--- title: "Surprisal Analysis Guidelines" output: github_document vignette: > %\VignetteIndexEntry{Surprisal analysis guidelines} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE) ``` ## Surprisal Analysis, an R package for information theoretic analysis of gene expression data ```{r} library(SurprisalAnalysis) library(ggplot2) ``` Read data and apply Surprisal analysis ```{r} data <- read.csv(system.file("extdata", "helper_T_cell_0_test.csv", package = "SurprisalAnalysis"), header=TRUE) results <- surprisal_analysis(data) results[[2]]-> transcript_weights percentile_GO <- 0.95 #change based on your preference lambda_no <- 2 #change based on your preference, lambda #1 is the baseline state ``` Run GO analysis ```{r, eval = FALSE} GO.results <- GO_analysis_surprisal_analysis(transcript_weights, percentile_GO, lambda_no, key_type = "SYMBOL", flip = FALSE, species.db.str = "org.Mm.eg.db", top_GO_terms=15) ``` The function GO_analysis_surprisal_analysis() runs Gene Ontology (GO) enrichment on the most influential transcripts from a chosen Surprisal pattern. Below are the input arguments: