## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE) ## ---- include=FALSE----------------------------------------------------------- library(bdots) # Make smaller for cran cohort_unrelated$Subject <- as.numeric(cohort_unrelated$Subject) cohort_unrelated <- as.data.table(cohort_unrelated) cohort_unrelated <- cohort_unrelated[Subject < 10, ] ## ----------------------------------------------------------------------------- library(bdots) library(data.table) ## Let's work with cohort_unrelated dataset, as it has multiple groups dat <- as.data.table(cohort_unrelated) ## And add a fixed value for which we want to find a correlation dat[, val := rnorm(1), by = Subject] head(dat) ## ----------------------------------------------------------------------------- ## Create regular fit in bdots fit <- bdotsFit(data = dat, subject = "Subject", time = "Time", group = c("LookType", "Group"), y = "Fixations", curveType = doubleGauss2(), cores = 2) ## ----------------------------------------------------------------------------- ## Returns a data.table of class bdotsCorrObj corr_ci <- bdotsCorr(fit, val = "val", ciBands = TRUE) head(corr_ci) ## Same, without confidence intervals corr_noci <- bdotsCorr(fit, val = "val") head(corr_noci) ## ---- fig.align='center', fig.width = 6, fig.height=6------------------------- ## Default is no bands plot(corr_ci) ## Try again with bands plot(corr_ci, ciBands = TRUE) ## Narrow in on a particular window plot(corr_ci, window = c(750, 1500)) ## ---- fig.align='center', fig.width = 6, fig.height=4------------------------- plot(corr_ci[Group2 == "50", ])