
Package ‘binaryRL’
June 15, 2025

Version 0.8.9

Title Reinforcement Learning Tools for Two-Alternative Forced Choice
Tasks

Description Tools for building reinforcement learning (RL) models
specifically tailored for Two-Alternative Forced Choice (TAFC) tasks,
commonly employed in psychological research. These models build upon
the foundational principles of model-free reinforcement learning detailed in
Sutton and Barto (1998) <ISBN:0262039249>. The package allows
for the intuitive definition of RL models using simple if-else
statements. Our approach to constructing and evaluating these
computational models is informed by the guidelines proposed in
Wilson & Collins (2019) <doi:10.7554/eLife.49547>. Example
datasets included with the package are sourced from the work of
Mason et al. (2024) <doi:10.3758/s13423-023-02415-x>.

Maintainer YuKi <hmz1969a@gmail.com>

URL https://github.com/yuki-961004/binaryRL

BugReports https://github.com/yuki-961004/binaryRL/issues

License GPL-3

Encoding UTF-8

LazyData TRUE

RoxygenNote 7.3.2

Depends R (>= 4.0.0)

Imports future, doFuture, foreach, doRNG, progressr

Suggests stats, GenSA, GA, DEoptim, pso, mlrMBO, mlr, ParamHelpers,
smoof, lhs, DiceKriging, rgenoud, cmaes, nloptr

NeedsCompilation no

Author YuKi [aut, cre] (ORCID: <https://orcid.org/0009-0000-1378-1318>)

Repository CRAN

Date/Publication 2025-06-15 09:10:02 UTC

1

https://doi.org/10.7554/eLife.49547
https://doi.org/10.3758/s13423-023-02415-x
https://github.com/yuki-961004/binaryRL
https://github.com/yuki-961004/binaryRL/issues
https://orcid.org/0009-0000-1378-1318

2 fit_p

Contents

fit_p . 2
func_epsilon . 4
func_eta . 5
func_gamma . 6
func_tau . 7
Mason_2024_Exp1 . 8
Mason_2024_Exp2 . 9
optimize_para . 10
rcv_d . 11
recovery_data . 13
rpl_e . 15
RSTD . 16
run_m . 16
simulate_list . 20
summary.binaryRL . 21
TD . 21
Utility . 22

Index 23

fit_p Step 3: Optimizing parameters to fit real data

Description

This function optimizes free parameters of reinforcement learning models built with the ‘run_m‘
function. After constructing a reinforcement learning model (a function with only ONE argument,
‘params‘), the ‘fit_p‘ function searches for the optimal values of these free parameters.

The function provides several optimization algorithms:

• 1. L-BFGS-B (from ‘stats::optim‘);

• 2. Simulated Annealing (‘GenSA‘);

• 3. Genetic Algorithm (‘GA‘);

• 4. Differential Evolution (‘DEoptim‘);

• 5. Particle Swarm Optimization (‘pso‘);

• 6. Bayesian Optimization (‘mlrMBO‘);

• 7. Covariance Matrix Adapting Evolutionary Strategy (‘cmaes‘);

• 8. Nonlinear Optimization (‘nloptr‘)

For more information, please refer to the GitHub repository: https://github.com/yuki-961004/binaryRL

fit_p 3

Usage

fit_p(
data,
id = NULL,
n_trials = NULL,
fit_model = list(TD, RSTD, Utility),
funcs = NULL,
model_name = c("TD", "RSTD", "Utility"),
lower = list(c(0, 0), c(0, 0, 0), c(0, 0, 0)),
upper = list(c(1, 1), c(1, 1, 1), c(1, 1, 1)),
initial_params = NA,
initial_size = 50,
iteration = 10,
seed = 123,
nc = 1,
algorithm

)

Arguments

data [data.frame] raw data. This data should include the following mandatory columns:

• "sub"
• "time_line" (e.g., "Block", "Trial")
• "L_choice"
• "R_choice"
• "L_reward"
• "R_reward"
• "sub_choose"

id [vector] which subject is going to be analyzed. is being analyzed. The value
should correspond to an entry in the "sub" column, which must contain the sub-
ject IDs. e.g., ‘id = unique(data$Subject)‘

n_trials [integer] number of total trials

fit_model [list] A collection of functions applied to fit models to the data.

funcs [vector] A character vector containing the names of all user-defined functions
required for the computation.

model_name [list] the name of fit modals

lower [list] The lower bounds for model fit models

upper [list] The upper bounds for model fit models

initial_params [vector] Initial values for the free parameters. These need to be set only when
using L-BFGS-B. Other algorithms automatically generate initial values. for
‘L-BFGS-B‘, ‘GenSA‘, set ‘initial = c(0, 0, ...)‘

initial_size [integer] Initial values for the free parameters. These need to be set only when
using L-BFGS-B. Other algorithms automatically generate initial values. for
‘Bayesian‘, ‘GA‘, set ‘initial = 50‘

4 func_epsilon

iteration [integer] the number of iteration
seed [integer] random seed. This ensures that the results are reproducible and remain

the same each time the function is run. default: ‘seed = 123‘
nc [integer] Number of CPU cores to use for parallel computation.
algorithm [character] Choose an algorithm package from ‘L-BFGS-B‘, ‘GenSA‘, ‘GA‘,

‘DEoptim‘, ‘PSO‘, ‘Bayesian‘, ‘CMA-ES‘. In addition, any algorithm from the
‘nloptr‘ package is also supported. If your chosen ‘nloptr‘ algorithm requires
a local search, you need to input a character vector. The first element repre-
sents the algorithm used for global search, and the second element represents
the algorithm used for local search.

Value

The optimal parameters found by the algorithm for each subject, along with the model fit calculated
using these parameters. This is returned as an object of class binaryRL containing results for all
subjects with all models.

func_epsilon Function: Epsilon Greedy

Description

Function: Epsilon Greedy

Usage

func_epsilon(i, var1 = NA, var2 = NA, threshold = 1, epsilon = NA, lambda)

Arguments

i The current row number. The ‘threshold‘ for random selection, which is used
to explore the value of different options, will be determined based on this row
number. This is because I believe that in the early stages of an experiment,
participants will choose options completely at random to explore the reward
value associated with each option.

var1 [character] column name of extra variable 1. If your model uses more than just
reward and expected value, and you need other information, such as whether the
choice frame is Gain or Loss, then you can input the ’Frame’ column as var1
into the model. e.g., ‘var1 = "Extra_Var1"‘

var2 [character] column name of extra variable 2. If one additional variable, var1,
does not meet your needs, you can add another additional variable, var2, into
your model. e.g., ‘var2 = "Extra_Var2"‘

threshold [integer] the number of initial trials during which the subject makes random
choices rather than choosing based on the values of the options. This occurs
because the subject has not yet learned the values of the options. For example,
‘threshold = 20‘ means the subject will make completely random choices for the
first 20 trials. default: ‘threshold = 1‘

func_eta 5

epsilon [vector] Parameters used in the Exploration Function ‘expl_func‘ determining
whether the subject makes decisions based on the relative values of the left and
right options, or chooses completely randomly. For example, when epsilon =
0.1, it means the subject has a 10 chance of making a completely random choice
and a 90 based on the values of the options. e.g., ‘epsilon = c(0.1)‘

lambda [vector] Extra parameters that may be used in functions. e.g., ‘lambda = c(0.4,
0.7, 20, 60)‘

Value

explore or not

Note

When customizing these functions, please ensure that you do not modify the arguments. Instead,
only modify the ‘if-else‘ statements or the internal logic to adapt the function to your needs.

func_eta Function: Learning Rate

Description

Function: Learning Rate

Usage

func_eta(value, utility, reward, occurrence, var1 = NA, var2 = NA, eta, lambda)

Arguments

value The expected value of the stimulus in the subject’s mind at this point in time.
utility The subjective value that the subject assigns to the objective reward.
reward The objective reward received by the subject after selecting a stimulus.
occurrence The number of times the same stimulus has appeared.
var1 [character] column name of extra variable 1. If your model uses more than just

reward and expected value, and you need other information, such as whether the
choice frame is Gain or Loss, then you can input the ’Frame’ column as var1
into the model. e.g., ‘var1 = "Extra_Var1"‘

var2 [character] column name of extra variable 2. If one additional variable, var1,
does not meet your needs, you can add another additional variable, var2, into
your model. e.g., ‘var2 = "Extra_Var2"‘

eta [vector] Parameters used in the Learning Rate Function ‘rate_func‘ representing
the rate at which the subject updates the difference (prediction error) between
the reward and the expected value in the subject’s mind. In the TD model, there
is a single learning rate throughout the experiment. In the RSTD model, two
different learning rates are used when the reward is higher or lower than the
expected value. e.g., ‘eta = c(0.3, 0.7)‘

6 func_gamma

lambda [vector] Extra parameters that may be used in functions. e.g., ‘lambda = c(0.4,
0.7, 20, 60)‘

Value

learning rate eta

Note

When customizing these functions, please ensure that you do not modify the arguments. Instead,
only modify the ‘if-else‘ statements or the internal logic to adapt the function to your needs.

func_gamma Function: Utility Function

Description

Function: Utility Function

Usage

func_gamma(
value,
utility,
reward,
occurrence,
var1 = NA,
var2 = NA,
gamma = 1,
lambda

)

Arguments

value The expected value of the stimulus in the subject’s mind at this point in time.

utility The subjective value that the subject assigns to the objective reward.

reward The objective reward received by the subject after selecting a stimulus.

occurrence The number of times the same stimulus has appeared.

var1 [character] column name of extra variable 1. If your model uses more than just
reward and expected value, and you need other information, such as whether the
choice frame is Gain or Loss, then you can input the ’Frame’ column as var1
into the model. e.g., ‘var1 = "Extra_Var1"‘

var2 [character] column name of extra variable 2. If one additional variable, var1,
does not meet your needs, you can add another additional variable, var2, into
your model. e.g., ‘var2 = "Extra_Var2"‘

func_tau 7

gamma [vector] Parameters used in the Utility Function ‘util_func‘, often referred to as
the discount rate. For example, ‘utility = reward^gamma‘. If ‘gamma < 1‘, it
indicates that people tend to discount the objective reward. This equation is very
similar to the Stevens’ power function, reflecting humans’ nonlinear perception
of physical quantities. e.g., ‘gamma = c(0.7)‘.

lambda [vector] Extra parameters that may be used in functions. e.g., ‘lambda = c(0.4,
0.7, 20, 60)‘

Value

Discount rate and utility

Note

When customizing these functions, please ensure that you do not modify the arguments. Instead,
only modify the ‘if-else‘ statements or the internal logic to adapt the function to your needs.

func_tau Function: Soft-Max Function

Description

Function: Soft-Max Function

Usage

func_tau(LR, try, L_value, R_value, var1 = NA, var2 = NA, tau = 1, lambda)

Arguments

LR Are you calculating the probability for the left option or the right option?

try If the choice was random, the value is 1; if the choice was based on value, the
value is 0.

L_value The value of the left option

R_value The value of the right option

var1 [character] column name of extra variable 1. If your model uses more than just
reward and expected value, and you need other information, such as whether the
choice frame is Gain or Loss, then you can input the ’Frame’ column as var1
into the model. e.g., ‘var1 = "Extra_Var1"‘

var2 [character] column name of extra variable 2. If one additional variable, var1,
does not meet your needs, you can add another additional variable, var2, into
your model. e.g., ‘var2 = "Extra_Var2"‘

8 Mason_2024_Exp1

tau [vector] Parameters used in the Soft-Max Function ‘prob_func‘ representing the
sensitivity of the subject to the value difference when making decisions. It de-
termines the probability of selecting the left option versus the right option based
on their values. A larger value of tau indicates greater sensitivity to the value
difference between the options. In other words, even a small difference in value
will make the subject more likely to choose the higher-value option. e.g., ‘tau =
c(0.5)‘

lambda [vector] Extra parameters that may be used in functions. e.g., ‘lambda = c(0.4,
0.7, 20, 60)‘

Value

The probability of choosing this option

Note

When customizing these functions, please ensure that you do not modify the arguments. Instead,
only modify the ‘if-else‘ statements or the internal logic to adapt the function to your needs.

Mason_2024_Exp1 Experiment 1 from Mason et al. (2024)

Description

This dataset is from Experiment 1 of Mason et al. (2024). (Rare and extreme outcomes in risky
choice). Data is publicly available on OSF: https://osf.io/hy3q4/. We performed basic cleaning to
meet our package needs.

Format

A data frame with 45000 rows and 11 columns:

Subject Subject ID, an integer (16 to 144)

Block Block number, an integer (1 to 6)

Trial Trial number, an integer (1 to 60)

L_choice Left choice, A = 100% gain 4, B = 90% gain 0 and 10% gain 40, C = 100% lose 4, D =
90% lose 0 and 10% lose 40.

R_choice Right choice, A = 100% gain 4, B = 90% gain 0 and 10% gain 40, C = 100% lose 4, D
= 90% lose 0 and 10% lose 40.

L_reward Reward associated with the left choice.

R_reward Reward associated with the right choice.

Sub_Choose The chosen option, either L_choice or R_choice.

Frame Type of frame, "Gain", "Loss", "Catch".

NetWorth The participant’s net worth at the end of each trial.

RT The participant’s reaction time (in milliseconds) for each trial.

Mason_2024_Exp2 9

Examples

Load the Mason_2024_Exp1 dataset
data(Mason_2024_Exp1)
head(Mason_2024_Exp1)

Mason_2024_Exp2 Experiment 2 from Mason et al. (2024)

Description

This dataset is from Experiment 1 of Mason et al. (2024). (Rare and extreme outcomes in risky
choice). Data is publicly available on OSF: https://osf.io/hy3q4/. We performed basic cleaning to
meet our package needs.

Format

A data frame with 45000 rows and 11 columns:

Subject Subject ID, an integer (16 to 144)

Block Block number, an integer (1 to 6)

Trial Trial number, an integer (1 to 60)

L_choice Left choice, A = 100% gain 36, B = 90% gain 40 and 10% gain 0, C = 100% lose 36, D
= 90% lose 40 and 10% lose 0.

R_choice Right choice, A = 100% gain 36, B = 90% gain 40 and 10% gain 0, C = 100% lose 36,
D = 90% lose 40 and 10% lose 0.

L_reward Reward associated with the left choice.

R_reward Reward associated with the right choice.

Sub_Choose The chosen option, either L_choice or R_choice.

Frame Type of frame, "Gain", "Loss", "Catch".

NetWorth The participant’s net worth at the end of each trial.

RT The participant’s reaction time (in milliseconds) for each trial.

Examples

Load the Mason_2024_Exp2 dataset
data(Mason_2024_Exp2)
head(Mason_2024_Exp2)

10 optimize_para

optimize_para Process: Optimizing Parameters

Description

This function is an internal function of ‘fit_p‘. We isolate it from direct use by capable users.

The function provides several optimization algorithms:

• 1. L-BFGS-B (from ‘stats::optim‘);

• 2. Simulated Annealing (‘GenSA‘);

• 3. Genetic Algorithm (‘GA‘);

• 4. Differential Evolution (‘DEoptim‘);

• 5. Particle Swarm Optimization (‘pso‘);

• 6. Bayesian Optimization (‘mlrMBO‘);

• 7. Covariance Matrix Adapting Evolutionary Strategy (‘cmaes‘);

• 8. Nonlinear Optimization (‘nloptr‘)

For more information, please refer to the GitHub repository: https://github.com/yuki-961004/binaryRL

Usage

optimize_para(
data,
id,
obj_func,
n_params,
n_trials,
lower,
upper,
initial_params = NA,
initial_size = 50,
iteration = 10,
seed = 123,
algorithm

)

Arguments

data [data.frame] raw data. This data should include the following mandatory columns:

• "sub"
• "time_line" (e.g., "Block", "Trial")
• "L_choice"
• "R_choice"
• "L_reward"

rcv_d 11

• "R_reward"
• "sub_choose"

id [integer] which subject is going to be analyzed. is being analyzed. The value
should correspond to an entry in the "sub" column, which must contain the sub-
ject IDs. e.g., ‘id = 18‘

obj_func [function] A function with only ONE argument ‘params‘. Refer to ‘binaryRL::TD‘
to mimic the establishment of an objective function.

n_params [integer] The number of free parameters in your model.

n_trials [integer] The total number of trials in your experiment.

lower [vector] lower bounds of free parameters

upper [vector] upper bounds of free parameters

initial_params [vector] Initial values for the free parameters. automatically generate initial val-
ues. for ‘L-BFGS-B‘, ‘GenSA‘, set ‘initial = c(0, 0, ...)‘

initial_size [integer] Initial population size for the free parameters. automatically generate
initial values. for ‘Bayesian‘, ‘GA‘, set ‘initial = 50‘

iteration [integer] the number of iteration

seed [integer] random seed. This ensures that the results are reproducible and remain
the same each time the function is run. default: ‘seed = 123‘

algorithm [character] Choose an algorithm package from ‘L-BFGS-B‘, ‘GenSA‘, ‘GA‘,
‘DEoptim‘, ‘PSO‘, ‘Bayesian‘, ‘CMA-ES‘. In addition, any algorithm from the
‘nloptr‘ package is also supported. If your chosen ‘nloptr‘ algorithm requires
a local search, you need to input a character vector. The first element repre-
sents the algorithm used for global search, and the second element represents
the algorithm used for local search.

Value

the result of binaryRL with optimal parameters

rcv_d Step 2: Generating fake data for parameter and model recovery

Description

This function fits multiple sets of simulated data using a loop. You need to provide a list of simula-
tion functions, fitting functions, and parameter bounds. If you prefer to handle the process manually,
you can use the internal functions ‘simulate_list‘ and ‘recovery_data‘.

For more information, please refer to the GitHub repository: https://github.com/yuki-961004/binaryRL

12 rcv_d

Usage

rcv_d(
data,
id = NULL,
n_trials = NULL,
simulate_models = list(TD, RSTD, Utility),
simulate_lower = list(c(0, 0), c(0, 0, 0), c(0, 0, 0)),
simulate_upper = list(c(1, 1), c(1, 1, 1), c(1, 1, 1)),
fit_models = list(TD, RSTD, Utility),
fit_lower = list(c(0, 0), c(0, 0, 0), c(0, 0, 0)),
fit_upper = list(c(1, 1), c(1, 1, 1), c(1, 1, 1)),
model_names = c("TD", "RSTD", "Utility"),
funcs = NULL,
initial_params = NA,
initial_size = 50,
iteration_s = 10,
iteration_f = 10,
seed = 1,
nc = 1,
algorithm

)

Arguments

data [data.frame] raw data. This data should include the following mandatory columns:

• 1. L-BFGS-B (from ‘stats::optim‘);
• 2. Simulated Annealing (‘GenSA‘);
• 3. Genetic Algorithm (‘GA‘);
• 4. Differential Evolution (‘DEoptim‘);
• 5. Particle Swarm Optimization (‘pso‘);
• 6. Bayesian Optimization (‘mlrMBO‘);
• 7. Covariance Matrix Adapting Evolutionary Strategy (‘cmaes‘);
• 8. Nonlinear Optimization (‘nloptr‘)

id [vector] Specifies which subject is being analyzed. In recovery analyses, in-
dividual subject information is not needed; trials from the same experimental
procedure can be used across all "subjects". Therefore, ‘id‘ can be set to ‘1‘.
For example, ‘id = 1‘.

n_trials [integer] number of total trials
simulate_models

[list] A collection of functions used to generate simulated data.

simulate_lower [list] The lower bounds for simulate models

simulate_upper [list] The upper bounds for simulate models

fit_models [list] A collection of functions applied to fit models to the data.

fit_lower [list] The lower bounds for model fit models

fit_upper [list] The upper bounds for model fit models

recovery_data 13

model_names [list] the names of fit modals

funcs [vector] A character vector containing the names of all user-defined functions
required for the computation.

initial_params [vector] Initial values for the free parameters. These need to be set only when
using L-BFGS-B. Other algorithms automatically generate initial values. for
‘L-BFGS-B‘, ‘GenSA‘, set ‘initial = c(0, 0, ...)‘

initial_size [integer] Initial values for the free parameters. These need to be set only when
using L-BFGS-B. Other algorithms automatically generate initial values. for
‘Bayesian‘, ‘GA‘, set ‘initial = 50‘

iteration_s [integer] the number of iteration in simulation (simulate)

iteration_f [integer] the number of iteration in algorithm (fit)

seed [integer] random seed. This ensures that the results are reproducible and remain
the same each time the function is run. default: ‘seed = 123‘

nc [integer] Number of CPU cores to use for parallel computation.

algorithm [character] Choose an algorithm package from ‘L-BFGS-B‘, ‘GenSA‘, ‘GA‘,
‘DEoptim‘, ‘PSO‘, ‘Bayesian‘, ‘CMA-ES‘. In addition, any algorithm from the
‘nloptr‘ package is also supported. If your chosen ‘nloptr‘ algorithm requires
a local search, you need to input a character vector. The first element repre-
sents the algorithm used for global search, and the second element represents
the algorithm used for local search.

Value

A list where each element is a data.frame. Each data.frame within this list records the results of
fitting synthetic data (generated by Model A) with Model B.

recovery_data Process: Recovering Fake Data

Description

This function applies ‘optimize_para‘ to each fake data in the list generated by ‘simulate_list‘. The
results can be used for parameter recovery and model recovery, helping evaluate the consistency
and validity of the reinforcement learning model.

For more information, please refer to the GitHub repository: https://github.com/yuki-961004/binaryRL

Usage

recovery_data(
list,
id = 1,
fit_model,
funcs = NULL,
model_name,

14 recovery_data

n_params,
n_trials,
lower,
upper,
initial_params = NA,
initial_size = 50,
iteration = 10,
seed = 123,
nc = 1,
algorithm

)

Arguments

list [list] a list generated by function ‘simulate_list‘

id [integer] default = 1

fit_model [function] fit model

funcs [vector] A character vector containing the names of all user-defined functions
required for the computation.

model_name [character] the name of your modal

n_params [integer] The number of free parameters in your model.

n_trials [integer] The total number of trials in your experiment.

lower [vector] lower bounds of free parameters

upper [vector] upper bounds of free parameters

initial_params [vector] Initial values for the free parameters. These need to be set only when
using L-BFGS-B. Other algorithms automatically generate initial values. for
‘L-BFGS-B‘, ‘GenSA‘, set ‘initial = c(0, 0, ...)‘

initial_size [integer] Initial values for the free parameters. These need to be set only when
using L-BFGS-B. Other algorithms automatically generate initial values. for
‘Bayesian‘, ‘GA‘, set ‘initial = 50‘

iteration [integer] the number of iteration

seed [integer] random seed. This ensures that the results are reproducible and remain
the same each time the function is run. default: ‘seed = 123‘

nc [integer] Number of CPU cores to use for parallel computation.

algorithm [character] Choose an algorithm package from ‘L-BFGS-B‘, ‘GenSA‘, ‘GA‘,
‘DEoptim‘, ‘PSO‘, ‘Bayesian‘, ‘CMA-ES‘. In addition, any algorithm from the
‘nloptr‘ package is also supported. If your chosen ‘nloptr‘ algorithm requires
a local search, you need to input a character vector. The first element repre-
sents the algorithm used for global search, and the second element represents
the algorithm used for local search.

Value

a data frame for parameter recovery and model recovery

rpl_e 15

rpl_e Step 4: Replaying the experiment with optimal parameters

Description

This function takes the optimal parameters generated by ‘fit_p‘ and applies them back to each
subject’s data to generate a new column, ‘Rob_Choose‘. This allows users to analyze whether the
reinforcement learning model can reproduce the original experimental effects observed in the data.

Usage

rpl_e(
data,
id = NULL,
result,
model,
model_name,
param_prefix,
n_trials = NULL

)

Arguments

data [data.frame] This data should include the following mandatory columns:
• "sub"
• "time_line" (e.g., "Block", "Trial")
• "L_choice"
• "R_choice"
• "L_reward"
• "R_reward"
• "sub_choose"

id [vector] Participant IDs for subjects who need to replay the experiment.
result [data.frame] Output data generated by the ‘fit_p()‘ function. Each row repre-

sents model fit results for a subject.
model [function] A model function to be applied in evaluating the experimental effect.
model_name [character] A character string specifying the name of the model to extract from

the result.
param_prefix [character] A prefix string used to identify parameter columns in the ‘result‘ data

(e.g., "param_").
n_trials [integer] Number of total trials in the experimental task.

Value

A list, where each element is a data.frame representing one subject’s results. Each data.frame
includes the value update history for each option, the learning rate (eta), discount rate (gamma), and
other relevant information used in each update.

16 run_m

RSTD Model: RSTD

Description

Model: RSTD

Usage

RSTD(params)

Arguments

params [vector] algorithm packages accept only one argument

Value

negative log likelihood

run_m Step 1: Building reinforcement learning model

Description

This function requires the optimal parameter values obtained through the ‘algorithm‘ package.
Once the best parameter values are solved for, they are incorporated into the reinforcement learn-
ing model, allowing the model to simulate human-like decision-making. The function leverages
these optimized parameters to generate choices that mimic the decision-making process of subjects,
enabling the study of behavior under varying conditions. By integrating the best-fit parameters
from the ‘algorithm‘ package, this function offers a powerful tool for simulating human choices in
reinforcement learning contexts.

For more information, please refer to the GitHub repository: https://github.com/yuki-961004/binaryRL

Usage

run_m(
data,
id,
mode = "fit",
initial_value = NA,
softmax = TRUE,
threshold = 1,
seed = 123,
n_params,
n_trials,

run_m 17

gamma = 1,
eta,
epsilon = NA,
tau = 1,
lambda = NA,
util_func = func_gamma,
rate_func = func_eta,
expl_func = func_epsilon,
prob_func = func_tau,
sub = "Subject",
time_line = c("Block", "Trial"),
L_choice = "L_choice",
R_choice = "R_choice",
L_reward = "L_reward",
R_reward = "R_reward",
sub_choose = "Sub_Choose",
rob_choose = "Rob_Choose",
raw_cols = NULL,
var1 = NA,
var2 = NA,
digits_1 = 2,
digits_2 = 5

)

Arguments

data [data.frame] raw data. This data should include the following mandatory columns:

• "sub"
• "time_line" (e.g., "Block", "Trial")
• "L_choice"
• "R_choice"
• "L_reward"
• "R_reward"
• "sub_choose"

id [integer] which subject is going to be analyzed. is being analyzed. The value
should correspond to an entry in the "sub" column, which must contain the sub-
ject IDs. e.g., ‘id = 18‘

mode [character] This parameter has three possible values: ‘simulate‘, ‘fit‘, and ‘re-
view‘. These correspond to their use in ‘rcv_d‘, ‘fit_p‘, and ‘rev_e‘ respectively.
In most cases, you won’t need to modify this, as suitable default values are set
for different contexts.

initial_value [numeric] subject’s initial expected value for each stimulus’s reward. If this
value is not set (‘initial_value = NA‘), the subject will use the reward received
after the first trial as the initial value for that stimulus. In other words, the
learning rate for the first trial is 100 e.g., ‘initial_value = 0‘

softmax [logical] whether to use the softmax function. When ‘softmax = TRUE‘, the
value of each option influences the probability of selecting that option. Higher

18 run_m

values increase the probability of selecting that option. When ‘softmax = FALSE‘,
the subject will always choose the option with the higher value, with no possi-
bility of selecting the lower-value option. default: ‘softmax = TRUE‘

threshold [integer] the number of initial trials during which the subject makes random
choices rather than choosing based on the values of the options. This occurs
because the subject has not yet learned the values of the options. For example,
‘threshold = 20‘ means the subject will make completely random choices for the
first 20 trials. default: ‘threshold = 1‘

seed [integer] random seed. This ensures that the results are reproducible and remain
the same each time the function is run. default: ‘seed = 123‘

n_params [integer] The number of free parameters in your model.

n_trials [integer] The total number of trials in your experiment.

gamma [vector] Parameters used in the Utility Function ‘util_func‘, often referred to as
the discount rate. For example, ‘utility = reward^gamma‘. If ‘gamma < 1‘, it
indicates that people tend to discount the objective reward. This equation is very
similar to the Stevens’ power function, reflecting humans’ nonlinear perception
of physical quantities. e.g., ‘gamma = c(0.7)‘.

eta [vector] Parameters used in the Learning Rate Function ‘rate_func‘ representing
the rate at which the subject updates the difference (prediction error) between
the reward and the expected value in the subject’s mind. In the TD model, there
is a single learning rate throughout the experiment. In the RSTD model, two
different learning rates are used when the reward is higher or lower than the
expected value. e.g., ‘eta = c(0.3, 0.7)‘

epsilon [vector] Parameters used in the Exploration Function ‘expl_func‘ determining
whether the subject makes decisions based on the relative values of the left and
right options, or chooses completely randomly. For example, when epsilon =
0.1, it means the subject has a 10 chance of making a completely random choice
and a 90 based on the values of the options. e.g., ‘epsilon = c(0.1)‘

tau [vector] Parameters used in the Soft-Max Function ‘prob_func‘ representing the
sensitivity of the subject to the value difference when making decisions. It de-
termines the probability of selecting the left option versus the right option based
on their values. A larger value of tau indicates greater sensitivity to the value
difference between the options. In other words, even a small difference in value
will make the subject more likely to choose the higher-value option. e.g., ‘tau =
c(0.5)‘

lambda [vector] Extra parameters that may be used in functions. e.g., ‘lambda = c(0.4,
0.7, 20, 60)‘

util_func [function] Utility Function.

rate_func [function] Learning Rate Function.

expl_func [function] Exploration Function.

prob_func [function] Soft-Max Function.

sub [character] column name of subject ID e.g., ‘sub = "Subject"‘

time_line [vector] A vector specifying the name of the column that the sequence of the
experiment. This argument defines how the experiment is structured, such as

run_m 19

whether it is organized by "Block" with breaks in between, and multiple trials
within each block. e.g., ‘time_line = c("Block", "Trial")‘

L_choice [character] column name of left choice. e.g., ‘L_choice = "Left_Choice"‘

R_choice [character] column name of right choice. e.g., ‘R_choice = "Right_Choice"‘

L_reward [character] column name of the reward of left choice e.g., ‘L_reward = "Left_reward"‘

R_reward [character] column name of the reward of right choice e.g., ‘R_reward = "Right_reward"‘

sub_choose [character] column name of choices made by the subject. e.g., ‘sub_choose =
"Choose"‘

rob_choose [character] column name of choices made by the model. e.g., ‘rob_choose =
"Rob_Choose"‘ you should ignore this argument

raw_cols [vector] Defaults to ‘NULL‘. If left as ‘NULL‘, it will directly capture all col-
umn names from the raw data.

var1 [character] column name of extra variable 1. If your model uses more than just
reward and expected value, and you need other information, such as whether the
choice frame is Gain or Loss, then you can input the ’Frame’ column as var1
into the model. e.g., ‘var1 = "Extra_Var1"‘

var2 [character] column name of extra variable 2. If one additional variable, var1,
does not meet your needs, you can add another additional variable, var2, into
your model. e.g., ‘var2 = "Extra_Var2"‘

digits_1 [integer] The number of decimal places to retain for columns related to the value
function The default is 2.

digits_2 [integer] The number of decimal places to retain for columns related to the select
function. The default is 5.

Value

A list of class binaryRL containing the results of the model fitting.

Examples

data <- binaryRL::Mason_2024_Exp1

test <- binaryRL::run_m(
data = data,
id = 18,
eta = c(0.321, 0.765),
n_params = 2,
n_trials = 360

)

summary(test)

20 simulate_list

simulate_list Process: Simulating Fake Data

Description

This function generates simulated data using a user-defined objective function. You can specify the
number of iterations to control how many data are generated. These datasets can be used for pa-
rameter recovery and model recovery. For more information, please refer to the GitHub repository:
https://github.com/yuki-961004/binaryRL

Usage

simulate_list(
data,
id = 1,
obj_func,
n_params,
n_trials,
lower,
upper,
iteration = 10,
seed = 123

)

Arguments

data [data.frame] raw data. This data should include the following mandatory columns:
- "sub", "time_line", "L_choice", "R_choice", "L_reward", "R_reward".

id [vector] which subject is going to be analyzed. is being analyzed. The value
should correspond to an entry in the "sub" column, which must contain the sub-
ject IDs. e.g., ‘id = c(1:40)‘

obj_func [function] a function with only ONE argument ‘params‘. Additionally, it is
important to note that the data needs to be retrieved from parent.frame(). This
function returns the binaryRL.res(res).

n_params [integer] The number of free parameters in your model.
n_trials [integer] The total number of trials in your experiment.
lower [vector] lower bounds of free parameters
upper [vector] upper bounds of free parameters
iteration [integer] the number of iteration
seed [integer] random seed. This ensures that the results are reproducible and remain

the same each time the function is run. default: ‘seed = 123‘

Value

a list with fake data generated by random free parameters

summary.binaryRL 21

summary.binaryRL S3method summary

Description

S3method summary

Usage

S3 method for class 'binaryRL'
summary(object, ...)

Arguments

object binaryRL result

... others

Value

summary

TD Model: TD

Description

Model: TD

Usage

TD(params)

Arguments

params [vector] algorithm packages accept only one argument

Value

negative log likelihood

22 Utility

Utility Model: Utility

Description

Model: Utility

Usage

Utility(params)

Arguments

params [vector] algorithm packages accept only one argument

Value

negative log likelihood

Index

fit_p, 2
func_epsilon, 4
func_eta, 5
func_gamma, 6
func_tau, 7

Mason_2024_Exp1, 8
Mason_2024_Exp2, 9

optimize_para, 10

rcv_d, 11
recovery_data, 13
rpl_e, 15
RSTD, 16
run_m, 16

simulate_list, 20
summary.binaryRL, 21

TD, 21

Utility, 22

23

	fit_p
	func_epsilon
	func_eta
	func_gamma
	func_tau
	Mason_2024_Exp1
	Mason_2024_Exp2
	optimize_para
	rcv_d
	recovery_data
	rpl_e
	RSTD
	run_m
	simulate_list
	summary.binaryRL
	TD
	Utility
	Index

