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bagger Bagging functions

Description

General suite of bagging functions for several models.

Usage

bagger(x, ...)

## Default S3 method:
bagger(x, ...)

## S3 method for class 'data.frame'
bagger(
x,
y,
weights = NULL,
base_model = "CART",
times = 11L,
control = control_bag(),
cost = NULL,
...

)

## S3 method for class 'matrix'
bagger(
x,
y,

https://orcid.org/0000-0003-2402-136X
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weights = NULL,
base_model = "CART",
times = 11L,
control = control_bag(),
cost = NULL,
...

)

## S3 method for class 'formula'
bagger(
formula,
data,
weights = NULL,
base_model = "CART",
times = 11L,
control = control_bag(),
cost = NULL,
...

)

## S3 method for class 'recipe'
bagger(
x,
data,
base_model = "CART",
times = 11L,
control = control_bag(),
cost = NULL,
...

)

Arguments

x A data frame, matrix, or recipe (depending on the method being used).

... Optional arguments to pass to the base model function.

y A numeric or factor vector of outcomes. Categorical outcomes (i.e classes)
should be represented as factors, not integers.

weights A numeric vector of non-negative case weights. These values are not used dur-
ing bootstrap resampling.

base_model A single character value for the model being bagged. Possible values are "CART",
"MARS", "nnet", and "C5.0" (classification only).

times A single integer greater than 1 for the maximum number of bootstrap sam-
ples/ensemble members (some model fits might fail).

control A list of options generated by control_bag().

cost A non-negative scale (for two class problems) or a square cost matrix.

formula An object of class "formula" (or one that can be coerced to that class): a sym-
bolic description of the model to be fitted. Note that this package does not
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support multivariate outcomes and that, if some predictors are factors, dummy
variables will not be created unless by the underlying model function.

data A data frame containing the variables used in the formula or recipe.

Details

bagger() fits separate models to bootstrap samples. The prediction function for each model object
is encoded in an R expression and the original model object is discarded. When making predictions,
each prediction formula is evaluated on the new data and aggregated using the mean.

Variable importance scores are calculated using implementations in each package. When requested,
the results are in a tibble with column names term (the predictor), value (the importance score),
and used (the percentage of times that the variable was in the prediction equation).

The models can be fit in parallel using the future package. The enable parallelism, use the future::plan()
function to declare how the computations should be distributed. Note that this will almost certainly
multiply the memory requirements required to fit the models.

For neural networks, variable importance is calculated using the method of Garson described in
Gevrey et al (2003)

References

Gevrey, M., Dimopoulos, I., and Lek, S. (2003). Review and comparison of methods to study the
contribution of variables in artificial neural network models. Ecological Modelling, 160(3), 249-
264.

Examples

if (rlang::is_installed(c("recipes", "modeldata"))) {
library(recipes)
library(dplyr)

data(biomass, package = "modeldata")

biomass_tr <-
biomass %>%
dplyr::filter(dataset == "Training") %>%
dplyr::select(-dataset, -sample)

biomass_te <-
biomass %>%
dplyr::filter(dataset == "Testing") %>%
dplyr::select(-dataset, -sample)

# ------------------------------------------------------------------------------

ctrl <- control_bag(var_imp = TRUE)

# ------------------------------------------------------------------------------

# `times` is low to make the examples run faster
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set.seed(7687)
cart_bag <- bagger(x = biomass_tr[, -6], y = biomass_tr$HHV,

base_model = "CART", times = 5, control = ctrl)
cart_bag

# ------------------------------------------------------------------------------
# Other interfaces

# Recipes can be used
biomass_rec <-
recipe(HHV ~ ., data = biomass_tr) %>%
step_pca(all_predictors())

set.seed(7687)
cart_pca_bag <- bagger(biomass_rec, data = biomass_tr, base_model = "CART",

times = 5, control = ctrl)

cart_pca_bag
}

class_cost Cost parameter for minority class

Description

Used in bag_treer().

Usage

class_cost(range = c(0, 5), trans = NULL)

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Details

This parameter reflects the cost of a misclassified sample relative to a baseline cost of 1.0. For
example, if the first level of an outcome factor occurred rarely, it might help if this parameter were
set to values greater than 1.0. If the second level of the outcome factor is in the minority, values less
than 1.0 would cause the model to emphasize the minority class more than the majority class.

Examples

class_cost()
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control_bag Controlling the bagging process

Description

control_bag() can set options for ancillary aspects of the bagging process.

Usage

control_bag(
var_imp = TRUE,
allow_parallel = TRUE,
sampling = "none",
reduce = TRUE,
extract = NULL

)

Arguments

var_imp A single logical: should variable importance scores be calculated?

allow_parallel A single logical: should the model fits be done in parallel (even if a parallel
plan() has been created)?

sampling Either "none" or "down". For classification only. The training data, after boot-
strapping, will be sampled down within each class (with replacement) to the size
of the smallest class.

reduce Should models be modified to reduce their size on disk?

extract A function (or NULL) that can extract model-related aspects of each ensemble
member. See Details and example below.

Details

Any arbitrary item can be saved from the model object (including the model object itself) using the
extract argument, which should be a function with arguments x (for the model object), and ....
The results of this function are saved into a list column called extras (see the example below).

Value

A list.

Examples

# Extracting model components

num_term_nodes <- function(x, ...) {
tibble::tibble(num_nodes = sum(x$frame$var == "<leaf>"))

}
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set.seed(7687)
with_extras <- bagger(mpg ~ ., data = mtcars,

base_model = "CART", times = 5,
control = control_bag(extract = num_term_nodes))

dplyr::bind_rows(with_extras$model_df$extras)

predict.bagger Predictions from a bagged model

Description

The predict() function computes predictions from each of the models in the ensembles and returns
a single aggregated value for each sample in new_data.

Usage

## S3 method for class 'bagger'
predict(object, new_data, type = NULL, ...)

Arguments

object An object generated by bagger().

new_data A data frame of predictors. If a recipe or formula were originally used, the
original data should be passed here instead of a preprocessed version.

type A single character value for the type of predictions. For regression models,
type = 'numeric' is valid and 'class' and 'prob' are valid for classification
models.

... Not currently used.

Examples

data(airquality)

set.seed(7687)
cart_bag <- bagger(Ozone ~ ., data = airquality, base_model = "CART", times = 5)
predict(cart_bag, new_data = airquality[, -1])
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var_imp.bagger Obtain variable importance scores

Description

Obtain variable importance scores

Usage

## S3 method for class 'bagger'
var_imp(object, ...)

Arguments

object An object.
... Not currently used.

Details

baguette can compute different variable importance scores for each model in the ensemble. The
var_imp() function returns the average importance score for each model. Additionally, the function
returns the number of times that each predictor is included in the final prediction equation.

Specific methods used by the models are:

CART: The model accumulates the improvement of the model that occurs when a predictor is used
in a split. These values are taken form the rpart object. See rpart::rpart.object().

MARS: MARS models include a backwards elimination feature selection routine that looks at re-
ductions in the generalized cross-validation (GCV) estimate of error. The earth() function tracks
the changes in model statistics, such as the GCV, for each predictor and accumulates the reduc-
tion in the statistic when each predictor’s feature is added to the model. This total reduction is
used as the variable importance measure. If a predictor was never used in any of the MARS basis
functions in the final model (after pruning), it has an importance value of zero. baguette wraps
earth::evimp().

C5.0: C5.0 measures predictor importance by determining the percentage of training set samples
that fall into all the terminal nodes after the split. For example, the predictor in the first split
automatically has an importance measurement of 100 percent since all samples are affected by this
split. Other predictors may be used frequently in splits, but if the terminal nodes cover only a
handful of training set samples, the importance scores may be close to zero.

Note that the value column that is the average of the importance scores form each model. The
divisor of this average (and the corresponding standard error) is the number of models (as opposed
to the number of models that used the predictor). This means that the importance scores for a
predictor that was not used in the model has an implicit zero importance.

Value

A tibble with columns for term (the predictor), value (the mean importance score), std.error
(the standard error), and used (the occurrences of the predictors).



Index

bagger, 2

class_cost, 5
control_bag, 6

predict.bagger, 7

var_imp.bagger, 8

9


	bagger
	class_cost
	control_bag
	predict.bagger
	var_imp.bagger
	Index

