## ----setup, include = FALSE--------------------------------------------------- is_check <- ("CheckExEnv" %in% search()) || any(c("_R_CHECK_TIMINGS_", "_R_CHECK_LICENSE_") %in% names(Sys.getenv())) || !file.exists("../models/MultilevelRoBMA/fit_Johnides2025.RDS") knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = !is_check, dev = "png") if(.Platform$OS.type == "windows"){ knitr::opts_chunk$set(dev.args = list(type = "cairo")) } ## ----include = FALSE---------------------------------------------------------- library(RoBMA) fit <- readRDS(file = "../models/MultilevelRoBMA/fit_Johnides2025.RDS") fit_simple <- readRDS(file = "../models/MultilevelRoBMA/fit_Johnides2025_single.RDS") ## ----include = FALSE, eval = FALSE-------------------------------------------- # # R package version updating # library(RoBMA) # data("Johnides2025", package = "RoBMA") # # fit <- RoBMA( # d = Johnides2025$d, # se = Johnides2025$se, # study_ids = Johnides2025$study, # algorithm = "ss", # adapt = 5000, # burnin = 5000, # sample = 10000, # parallel = TRUE, # seed = 1, # autofit = FALSE # ) # saveRDS(fit, file = "../models/MultilevelRoBMA/fit_Johnides2025.RDS", compress = "xz") # # fit_simple <- RoBMA( # d = Johnides2025$d, # se = Johnides2025$se, # algorithm = "ss", # adapt = 5000, # burnin = 5000, # sample = 10000, # parallel = TRUE, # seed = 1, # autofit = FALSE # ) # saveRDS(fit_simple, file = "../models/MultilevelRoBMA/fit_Johnides2025_single.RDS", compress = "xz") ## ----------------------------------------------------------------------------- library(RoBMA) data("Johnides2025", package = "RoBMA") ## ----------------------------------------------------------------------------- head(Johnides2025) ## ----eval = FALSE------------------------------------------------------------- # fit <- RoBMA( # d = Johnides2025$d, # se = Johnides2025$se, # study_ids = Johnides2025$study, # algorithm = "ss", # adapt = 5000, # burnin = 5000, # sample = 10000, # parallel = TRUE, # seed = 1, # autofit = FALSE # ) ## ----------------------------------------------------------------------------- summary(fit) ## ----------------------------------------------------------------------------- summary_heterogeneity(fit) ## ----------------------------------------------------------------------------- summary(fit, type = "models") ## ----fig.width = 6, fig.height = 4-------------------------------------------- plot(fit, parameter = "weightfunction", rescale_x = TRUE) ## ----eval = FALSE------------------------------------------------------------- # fit_simple <- RoBMA( # d = Johnides2025$d, # se = Johnides2025$se, # algorithm = "ss", # adapt = 5000, # burnin = 5000, # sample = 10000, # parallel = TRUE, # seed = 1, # autofit = FALSE # ) ## ----------------------------------------------------------------------------- summary(fit_simple)