Type: | Package |
Title: | LIC for Distributed Skewed Regression |
Version: | 0.3 |
Date: | 2025-07-09 |
Description: | This comprehensive toolkit for skewed regression is designated as "SLIC" (The LIC for Distributed Skewed Regression Analysis). It is predicated on the assumption that the error term follows a skewed distribution, such as the Skew-Normal, Skew-t, or Skew-Laplace. The methodology and theoretical foundation of the package are described in Guo G.(2020) <doi:10.1080/02664763.2022.2053949>. |
License: | MIT + file LICENSE |
Encoding: | UTF-8 |
RoxygenNote: | 7.3.2 |
Depends: | R (≥ 3.5.0) |
Imports: | stats, LaplacesDemon, sn |
NeedsCompilation: | no |
Author: | Guangbao Guo |
Maintainer: | Guangbao Guo <ggb11111111@163.com> |
Suggests: | testthat (≥ 3.0.0) |
Config/testthat/edition: | 3 |
Packaged: | 2025-07-21 16:07:37 UTC; lenovo |
Repository: | CRAN |
Date/Publication: | 2025-07-25 15:40:11 UTC |
Calculate the LIC estimator based on A-optimal and D-optimal criterion
Description
Calculate the LIC estimator based on A-optimal and D-optimal criterion
Usage
LICnew(X, Y, alpha, K, nk)
Arguments
X |
A matrix of observations (design matrix) with size n x p |
Y |
A vector of responses with length n |
alpha |
The significance level for confidence intervals |
K |
The number of subsets to consider |
nk |
The size of each subset |
Value
A list containing:
E5 |
The LIC estimator based on A-optimal and D-optimal criterion. |
References
Guo, G., Song, H. & Zhu, L. The COR criterion for optimal subset selection in distributed estimation. Statistics and Computing, 34, 163 (2024). doi:10.1007/s11222-024-10471-z
Examples
p = 6; n = 1000; K = 2; nk = 200; alpha = 0.05; sigma = 1
e = rnorm(n, 0, sigma); beta = c(sort(c(runif(p, 0, 1))));
data = c(rnorm(n * p, 5, 10)); X = matrix(data, ncol = p);
Y = X %*% beta + e;
LICnew(X = X, Y = Y, alpha = alpha, K = K, nk = nk)
SLIC function based on LIC with skewed error distributions
Description
The SLIC function extends the LIC method by assuming that the error term follows a skewed distribution (Skew-Normal, Skew-t, or Skew-Laplace), thereby improving the length and information optimisation criterion.
Usage
SLIC(X, Y, alpha = 0.05, K = 10, nk = NULL, dist_type = "skew_normal")
Arguments
X |
is a design matrix |
Y |
is a random response vector of observed values |
alpha |
is the significance level |
K |
is the number of subsets |
nk |
is the sample size of subsets |
dist_type |
is the type of skewed error distribution: "skew_normal", "skew_t", or "skew_laplace" |
Value
MUopt, Bopt, MAEMUopt, MSEMUopt, opt, Yopt
Examples
set.seed(123)
n <- 1000
p <- 5
X <- matrix(rnorm(n * p), ncol = p)
beta <- runif(p, 1, 2)
e <- sn::rsn(n = n, xi = 0, omega = 1, alpha = 5)
Y <- X %*% beta + e
SLIC(X, Y, alpha = 0.05, K = 10, dist_type = "skew_normal")
Caculate the estimators of beta on the A-opt and D-opt
Description
Caculate the estimators of beta on the A-opt and D-opt
Usage
beta_AD(K = K, nk = nk, alpha = alpha, X = X, y = y)
Arguments
K |
is the number of subsets |
nk |
is the length of subsets |
alpha |
is the significance level |
X |
is the observation matrix |
y |
is the response vector |
Value
A list containing:
betaA |
The estimator of beta on the A-opt. |
betaD |
The estimator of beta on the D-opt. |
References
Guo, G., Song, H. & Zhu, L. The COR criterion for optimal subset selection in distributed estimation. Statistics and Computing, 34, 163 (2024). doi:10.1007/s11222-024-10471-z
Examples
p=6;n=1000;K=2;nk=200;alpha=0.05;sigma=1
e=rnorm(n,0,sigma); beta=c(sort(c(runif(p,0,1))));
data=c(rnorm(n*p,5,10));X=matrix(data, ncol=p);
y=X%*%beta+e;
beta_AD(K=K,nk=nk,alpha=alpha,X=X,y=y)
Caculate the estimator of beta on the COR
Description
Caculate the estimator of beta on the COR
Usage
beta_cor(K = K, nk = nk, alpha = alpha, X = X, y = y)
Arguments
K |
is the number of subsets |
nk |
is the length of subsets |
alpha |
is the significance level |
X |
is the observation matrix |
y |
is the response vector |
Value
A list containing:
betaC |
The estimator of beta on the COR. |
References
Guo, G., Song, H. & Zhu, L. The COR criterion for optimal subset selection in distributed estimation. Statistics and Computing, 34, 163 (2024). doi:10.1007/s11222-024-10471-z
Examples
p=6;n=1000;K=2;nk=200;alpha=0.05;sigma=1
e=rnorm(n,0,sigma); beta=c(sort(c(runif(p,0,1))));
data=c(rnorm(n*p,5,10));X=matrix(data, ncol=p);
y=X%*%beta+e;
beta_cor(K=K,nk=nk,alpha=alpha,X=X,y=y)
Generate data with skewed errors
Description
Generate data with skewed errors
Usage
serr(n, nr, p, dist_type, ...)
Arguments
n |
Number of total observations |
nr |
Number of observations with a different error distribution |
p |
Number of predictors |
dist_type |
Type of error distribution ("skew_normal", "skew_t", "skew_laplace") |
... |
Additional parameters for the error distribution |
Value
A list with X (design matrix), Y (response), and e (error)
Examples
set.seed(123)
data <- serr(1000, 200, 5, "skew_t")
str(data)