## ----setup, include = FALSE--------------------------------------------------- is_check <- ("CheckExEnv" %in% search()) || any(c("_R_CHECK_TIMINGS_", "_R_CHECK_LICENSE_") %in% names(Sys.getenv())) || !file.exists("../models/MultilevelRoBMARegression/zfit_Havrankova2025.RDS") knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = !is_check, dev = "png") if(.Platform$OS.type == "windows"){ knitr::opts_chunk$set(dev.args = list(type = "cairo")) } ## ----include = FALSE---------------------------------------------------------- library(RoBMA) zfit_reg <- readRDS(file = "../models/MultilevelRoBMARegression/zfit_Havrankova2025.RDS") fit_reg <- zfit_reg class(fit_reg) <- class(fit_reg)[!class(fit_reg) %in% "zcurve_RoBMA"] ## ----include = FALSE, eval = FALSE-------------------------------------------- # # R package version updating # library(RoBMA) # data("Havrankova2025", package = "RoBMA") # # # Prior scaling # fit_fe <- metafor::rma(yi = y, sei = se, data = Havrankova2025, method = "FE") # unti_scale <- fit_fe$se * sqrt(sum(Havrankova2025$N)) # prior_scale <- unti_scale * 0.5 # # df_reg <- data.frame( # y = Havrankova2025$y, # se = Havrankova2025$se, # facing_customer = Havrankova2025$facing_customer, # study_id = Havrankova2025$study_id # ) # # fit_reg <- RoBMA.reg( # ~ facing_customer, # study_ids = df_reg$study_id, # data = df_reg, # rescale_priors = prior_scale, # prior_scale = "none", transformation = "none", # algorithm = "ss", sample = 20000, burnin = 10000, adapt = 10000, # thin = 5, parallel = TRUE, autofit = FALSE, seed = 1) # ) # # zfit_reg <- as_zcurve(fit_reg) # saveRDS(zfit_reg, file = "../models/MultilevelRoBMARegression/zfit_Havrankova2025.RDS", compress = "xz") ## ----------------------------------------------------------------------------- library(RoBMA) data("Havrankova2025", package = "RoBMA") fit_fe <- metafor::rma(yi = y, sei = se, data = Havrankova2025, method = "FE") unti_scale <- fit_fe$se * sqrt(sum(Havrankova2025$N)) prior_scale <- unti_scale * 0.5 ## ----eval = FALSE------------------------------------------------------------- # df_reg <- data.frame( # y = Havrankova2025$y, # se = Havrankova2025$se, # facing_customer = Havrankova2025$facing_customer, # study_id = Havrankova2025$study_id # ) # # fit_reg <- RoBMA.reg( # ~ facing_customer, # study_ids = df_reg$study_id, # data = df_reg, # rescale_priors = prior_scale, # prior_scale = "none", transformation = "none", # algorithm = "ss", sample = 20000, burnin = 10000, adapt = 10000, # thin = 5, parallel = TRUE, autofit = FALSE, seed = 1) # ) ## ----------------------------------------------------------------------------- summary(fit_reg) ## ----------------------------------------------------------------------------- marginal_summary(fit_reg) ## ----eval = FALSE------------------------------------------------------------- # zfit_reg <- as_zcurve(fit_reg) ## ----fig.width = 6, fig.height = 4-------------------------------------------- par(mar = c(4,4,0,0)) plot(zfit_reg, by.hist = 0.25, plot_extrapolation = FALSE, from = -4, to = 8)