Added a pseudo-code vignette, refreshed the README with workflow details, and expanded the unit test suite for the new helpers.
Fixed code and descriptions to get rid of notes during CRAN checks.
Enabled optional parallel resampling in
sb_beta()/sb_resample_groups() via
future.apply, added S3 print/summary/autoplot helpers for
sb_beta results, and documented the new behaviour in the
README.
Extended the stepwise beta selectors to handle observation weights and precision-submodel search, exposing precision coefficients in the returned paths.
Added reproducible resampling caches and quality diagnostics to
sb_resample_groups()/sb_beta(), including
interval-response support that reuses pseudo-responses across
correlation thresholds.
Documented interval workflows more prominently by adding
sb_beta_interval(), expanding the README/CRAN vignette
guidance for selector choice and interval stability, and clarifying
comparison-helper outputs and response squeezing.
sb_beta() to run the full SelectBoost
correlated-resampling loop with beta-regression selectors, plus a
vignette illustrating the workflow.simulation_DATA() to generate
interval-valued Beta-regression data:
interval = "jitter" (symmetric) or
"quantile" (Beta quantile intervals).fastboost_interval(); added a small vignette
and unit test.delta_low/delta_high), asymmetric
quantile coverage (alpha_low/alpha_high),
covariate-driven parameters (accept functions of (mu, X)),
and optional missing bounds per row
(na_rate, na_side).compare_selectors_single(),
compare_selectors_bootstrap() to run all selectors
(AIC/BIC/AICc, GAMLSS LASSO/ENet*, GLMNET) and compute selection
frequencies.plot_compare_coeff(), plot_compare_freq()
heatmaps to compare selectors side by side.fastboost_interval() (interval response stability
selection), C++ IRLS speedups, and prestandardize option
for betareg_glmnet().
gamlss.lasso if installed.betareg.gamlss::ri) and optional
Elastic-Net (gamlss.lasso::gnet).fastboost_interval() prototype for interval
responses.