## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, cache.path = 'cache/simulatePfsAndOs/', comment = '#>', dpi = 300, out.width = '100%' ) ## ----setup, echo = FALSE, message = FALSE------------------------------------- library(dplyr) library(knitr) library(ggplot2) library(TrialSimulator) ## ----pplloott----------------------------------------------------------------- knitr::include_graphics('three_state_ill_death_model.png') ## ----laiela------------------------------------------------------------------- pars <- solveThreeStateModel(median_pfs = 5, median_os = 12, corr = seq(.55, .65, by = .05), h12 = seq(.05, .15, length.out = 50)) plot(pars) ## ----eiaoljf, results='asis'-------------------------------------------------- pfs_and_os <- endpoint(name = c('pfs', 'os'), type = c('tte', 'tte'), generator = CorrelatedPfsAndOs3, h01 = .11, h02 = .03, h12 = .10, pfs_name = 'pfs', os_name = 'os') pfs_and_os ## ----llea--------------------------------------------------------------------- dat <- CorrelatedPfsAndOs3(n = 1e6, h01 = .11, h02 = .03, h12 = .10) head(dat, 2) ## should be close to 0.6 with(dat, cor(pfs, os)) ## should be close to 5.0 with(dat, median(pfs)) ## should be close to 12.0 with(dat, median(os)) with(dat, all(pfs <= os))