen",
            "springgreen"))
  }
plotCors
Description
Please refer to the file /inst/doc/readme.pdf.
Usage
plotCors(data, methods = c("None", "HG7", "ERCC", "TN", "TC", "CR", "NR", "DESeq",
"UQ", "TMM", "TU"), legend.position = c(0.15, 0.56))
Arguments
| data | Please refer to the file /inst/doc/readme.pdf. | 
| methods | Please refer to the file /inst/doc/readme.pdf. | 
| legend.position | Please refer to the file /inst/doc/readme.pdf. | 
Examples
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.
## The function is currently defined as
function (data, methods = c("None", "HG7", "ERCC", "TN", "TC",
    "CR", "NR", "DESeq", "UQ", "TMM", "TU"), legend.position = c(0.15,
    0.56))
{
    if (!is.data.frame(data))
        data <- data.frame(data)
    if (is.factor(data$Value))
        data$Value <- as.numeric(as.character(data$Value))
    data$Methods <- factor(data$Methods, levels = methods, labels = methods)
    change_colours(ggplot(data = data, aes(x = Value, y = ..count../sum(..count..))) +
        geom_freqpoly(aes(group = Methods, color = Methods),
            size = 3, bins = 50) + xlab("Spearman correlation") +
        ylab("Fraction of gene pairs") + theme_bw() + theme(panel.grid.minor = element_blank(),
        axis.title.x = element_text(size = 48), axis.title.y = element_text(size = 48),
        axis.text.x = element_text(size = 38), axis.text.y = element_text(size = 38),
        legend.text = element_text(size = 39), legend.title = element_text(size = 43),
        legend.position = legend.position, legend.background = element_blank(),
        legend.key = element_blank(), legend.key.height = unit(1.8,
            "cm"), plot.margin = unit(c(0.5, 1, 0.5, 0.5), "cm")) +
        scale_x_continuous(expand = c(0.01, 0.01), breaks = round(seq(-1,
            1, 0.25), 2)) + scale_y_continuous(expand = c(0.01,
        0)) + guides(color = guide_legend(title = NULL)), c("olivedrab",
        "blue", "red", "violet", "orange", "yellow", "magenta",
        "peru", "black", "maroon", "lightblue", "darkslateblue",
        "seashell4", "tan2", "darkgreen", "springgreen"))
  }
plotHC
Description
Please refer to the file /inst/doc/readme.pdf.
Usage
plotHC(data, method = c("spearman", "pearson", "kendall"), mar = c(9, 1, 0, 20))
Arguments
| data | Please refer to the file /inst/doc/readme.pdf. | 
| method | Please refer to the file /inst/doc/readme.pdf. | 
| mar | Please refer to the file /inst/doc/readme.pdf. | 
Examples
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.
## The function is currently defined as
function (data, method = c("spearman", "pearson", "kendall"),
    mar = c(9, 1, 0, 20))
{
    if (!is.data.frame(data))
        data <- data.frame(data)
    method <- match.arg(method)
    hc <- hclust(as.dist(1 - cor(data, method = method)))
    dend <- as.dendrogram(hc)
    dend <- dend %>% set("labels_cex", 6.5) %>% set("branches_lwd",
        6.5)
    par(mar = mar, mgp = c(10, 5, 0), cex.axis = 6)
    plot(dend, horiz = TRUE)
    axis(side = 1, lwd = 8)
  }
scRNA663
Description
Please refer to the file /inst/doc/readme.pdf.
Usage
data("scRNA663")Format
A data frame with 57955 observations on the following 663 variables.
- col36l_1
- a numeric vector 
- col36l_2
- a numeric vector 
- col36l_3
- a numeric vector 
- col36l_4
- a numeric vector 
- col36l_5
- a numeric vector 
- col36l_6
- a numeric vector 
- col36l_7
- a numeric vector 
- col36l_8
- a numeric vector 
- col36l_9
- a numeric vector 
- col36l_10
- a numeric vector 
- col36l_11
- a numeric vector 
- col36l_12
- a numeric vector 
- col36l_13
- a numeric vector 
- col36l_14
- a numeric vector 
- col36l_15
- a numeric vector 
- col36l_16
- a numeric vector 
- col36l_17
- a numeric vector 
- col36l_18
- a numeric vector 
- col36l_19
- a numeric vector 
- col36l_20
- a numeric vector 
- col36l_21
- a numeric vector 
- col36l_22
- a numeric vector 
- col36l_23
- a numeric vector 
- col36l_24
- a numeric vector 
- col36l_25
- a numeric vector 
- col36l_26
- a numeric vector 
- col36l_27
- a numeric vector 
- col36l_28
- a numeric vector 
- col36l_29
- a numeric vector 
- col36l_30
- a numeric vector 
- col36l_31
- a numeric vector 
- col36l_32
- a numeric vector 
- col36l_33
- a numeric vector 
- col36l_34
- a numeric vector 
- col36l_35
- a numeric vector 
- col36l_36
- a numeric vector 
- col36l_37
- a numeric vector 
- col36l_38
- a numeric vector 
- col36l_39
- a numeric vector 
- col36l_40
- a numeric vector 
- col36l_41
- a numeric vector 
- col36l_42
- a numeric vector 
- col36l_43
- a numeric vector 
- col36l_44
- a numeric vector 
- col36l_45
- a numeric vector 
- col36l_46
- a numeric vector 
- col36l_47
- a numeric vector 
- col36l_48
- a numeric vector 
- col36l_49
- a numeric vector 
- col36l_50
- a numeric vector 
- col36l_51
- a numeric vector 
- col36l_52
- a numeric vector 
- col36l_53
- a numeric vector 
- col36l_54
- a numeric vector 
- col36l_55
- a numeric vector 
- col36l_56
- a numeric vector 
- col36l_57
- a numeric vector 
- col36l_58
- a numeric vector 
- col36l_59
- a numeric vector 
- col36l_60
- a numeric vector 
- col36l_61
- a numeric vector 
- col36l_62
- a numeric vector 
- col36l_63
- a numeric vector 
- col36l_64
- a numeric vector 
- col36l_65
- a numeric vector 
- col36l_66
- a numeric vector 
- col36l_67
- a numeric vector 
- col36l_68
- a numeric vector 
- col36l_69
- a numeric vector 
- col36l_70
- a numeric vector 
- col36l_71
- a numeric vector 
- col38l_1
- a numeric vector 
- col38l_2
- a numeric vector 
- col38l_6
- a numeric vector 
- col38l_7
- a numeric vector 
- col38l_8
- a numeric vector 
- col38l_10
- a numeric vector 
- col38l_11
- a numeric vector 
- col38l_12
- a numeric vector 
- col38l_13
- a numeric vector 
- col38l_14
- a numeric vector 
- col38l_15
- a numeric vector 
- col38l_16
- a numeric vector 
- col38l_17
- a numeric vector 
- col38l_19
- a numeric vector 
- col38l_20
- a numeric vector 
- col38l_21
- a numeric vector 
- col38l_22
- a numeric vector 
- col38l_23
- a numeric vector 
- col38l_24
- a numeric vector 
- col38l_25
- a numeric vector 
- col38l_26
- a numeric vector 
- col38l_27
- a numeric vector 
- col38l_28
- a numeric vector 
- col38l_29
- a numeric vector 
- col38l_30
- a numeric vector 
- col38l_31
- a numeric vector 
- col38l_33
- a numeric vector 
- col38l_34
- a numeric vector 
- col38l_35
- a numeric vector 
- col38l_36
- a numeric vector 
- col38l_37
- a numeric vector 
- col38l_39
- a numeric vector 
- col38l_40
- a numeric vector 
- col38l_41
- a numeric vector 
- col38l_42
- a numeric vector 
- col38l_43
- a numeric vector 
- col38l_46
- a numeric vector 
- col38l_47
- a numeric vector 
- col38l_48
- a numeric vector 
- col38l_49
- a numeric vector 
- col38l_52
- a numeric vector 
- col38l_55
- a numeric vector 
- col38l_56
- a numeric vector 
- col38l_57
- a numeric vector 
- col38l_59
- a numeric vector 
- col38l_60
- a numeric vector 
- col38l_61
- a numeric vector 
- col38l_62
- a numeric vector 
- col38l_64
- a numeric vector 
- col38l_65
- a numeric vector 
- col38l_66
- a numeric vector 
- col38l_67
- a numeric vector 
- col38l_68
- a numeric vector 
- col38l_69
- a numeric vector 
- col38l_70
- a numeric vector 
- col38l_72
- a numeric vector 
- col39l1_47
- a numeric vector 
- col39l1_48
- a numeric vector 
- col39l1_49
- a numeric vector 
- col39l1_50
- a numeric vector 
- col39l1_51
- a numeric vector 
- col39l1_52
- a numeric vector 
- col39l1_53
- a numeric vector 
- col39l1_54
- a numeric vector 
- col39l1_55
- a numeric vector 
- col39l1_56
- a numeric vector 
- col39l1_57
- a numeric vector 
- col39l1_58
- a numeric vector 
- col39l1_59
- a numeric vector 
- col39l1_60
- a numeric vector 
- col39l1_61
- a numeric vector 
- col39l1_62
- a numeric vector 
- col39l1_63
- a numeric vector 
- col39l1_64
- a numeric vector 
- col39l1_69
- a numeric vector 
- col39l1_70
- a numeric vector 
- col39l1_71
- a numeric vector 
- col39l1_72
- a numeric vector 
- col39l1_73
- a numeric vector 
- col39l1_74
- a numeric vector 
- col39l1_75
- a numeric vector 
- col39l1_76
- a numeric vector 
- col39l1_77
- a numeric vector 
- col39l1_78
- a numeric vector 
- col39l1_79
- a numeric vector 
- col39l1_80
- a numeric vector 
- col39l1_81
- a numeric vector 
- col39l1_82
- a numeric vector 
- col39l1_83
- a numeric vector 
- col39l1_84
- a numeric vector 
- col39l1_85
- a numeric vector 
- col39l1_86
- a numeric vector 
- col39l1_87
- a numeric vector 
- col39l1_88
- a numeric vector 
- col39l1_89
- a numeric vector 
- col39l1_90
- a numeric vector 
- col39l1_91
- a numeric vector 
- col39l1_92
- a numeric vector 
- col39l1_93
- a numeric vector 
- col39l1_94
- a numeric vector 
- col39l1_95
- a numeric vector 
- col39l1_96
- a numeric vector 
- col39l2_20
- a numeric vector 
- col39l2_21
- a numeric vector 
- col39l2_22
- a numeric vector 
- col39l2_23
- a numeric vector 
- col39l2_24
- a numeric vector 
- col39l2_25
- a numeric vector 
- col39l2_26
- a numeric vector 
- col39l2_27
- a numeric vector 
- col39l2_28
- a numeric vector 
- col39l2_29
- a numeric vector 
- col39l2_30
- a numeric vector 
- col39l2_31
- a numeric vector 
- col39l2_32
- a numeric vector 
- col39l2_33
- a numeric vector 
- col39l2_34
- a numeric vector 
- col39l2_35
- a numeric vector 
- col39l2_36
- a numeric vector 
- col39l2_37
- a numeric vector 
- col39l2_38
- a numeric vector 
- col39l2_39
- a numeric vector 
- col39l2_40
- a numeric vector 
- col39l2_41
- a numeric vector 
- col39l2_42
- a numeric vector 
- col39l2_43
- a numeric vector 
- col39l2_44
- a numeric vector 
- col39l2_45
- a numeric vector 
- col39l2_46
- a numeric vector 
- col39l2_47
- a numeric vector 
- col39l2_48
- a numeric vector 
- col39l2_49
- a numeric vector 
- col39l2_50
- a numeric vector 
- col39l2_52
- a numeric vector 
- col39l2_53
- a numeric vector 
- col39l2_54
- a numeric vector 
- col39l2_55
- a numeric vector 
- col39l2_56
- a numeric vector 
- col39l2_57
- a numeric vector 
- col39l2_58
- a numeric vector 
- col39l2_59
- a numeric vector 
- col39l2_60
- a numeric vector 
- col39l2_61
- a numeric vector 
- col39l2_62
- a numeric vector 
- col39l2_63
- a numeric vector 
- col39l2_64
- a numeric vector 
- col39l2_65
- a numeric vector 
- col39l2_66
- a numeric vector 
- col39l2_67
- a numeric vector 
- col39l2_68
- a numeric vector 
- col39l2_69
- a numeric vector 
- col39l2_70
- a numeric vector 
- col39l2_72
- a numeric vector 
- col39l2_73
- a numeric vector 
- col39l2_74
- a numeric vector 
- col39l3_31
- a numeric vector 
- col39l3_32
- a numeric vector 
- col39l3_33
- a numeric vector 
- col39l3_34
- a numeric vector 
- col39l3_35
- a numeric vector 
- col39l3_36
- a numeric vector 
- col39l3_38
- a numeric vector 
- col39l3_39
- a numeric vector 
- col39l3_40
- a numeric vector 
- col39l3_41
- a numeric vector 
- col39l3_42
- a numeric vector 
- col39l3_43
- a numeric vector 
- col39l3_44
- a numeric vector 
- col39l3_45
- a numeric vector 
- col39l3_46
- a numeric vector 
- col39l3_47
- a numeric vector 
- col39l3_48
- a numeric vector 
- col39l3_49
- a numeric vector 
- col39l3_50
- a numeric vector 
- col39l3_51
- a numeric vector 
- col39l3_52
- a numeric vector 
- col39l3_53
- a numeric vector 
- col39l3_54
- a numeric vector 
- col39l3_55
- a numeric vector 
- col39l3_56
- a numeric vector 
- col39l3_57
- a numeric vector 
- col39l3_58
- a numeric vector 
- col39l3_59
- a numeric vector 
- col39l3_60
- a numeric vector 
- col39l3_61
- a numeric vector 
- col39l3_62
- a numeric vector 
- col39l3_63
- a numeric vector 
- col39l3_64
- a numeric vector 
- col39l3_65
- a numeric vector 
- col39l3_66
- a numeric vector 
- col39l3_67
- a numeric vector 
- col39l3_68
- a numeric vector 
- col39l3_69
- a numeric vector 
- col39l3_70
- a numeric vector 
- col39l3_71
- a numeric vector 
- col39l3_72
- a numeric vector 
- col39l3_73
- a numeric vector 
- col39l3_74
- a numeric vector 
- col39l3_75
- a numeric vector 
- col39l3_76
- a numeric vector 
- col39l3_77
- a numeric vector 
- col39l3_78
- a numeric vector 
- col39l3_79
- a numeric vector 
- col39l3_80
- a numeric vector 
- col39l3_81
- a numeric vector 
- col39l3_82
- a numeric vector 
- col39l3_83
- a numeric vector 
- col39l3_85
- a numeric vector 
- col40l_1
- a numeric vector 
- col40l_2
- a numeric vector 
- col40l_3
- a numeric vector 
- col40l_4
- a numeric vector 
- col40l_5
- a numeric vector 
- col40l_6
- a numeric vector 
- col40l_7
- a numeric vector 
- col40l_8
- a numeric vector 
- col40l_9
- a numeric vector 
- col40l_10
- a numeric vector 
- col40l_11
- a numeric vector 
- col40l_12
- a numeric vector 
- col40l_13
- a numeric vector 
- col40l_14
- a numeric vector 
- col40l_15
- a numeric vector 
- col40l_16
- a numeric vector 
- col40l_17
- a numeric vector 
- col40l_18
- a numeric vector 
- col40l_19
- a numeric vector 
- col40l_20
- a numeric vector 
- col40l_21
- a numeric vector 
- col40l_22
- a numeric vector 
- col40l_23
- a numeric vector 
- col40l_24
- a numeric vector 
- col40l_25
- a numeric vector 
- col40l_26
- a numeric vector 
- col40l_27
- a numeric vector 
- col40l_28
- a numeric vector 
- col40l_29
- a numeric vector 
- col40l_30
- a numeric vector 
- col40l_31
- a numeric vector 
- col40l_32
- a numeric vector 
- col40l_33
- a numeric vector 
- col40l_34
- a numeric vector 
- col40l_35
- a numeric vector 
- col40l_37
- a numeric vector 
- col40l_38
- a numeric vector 
- col40l_39
- a numeric vector 
- col40l_40
- a numeric vector 
- col40l_41
- a numeric vector 
- col40l_42
- a numeric vector 
- col40l_44
- a numeric vector 
- col40l_45
- a numeric vector 
- col40l_46
- a numeric vector 
- col40l_47
- a numeric vector 
- col40l_48
- a numeric vector 
- col40l_49
- a numeric vector 
- col40l_50
- a numeric vector 
- col44l1_1
- a numeric vector 
- col44l1_2
- a numeric vector 
- col44l1_3
- a numeric vector 
- col44l1_4
- a numeric vector 
- col44l1_8
- a numeric vector 
- col44l1_11
- a numeric vector 
- col44l1_12
- a numeric vector 
- col44l1_13
- a numeric vector 
- col44l1_14
- a numeric vector 
- col44l1_15
- a numeric vector 
- col44l1_16
- a numeric vector 
- col44l1_17
- a numeric vector 
- col44l1_18
- a numeric vector 
- col44l1_19
- a numeric vector 
- col44l1_20
- a numeric vector 
- col44l1_24
- a numeric vector 
- col44l1_28
- a numeric vector 
- col44l1_29
- a numeric vector 
- col44l1_30
- a numeric vector 
- col44l1_32
- a numeric vector 
- col44l1_33
- a numeric vector 
- col44l1_36
- a numeric vector 
- col44l1_38
- a numeric vector 
- col44l1_40
- a numeric vector 
- col44l1_41
- a numeric vector 
- col44l1_42
- a numeric vector 
- col44l1_43
- a numeric vector 
- col44l1_47
- a numeric vector 
- col44l1_48
- a numeric vector 
- col44l1_50
- a numeric vector 
- col44l1_53
- a numeric vector 
- col44l1_58
- a numeric vector 
- col44l1_59
- a numeric vector 
- col44l1_60
- a numeric vector 
- col44l1_64
- a numeric vector 
- col44l1_66
- a numeric vector 
- col44l1_67
- a numeric vector 
- col44l1_68
- a numeric vector 
- col44l1_69
- a numeric vector 
- col44l1_70
- a numeric vector 
- col44l1_71
- a numeric vector 
- col44l1_73
- a numeric vector 
- col44l1_74
- a numeric vector 
- col44l1_75
- a numeric vector 
- col44l1_76
- a numeric vector 
- col44l1_77
- a numeric vector 
- col44l1_79
- a numeric vector 
- col44l1_80
- a numeric vector 
- col44l1_82
- a numeric vector 
- col44l1_83
- a numeric vector 
- col44l1_84
- a numeric vector 
- col44l1_85
- a numeric vector 
- col44l1_86
- a numeric vector 
- col44l1_87
- a numeric vector 
- col44l1_89
- a numeric vector 
- col44l1_90
- a numeric vector 
- col44l1_91
- a numeric vector 
- col44l1_92
- a numeric vector 
- col44l1_93
- a numeric vector 
- col44l1_94
- a numeric vector 
- col44l2_1
- a numeric vector 
- col44l2_2
- a numeric vector 
- col44l2_3
- a numeric vector 
- col44l2_4
- a numeric vector 
- col44l2_5
- a numeric vector 
- col44l2_6
- a numeric vector 
- col44l2_9
- a numeric vector 
- col44l2_10
- a numeric vector 
- col44l2_12
- a numeric vector 
- col44l2_14
- a numeric vector 
- col44l2_17
- a numeric vector 
- col44l2_18
- a numeric vector 
- col44l2_19
- a numeric vector 
- col44l2_20
- a numeric vector 
- col44l2_23
- a numeric vector 
- col44l2_26
- a numeric vector 
- col44l2_27
- a numeric vector 
- col44l2_28
- a numeric vector 
- col44l2_30
- a numeric vector 
- col44l2_31
- a numeric vector 
- col44l2_32
- a numeric vector 
- col44l2_35
- a numeric vector 
- col44l2_36
- a numeric vector 
- col44l2_37
- a numeric vector 
- col44l2_38
- a numeric vector 
- col44l2_40
- a numeric vector 
- col44l7_67
- a numeric vector 
- col44l7_68
- a numeric vector 
- col44l7_69
- a numeric vector 
- col44l7_70
- a numeric vector 
- col44l7_71
- a numeric vector 
- col44l7_75
- a numeric vector 
- col44l7_76
- a numeric vector 
- col44l7_77
- a numeric vector 
- col44l7_78
- a numeric vector 
- col44l7_79
- a numeric vector 
- col44l7_80
- a numeric vector 
- col44l7_82
- a numeric vector 
- col44l7_83
- a numeric vector 
- col44l7_84
- a numeric vector 
- col44l7_85
- a numeric vector 
- col44l7_86
- a numeric vector 
- col44l7_87
- a numeric vector 
- col44l7_88
- a numeric vector 
- col44l7_89
- a numeric vector 
- col44l7_90
- a numeric vector 
- col44l7_91
- a numeric vector 
- col44l7_92
- a numeric vector 
- col44l7_93
- a numeric vector 
- col44l7_94
- a numeric vector 
- col44l7_95
- a numeric vector 
- col44l7_96
- a numeric vector 
- col44l8_17
- a numeric vector 
- col44l8_19
- a numeric vector 
- col44l8_21
- a numeric vector 
- col44l8_22
- a numeric vector 
- col44l8_23
- a numeric vector 
- col44l8_24
- a numeric vector 
- col44l8_25
- a numeric vector 
- col44l8_26
- a numeric vector 
- col44l8_28
- a numeric vector 
- col44l8_29
- a numeric vector 
- col44l8_31
- a numeric vector 
- col44l8_32
- a numeric vector 
- col44l8_33
- a numeric vector 
- col44l8_34
- a numeric vector 
- col44l8_43
- a numeric vector 
- col44l8_45
- a numeric vector 
- col44l8_46
- a numeric vector 
- col44l8_47
- a numeric vector 
- col44l8_48
- a numeric vector 
- col44l8_50
- a numeric vector 
- col44l8_51
- a numeric vector 
- col44l8_52
- a numeric vector 
- col44l8_53
- a numeric vector 
- col44l8_54
- a numeric vector 
- col44l8_55
- a numeric vector 
- col44l8_56
- a numeric vector 
- col44l8_58
- a numeric vector 
- col44l8_59
- a numeric vector 
- col44l8_60
- a numeric vector 
- col44l8_61
- a numeric vector 
- col44l8_62
- a numeric vector 
- col44l8_63
- a numeric vector 
- col44l8_67
- a numeric vector 
- col44l8_68
- a numeric vector 
- col44l8_70
- a numeric vector 
- col44l8_71
- a numeric vector 
- col44l8_72
- a numeric vector 
- col44l8_73
- a numeric vector 
- col44l8_74
- a numeric vector 
- col44l8_76
- a numeric vector 
- col44l8_78
- a numeric vector 
- col44l8_81
- a numeric vector 
- col44l8_85
- a numeric vector 
- col44l8_86
- a numeric vector 
- col44l8_88
- a numeric vector 
- col44l8_94
- a numeric vector 
- col45l2_42
- a numeric vector 
- col45l2_43
- a numeric vector 
- col45l2_45
- a numeric vector 
- col45l2_47
- a numeric vector 
- col45l2_48
- a numeric vector 
- col45l2_50
- a numeric vector 
- col45l2_51
- a numeric vector 
- col45l2_52
- a numeric vector 
- col45l2_54
- a numeric vector 
- col45l2_55
- a numeric vector 
- col45l2_56
- a numeric vector 
- col45l2_57
- a numeric vector 
- col45l2_58
- a numeric vector 
- col45l2_59
- a numeric vector 
- col45l2_60
- a numeric vector 
- col45l2_61
- a numeric vector 
- col45l2_62
- a numeric vector 
- col45l2_63
- a numeric vector 
- col45l2_64
- a numeric vector 
- col45l2_65
- a numeric vector 
- col45l2_66
- a numeric vector 
- col45l2_67
- a numeric vector 
- col45l2_68
- a numeric vector 
- col45l2_69
- a numeric vector 
- col45l2_70
- a numeric vector 
- col45l2_71
- a numeric vector 
- col45l2_76
- a numeric vector 
- col45l2_77
- a numeric vector 
- col45l2_78
- a numeric vector 
- col45l2_81
- a numeric vector 
- col45l2_83
- a numeric vector 
- col45l2_84
- a numeric vector 
- col45l2_85
- a numeric vector 
- col45l2_88
- a numeric vector 
- col45l2_89
- a numeric vector 
- col45l2_90
- a numeric vector 
- col45l2_91
- a numeric vector 
- col45l2_92
- a numeric vector 
- col45l2_93
- a numeric vector 
- col45l2_94
- a numeric vector 
- col45l2_95
- a numeric vector 
- col45l7_24
- a numeric vector 
- col45l7_25
- a numeric vector 
- col45l8_2
- a numeric vector 
- col45l8_3
- a numeric vector 
- col45l8_4
- a numeric vector 
- col45l8_5
- a numeric vector 
- col45l8_6
- a numeric vector 
- col45l8_7
- a numeric vector 
- col45l8_8
- a numeric vector 
- col45l8_9
- a numeric vector 
- col45l8_11
- a numeric vector 
- col45l8_12
- a numeric vector 
- col45l8_13
- a numeric vector 
- col45l8_14
- a numeric vector 
- col45l8_35
- a numeric vector 
- col47l7_26
- a numeric vector 
- col47l7_27
- a numeric vector 
- col47l7_28
- a numeric vector 
- col47l7_29
- a numeric vector 
- col47l7_30
- a numeric vector 
- col47l7_31
- a numeric vector 
- col47l7_32
- a numeric vector 
- col47l7_33
- a numeric vector 
- col47l7_34
- a numeric vector 
- col47l7_35
- a numeric vector 
- col47l7_36
- a numeric vector 
- col47l7_37
- a numeric vector 
- col47l7_38
- a numeric vector 
- col47l7_41
- a numeric vector 
- col47l7_42
- a numeric vector 
- col47l7_44
- a numeric vector 
- col47l7_45
- a numeric vector 
- col47l7_47
- a numeric vector 
- col47l7_48
- a numeric vector 
- col47l7_49
- a numeric vector 
- col47l7_50
- a numeric vector 
- col47l7_51
- a numeric vector 
- col47l7_54
- a numeric vector 
- col47l7_57
- a numeric vector 
- col47l7_58
- a numeric vector 
- col47l7_59
- a numeric vector 
- col47l7_60
- a numeric vector 
- col47l7_63
- a numeric vector 
- col47l7_64
- a numeric vector 
- col47l7_65
- a numeric vector 
- col47l7_66
- a numeric vector 
- col48l6_2
- a numeric vector 
- col48l6_4
- a numeric vector 
- col48l6_5
- a numeric vector 
- col48l6_6
- a numeric vector 
- col48l6_7
- a numeric vector 
- col48l6_8
- a numeric vector 
- col48l6_9
- a numeric vector 
- col48l6_10
- a numeric vector 
- col48l6_11
- a numeric vector 
- col48l6_12
- a numeric vector 
- col48l6_13
- a numeric vector 
- col48l6_14
- a numeric vector 
- col48l6_16
- a numeric vector 
- col48l6_17
- a numeric vector 
- col48l6_18
- a numeric vector 
- col48l6_19
- a numeric vector 
- col48l6_20
- a numeric vector 
- col48l6_21
- a numeric vector 
- col48l6_22
- a numeric vector 
- col48l6_24
- a numeric vector 
- col48l6_26
- a numeric vector 
- col48l6_27
- a numeric vector 
- col48l6_28
- a numeric vector 
- col48l6_30
- a numeric vector 
- col48l6_31
- a numeric vector 
- col48l6_34
- a numeric vector 
- col48l6_35
- a numeric vector 
- col48l6_36
- a numeric vector 
- col48l6_39
- a numeric vector 
- col48l6_40
- a numeric vector 
- col48l6_42
- a numeric vector 
- col48l6_43
- a numeric vector 
- col48l6_44
- a numeric vector 
- col48l6_46
- a numeric vector 
- col48l6_47
- a numeric vector 
- col48l6_48
- a numeric vector 
- col48l6_50
- a numeric vector 
- col48l6_51
- a numeric vector 
- col48l6_52
- a numeric vector 
- col48l6_53
- a numeric vector 
- col48l6_54
- a numeric vector 
- col48l6_55
- a numeric vector 
- col48l6_56
- a numeric vector 
- col48l6_58
- a numeric vector 
- col48l6_60
- a numeric vector 
- col48l6_61
- a numeric vector 
- col48l6_62
- a numeric vector 
- col48l6_63
- a numeric vector 
- col48l6_64
- a numeric vector 
- col48l6_65
- a numeric vector 
- col48l6_66
- a numeric vector 
- col48l6_67
- a numeric vector 
- col48l6_68
- a numeric vector 
- col48l6_69
- a numeric vector 
- col48l6_70
- a numeric vector 
- col48l6_71
- a numeric vector 
- col48l6_72
- a numeric vector 
- col48l6_73
- a numeric vector 
- col48l6_74
- a numeric vector 
- col48l6_75
- a numeric vector 
- col48l6_76
- a numeric vector 
- col48l6_77
- a numeric vector 
- col48l6_78
- a numeric vector 
- col48l6_79
- a numeric vector 
- col48l6_80
- a numeric vector 
- col48l6_81
- a numeric vector 
- col48l6_82
- a numeric vector 
- col48l6_85
- a numeric vector 
- col48l6_86
- a numeric vector 
- col48l6_88
- a numeric vector 
- col48l6_90
- a numeric vector 
- col48l6_92
- a numeric vector 
- col48l6_93
- a numeric vector 
- col48l6_94
- a numeric vector 
- col48l6_95
- a numeric vector 
- col48l6_96
- a numeric vector 
- col48l7_1
- a numeric vector 
- col48l7_2
- a numeric vector 
- col48l7_3
- a numeric vector 
- col48l7_4
- a numeric vector 
- col48l7_5
- a numeric vector 
- col48l7_7
- a numeric vector 
- col48l7_9
- a numeric vector 
- col48l7_11
- a numeric vector 
- col48l7_12
- a numeric vector 
- col48l7_13
- a numeric vector 
- col48l7_15
- a numeric vector 
- col48l7_16
- a numeric vector 
- col48l7_18
- a numeric vector 
- col48l7_20
- a numeric vector 
- col48l7_21
- a numeric vector 
Examples
data(scRNA663)
## maybe str(scRNA663) ; plot(scRNA663) ...
scRNA663_factors
Description
Please refer to the file /inst/doc/readme.pdf.
Usage
data("scRNA663_factors")Format
A data frame with 663 observations on the following 12 variables.
- HG7
- a numeric vector 
- ERCC
- a numeric vector 
- TN
- a numeric vector 
- TC
- a numeric vector 
- CR
- a numeric vector 
- NR
- a numeric vector 
- DESeq
- a numeric vector 
- UQ
- a numeric vector 
- TMM
- a numeric vector 
- TU
- a numeric vector 
- NCS
- a numeric vector 
- ES
- a numeric vector 
Examples
data(scRNA663_factors)
## maybe str(scRNA663_factors) ; plot(scRNA663_factors) ...