Package ‘broom’

June 10, 2023
Type Package
Title Convert Statistical Objects into Tidy Tibbles
Version 1.0.5

Description Summarizes key information about statistical
objects in tidy tibbles. This makes it easy to report results, create
plots and consistently work with large numbers of models at once.
Broom provides three verbs that each provide different types of
information about a model. tidy() summarizes information about model
components such as coefficients of a regression. glance() reports
information about an entire model, such as goodness of fit measures
like AIC and BIC. augment() adds information about individual
observations to a dataset, such as fitted values or influence
measures.

License MIT + file LICENSE
URL https://broom.tidymodels.org/, https://github.com/tidymodels/broom

BugReports https://github.com/tidymodels/broom/issues
Depends R (>=3.5)

Imports backports, dplyr (>= 1.0.0), ellipsis, generics (>= 0.0.2),
glue, lifecycle, purrr, rlang, stringr, tibble (>= 3.0.0),
tidyr (>=1.0.0)

Suggests AER, AUC, bbmle, betareg, biglm, binGroup, boot, btergm (>=
1.10.6), car, carData, caret, cluster, cmprsk, coda, covr, drc,
el071, emmeans, epiR, ergm (>= 3.10.4), fixest (>= 0.9.0), gam
(>=1.15), gee, geepack, ggplot2, glmnet, glmnetUtils, gmm,
Hmisc, irlba, interp, joineRML, Kendall, knitr, ks, Lahman,
lavaan, leaps, Ife, Im.beta, Ime4, Imodel2, Imtest (>= 0.9.38),
Ismeans, maps, margins, MASS, mclust, mediation, metafor, mfx,
mgcv, mlogit, modeldata, modeltests, muhaz, multcomp, network,
nnet, orcutt (>= 2.2), ordinal, plm, poLCA, psych, quantreg,
rmarkdown, robust, robustbase, rsample, sandwich, sp, spdep (>=
1.1), spatialreg, speedglm, spelling, survey, survival,
systemfit, testthat (>= 2.1.0), tseries, vars, Zzoo

VignetteBuilder knitr

https://broom.tidymodels.org/
https://github.com/tidymodels/broom
https://github.com/tidymodels/broom/issues

Config/Needs/website tidyverse/tidytemplate
Encoding UTF-8

RoxygenNote 7.2.3

Language en-US

Collate 'aaa-documentation-helper.R' 'null-and-default-tidiers.R'
'aer-tidiers.R' 'auc-tidiers.R' 'base-tidiers.R'
'‘bbmle-tidiers.R' 'betareg-tidiers.R' 'biglm-tidiers.R’
'bingroup-tidiers.R' 'boot-tidiers.R' 'broom-package.R'
'broom.R' 'btergm-tidiers.R' 'car-tidiers.R' 'caret-tidiers.R'
'cluster-tidiers.R' 'cmprsk-tidiers.R' 'data-frame-tidiers.R’
'deprecated-0-7-0.R' 'drc-tidiers.R' 'emmeans-tidiers.R’
'epiR-tidiers.R' 'ergm-tidiers.R' 'fixest-tidiers.R'
'gam-tidiers.R' 'geepack-tidiers.R’
'glmnet-cv-glmnet-tidiers.R' 'glmnet-glmnet-tidiers.R'
'emm-tidiers.R' 'hmisc-tidiers.R' joinerml-tidiers.R'
'kendall-tidiers.R' 'ks-tidiers.R' 'lavaan-tidiers.R'
'leaps-tidiers.R' 'lIfe-tidiers.R' 'list-irlba.R'
list-optim-tidiers.R' 'list-svd-tidiers.R" 'list-tidiers.R’
list-xyz-tidiers.R' 'Im-beta-tidiers.R' Tmodel2-tidiers.R'
'Imtest-tidiers.R' 'maps-tidiers.R' 'margins-tidiers.R’
'mass-fitdistr-tidiers.R' 'mass-negbin-tidiers.R'
'mass-polr-tidiers.R' 'mass-ridgelm-tidiers.R’
'stats-lm-tidiers.R' 'mass-rIm-tidiers.R' 'mclust-tidiers.R’
'mediation-tidiers.R' 'metafor-tidiers.R' 'mfx-tidiers.R'
'mgcv-tidiers.R' 'mlogit-tidiers.R' 'muhaz-tidiers.R'
'multcomp-tidiers.R' 'nnet-tidiers.R' 'nobs.R’
'orcutt-tidiers.R' 'ordinal-clm-tidiers.R'
‘ordinal-clmm-tidiers.R' ‘plm-tidiers.R' 'polca-tidiers.R’
"‘psych-tidiers.R' 'stats-nls-tidiers.R’
'quantreg-nlrg-tidiers.R' 'quantreg-rq-tidiers.R’
'quantreg-rqs-tidiers.R' 'robust-glmrob-tidiers.R'
'robust-lmrob-tidiers.R' 'robustbase-glmrob-tidiers.R’
'robustbase-lmrob-tidiers.R' 'sp-tidiers.R" 'spdep-tidiers.R’
'speedglm-speedglm-tidiers.R' 'speedglm-speedlm-tidiers.R'
'stats-anova-tidiers.R' 'stats-arima-tidiers.R'
'stats-decompose-tidiers.R' 'stats-factanal-tidiers.R'
'stats-glm-tidiers.R' 'stats-htest-tidiers.R'
'stats-kmeans-tidiers.R' 'stats-loess-tidiers.R'
'stats-mlm-tidiers.R' 'stats-prcomp-tidiers.R'
'stats-smooth.spline-tidiers.R' 'stats-summary-Im-tidiers.R'
'stats-time-series-tidiers.R' 'survey-tidiers.R'
'survival-aareg-tidiers.R' 'survival-cch-tidiers.R'
'survival-coxph-tidiers.R' 'survival-pyears-tidiers.R'
'survival-survdiff-tidiers.R' 'survival-survexp-tidiers.R'
'survival-survfit-tidiers.R' 'survival-survreg-tidiers.R'
'systemfit-tidiers.R' 'tseries-tidiers.R' 'utilities.R'
'vars-tidiers.R' 'zoo-tidiers.R' 'zzz.R'

NeedsCompilation no

Author David Robinson [aut],
Alex Hayes [aut] (<https://orcid.org/0000-0002-4985-5160>),
Simon Couch [aut, cre] (<https://orcid.org/0000-0001-5676-5107>),
Posit Software, PBC [cph, fnd],
Indrajeet Patil [ctb] (<https://orcid.org/0000-0003-1995-6531>),
Derek Chiu [ctb],
Matthieu Gomez [ctb],
Boris Demeshev [ctb],
Dieter Menne [ctb],
Benjamin Nutter [ctb],
Luke Johnston [ctb],
Ben Bolker [ctb],
Francois Briatte [ctb],
Jeffrey Arnold [ctb],
Jonah Gabry [ctb],
Luciano Selzer [ctb],
Gavin Simpson [ctb],
Jens Preussner [ctb],
Jay Hesselberth [ctb],
Hadley Wickham [ctb],
Matthew Lincoln [ctb],
Alessandro Gasparini [ctb],
Lukasz Komsta [ctb],
Frederick Novometsky [ctb],
Wilson Freitas [ctb],
Michelle Evans [ctb],
Jason Cory Brunson [ctb],
Simon Jackson [ctb],
Ben Whalley [ctb],
Karissa Whiting [ctb],
Yves Rosseel [ctb],
Michael Kuehn [ctb],
Jorge Cimentada [ctb],
Erle Holgersen [ctb],
Karl Dunkle Werner [ctb] (<https://orcid.org/0000-0003-0523-7309>),
Ethan Christensen [ctb],
Steven Pav [ctb],
Paul PJ [ctb],
Ben Schneider [ctb],
Patrick Kennedy [ctb],
Lily Medina [ctb],
Brian Fannin [ctb],
Jason Muhlenkamp [ctb],
Matt Lehman [ctb],
Bill Denney [ctb] (<https://orcid.org/0000-0002-5759-428X>),
Nic Crane [ctb],
Andrew Bates [ctb],

https://orcid.org/0000-0002-4985-5160
https://orcid.org/0000-0001-5676-5107
https://orcid.org/0000-0003-1995-6531
https://orcid.org/0000-0003-0523-7309
https://orcid.org/0000-0002-5759-428X

Vincent Arel-Bundock [ctb] (<https://orcid.org/0000-0003-2042-7063>),
Hideaki Hayashi [ctb],

Luis Tobalina [ctb],

Annie Wang [ctb],

Wei Yang Tham [ctb],

Clara Wang [ctb],

Abby Smith [ctb] (<https://orcid.org/0000-0002-3207-0375>),
Jasper Cooper [ctb] (<https://orcid.org/0000-0002-8639-3188>),

E Auden Krauska [ctb] (<https://orcid.org/0000-0002-1466-5850>),
Alex Wang [ctb],

Malcolm Barrett [ctb] (<https://orcid.org/0000-0003-0299-5825>),
Charles Gray [ctb] (<https://orcid.org/0000-0002-9978-011X>),
Jared Wilber [ctb],

Vilmantas Gegzna [ctb] (<https://orcid.org/0000-0002-9500-5167>),
Eduard Szoecs [ctb],

Frederik Aust [ctb] (<https://orcid.org/0000-0003-4900-788X>),
Angus Moore [ctb],

Nick Williams [ctb],

Marius Barth [ctb] (<https://orcid.org/0000-0002-3421-6665>),
Bruna Wundervald [ctb] (<https://orcid.org/0000-0001-8163-220X>),
Joyce Cahoon [ctb] (<https://orcid.org/0000-0001-7217-4702>),
Grant McDermott [ctb] (<https://orcid.org/0000-0001-7883-8573>),
Kevin Zarca [ctb],

Shiro Kuriwaki [ctb] (<https://orcid.org/0000-0002-5687-2647>),
Lukas Wallrich [ctb] (<https://orcid.org/0000-0003-2121-5177>),
James Martherus [ctb] (<https://orcid.org/0000-0002-8285-3300>),
Chuliang Xiao [ctb] (<https://orcid.org/0000-0002-8466-9398>),
Joseph Larmarange [ctb],

Max Kuhn [ctb],

Michal Bojanowski [ctb],

Hakon Malmedal [ctb],

Clara Wang [ctb],

Sergio Oller [ctb],

Luke Sonnet [ctb],

Jim Hester [ctb],

Ben Schneider [ctb],

Bernie Gray [ctb] (<https://orcid.org/0000-0001-9190-6032>),
Mara Averick [ctb],

Aaron Jacobs [ctb],

Andreas Bender [ctb],

Sven Templer [ctb],

Paul-Christian Buerkner [ctb],

Matthew Kay [ctb],

Erwan Le Pennec [ctb],

Johan Junkka [ctb],

Hao Zhu [ctb],

Benjamin Soltoff [ctb],

Zoe Wilkinson Saldana [ctb],

https://orcid.org/0000-0003-2042-7063
https://orcid.org/0000-0002-3207-0375
https://orcid.org/0000-0002-8639-3188
https://orcid.org/0000-0002-1466-5850
https://orcid.org/0000-0003-0299-5825
https://orcid.org/0000-0002-9978-011X
https://orcid.org/0000-0002-9500-5167
https://orcid.org/0000-0003-4900-788X
https://orcid.org/0000-0002-3421-6665
https://orcid.org/0000-0001-8163-220X
https://orcid.org/0000-0001-7217-4702
https://orcid.org/0000-0001-7883-8573
https://orcid.org/0000-0002-5687-2647
https://orcid.org/0000-0003-2121-5177
https://orcid.org/0000-0002-8285-3300
https://orcid.org/0000-0002-8466-9398
https://orcid.org/0000-0001-9190-6032

R topics documented: 5

Tyler Littlefield [ctb],

Charles T. Gray [ctb],

Shabbh E. Banks [ctb],

Serina Robinson [ctb],

Roger Bivand [ctb],

Riinu Ots [ctb],

Nicholas Williams [ctb],

Nina Jakobsen [ctb],

Michael Weylandt [ctb],

Lisa Lendway [ctb],

Karl Hailperin [ctb],

Josue Rodriguez [ctb],

Jenny Bryan [ctb],

Chris Jarvis [ctb],

Greg Macfarlane [ctb],

Brian Mannakee [ctb],

Drew Tyre [ctb],

Shreyas Singh [ctb],

Laurens Geffert [ctb],

Hong Ooi [ctb],

Henrik Bengtsson [ctb],

Eduard Szocs [ctb],

David Hugh-Jones [ctb],

Matthieu Stigler [ctb],

Hugo Tavares [ctb] (<https://orcid.org/0000-0001-9373-2726>),
R. Willem Vervoort [ctb],

Brenton M. Wiernik [ctb],

Josh Yamamoto [ctb],

Jasme Lee [ctb],

Taren Sanders [ctb] (<https://orcid.org/0000-0002-4504-6008>),
Ilaria Prosdocimi [ctb] (<https://orcid.org/0000-0001-8565-094X>),
Daniel D. Sjoberg [ctb] (<https://orcid.org/0000-0003-0862-2018>),
Alex Reinhart [ctb] (<https://orcid.org/0000-0002-6658-514X>)

Maintainer Simon Couch <simon.couch@posit.co>
Repository CRAN
Date/Publication 2023-06-09 22:50:02 UTC

R topics documented:

augment.betamfx oL 10
augmentbetareg L. e 13
augment.clm. e e e e 15
augment.CcoXph L e 17
augment.decomposed.ts Lo Lo e e 20
augment.drC L e e e e e e e e e 22
augment.factanal L L L L e 25

augment.felm 26

https://orcid.org/0000-0001-9373-2726
https://orcid.org/0000-0002-4504-6008
https://orcid.org/0000-0001-8565-094X
https://orcid.org/0000-0003-0862-2018
https://orcid.org/0000-0002-6658-514X

R topics documented:

augment.fixest e e e e e e 28
AUEMENE.AM v v v v e 31
augment.glm e e 33
augment.glmRob 35
augment.glmrobo 36
augment.htest L. oL 38
AUEMENEAVIEEZ o v o et e e e e e e e e 40
augment.kmeans e e e e e 43
augment.lm L e 44
augment.ImRob 48
augmentdmrob 50
augment.doess L. L e e e e 52
augment.Mclust oL 54
augment.mfxX . ..o L L 56
augment.mjoint e e e e e e e e e e e e e e 59
augment.mlogit L 62
augment.nlrq e 64
augment.nls e e e e e e 65
AUEMENLPAML . . . o v v v v et e e e e e e e e e e e e e e e e 67
augment.plm Lo 69
augment.poLCA L 71
augment.polro L e e e e e e e 74
AUGMENEPICOMP . .« . v v v vt v e e e e e e e e e e e 76
augment.rlm L. e e e e 77
AUZMENEIMA .+ . v v v v e 79
AUEMENETQ .« v v v v vt e 81
AUEMENEIQS -« « v v v v v e 83
augment.sarlm L e 86
augment.smooth.spline 88
augment.speedlmo Lo 89
augment.stl 91
AUZMENESUIVIEZ « + v v v v v v v v e e e e e e e e e e e e e e e e e e 93
augment_columns e 95
bootstrap 96
confint_tidy 97
dataframe_tidiers L. L 98
durbinWatsonTest_tidiers e 100
finish_glance 101
fix_data_frame e e 102
glance.aareg Ll e 102
glance.anova L 104
glance.aov L L e 105
glance. Arima L. e e e e 107
glance.betamfx L 108
glance.betareg 110
glance.biglm. 112
glance.binDesign 113

glance.cch 115

R topics documented: 7

glance.clm L e e e 117
glance.clmm L 119
glance.coeftest L 120
glance.coxph e 122
glance.CIT e e e e 124
glance.cv.glmnet oL L 126
glance.dre L L e 128
glance.ergm L L e e e e e e 130
glance.factanal 131
glancefelm 133
glancefitdistr L e 135
glance fixest L. e e e e 136
glance.Gam e 138
glance.gam L. 139
glance.garch 141
glance.geeglm 142
glance.glm 143
glance.glmnet L e e 145
glance.glmRob L 146
glance.gmm L. L e 148
glance.dvreg e 150
glancekmeans L L e 152
glancelavaano 154
glancelm 156
glancedmodel2 L e 158
glancedmRobo 160
glancedmrobo 162
glance.margins L e e 163
glance. Mclust e e 165
glance.mfx L 167
glance.mjoint L e 169
glance.mlogit e e 171
glancemuhaz oL 173
glance.multinom 174
glancenegbin 176
glancenlrq L e 177
glancenls 179
glance.orcutt e 181
glance.pam L. L L e e e 182
glance.plm 184
glance.poLCA e 185
glance.polr e 188
glance.pyears L e e e e e 189
glanceridgelm 191
glancerlm L. 193
glance.rma L L e e e e e e 194
glancerq. e 196

glance.sarlm 198

R topics documented:

glance.smooth.spline 200
glance.speedglm 201
glance.speedlm L 203
glance.summary.lm 205
glance.survdiff oL 208
glance.survexpl 209
glance.surviit 211
glance.Survreg e e e e e e e e 213
glance.svyglm L 215
glance.svyolr 217
glance.varest e 218
glance_optim e e e 220
leveneTest_tidiers L e 221
LSt _tidiers e e 222
null_tidiers e 223
Sp_tidiers L e e e e e 223
summary_tidierso e 224
tdy.aarego e e e e e e e 226
tidy.act . . . e 227
tidy.anova 228
tdy. a0V . .. e e 230
tidy.aoVlist L e e e e 231
tidy Arima e 232
tidybetamfx 234
tidy.betareg e e e e e 236
tidy.biglm e 237
tidy.binDesign 239
tidybinWidth o 240
tidy.boot e e e 242
tidy.btergm L. 244
tidy.cch L 245
tidy.cld 247
tidy.clm 249
tidyclmm 251
tidy.coeftest 253
tidy.confint.glht 254
tidy.confusionMatrix 256
tidy.cCOXph 258
AAY.CIT . . o o e e e e e 259
tidy.cv.glmnet 261
tidydensity 263
tidy.dist L 264
tidy.drc e e e 265
tidyemmGrid 267
tidy.epi.2by2o 269
HAY.ergm e e e e e e e e e 270
tidy.factanal L 272

tidyfelm L 274

R topics documented: 9

tidyfitdistr 276
tidy fixest e 278
tidyftable 280
tidyGam. 280
tdy.gam e e e e 282
tidy.garch 284
tidy.geeglm 285
tidy.glht 287
tidy.glmo e 289
tidy.glmnet 290
tidy.glmRob 291
tidy.glmrob e 293
tidy.gmm . ..o e 294
tidyhtest Lo 297
HAY.AVIEZ . . . o e e e 298
tidykappa 301
tidykde 302
tidyKendall 304
tidy.kmeans 305
tidylavaan L 306
tidylm 308
tidydmbeta e 311
tidylmodel2 312
tidylmRob 314
tidydmrobo e e e 315
tidy.Ismobj L e 317
tidymanova e 319
tdy.mapo e 320
tdy.marging e e e e e e e 321
tidy.Mclust e 324
tidymediate e 325
tidy.mfX . . . e e e 327
tidy.mjoint 329
tidymle2 332
tidymlm 333
tidy.mlogit e e e e e e 335
tidymuhaz L 336
tidymultinom 337
tidynegbin. L e 339
tidynlrq L e 340
tidynls oL 342
HAY.NUMETIC o o e e e e e e e e e 344
tdy.Orcutto e e e e e e e 345
tidy.pairwise.htest L. L. 346
tidy.pamo e e 347
tidy.plm 349
tidy.poLCA 351

tidy.polr L 353

10 augment.betamfx
tidy.powerhtest L e e 355
tidy.prcomp e 356
Y. pyears e e e 358
tAy.ICOIT L e 360
tidyref.grid 362
tidy.regsubsets L e e e e e e 364
tidyridgelm 365
tidyrlm e e e 367
tidyrma e 368
tdy.roC . . . o 369
tdy.rq e 371
HAY.IQS . . . o o e 373
tidy.sarlm L. e 375
AY.SPEC . . . o o 377
tidy.speedglm e 378
tidyspeedlm 379
tidy.summary.glht 381
tidysummary.Imo 382
tidy.Summary_emm e e e e e e e e e 384
tidy.survdiff 386
AY.SUIVEXD . . . o o o e e 388
tidy.surviit L e e e e e e 389
tidy.survreg 391
tidy.svyglm 393
tidy.svyolr 394
tidy.systemfit 395
tidy.table L e e 397
HAY.ES .« . 398
tidy. TukeyHSD o e 399
tidy.varest L e e e e e e e e 401
tdy.Zo0O e 402
tidy_irlba 404
tidy_optim e 406
tidy_svd . . . e e e 407
HAY_XYZ . . o o o o e e 409

Index 411

augment.betamfx Augment data with information from a(n) betamfx object

Description

Augment accepts a model object and a dataset and adds information about each observation in
the dataset. Most commonly, this includes predicted values in the .fitted column, residuals in
the .resid column, and standard errors for the fitted values in a .se.fit column. New columns
always begin with a . prefix to avoid overwriting columns in the original dataset.

augment.betamfx 11

Users may pass data to augment via either the data argument or the newdata argument. If the user
passes data to the data argument, it must be exactly the data that was used to fit the model object.
Pass datasets to newdata to augment data that was not used during model fitting. This still requires
that at least all predictor variable columns used to fit the model are present. If the original outcome
variable used to fit the model is not included in newdata, then no .resid column will be included
in the output.

Augment will often behave differently depending on whether data or newdata is given. This is be-
cause there is often information associated with training observations (such as influences or related)
measures that is not meaningfully defined for new observations.

For convenience, many augment methods provide default data arguments, so that augment (fit)
will return the augmented training data. In these cases, augment tries to reconstruct the original
data based on the model object with varying degrees of success.

The augmented dataset is always returned as a tibble::tibble with the same number of rows as the
passed dataset. This means that the passed data must be coercible to a tibble. If a predictor enters
the model as part of a matrix of covariates, such as when the model formula uses splines: :ns(),
stats::poly(), or survival: :Surv(), it is represented as a matrix column.

We are in the process of defining behaviors for models fit with various na.action arguments, but
make no guarantees about behavior when data is missing at this time.

Usage

S3 method for class 'betamfx'
augment (
X,
data = model.frame(x$fit),
newdata = NULL,
type.predict = c("response”, "link"”, "precision”, "variance”, "quantile"),
type.residuals = c("sweighted2”, "deviance”, "pearson”, "response”, "weighted”,
"sweighted"),

)
Arguments

X A betamfx object.

data A base::data.frame or tibble: :tibble() containing the original data that was
used to produce the object x. Defaults to stats::model.frame(x) so that
augment(my_fit) returns the augmented original data. Do not pass new data
to the data argument. Augment will report information such as influence and
cooks distance for data passed to the data argument. These measures are only
defined for the original training data.

newdata A base::data.frame() or tibble::tibble() containing all the original pre-

dictors used to create x. Defaults to NULL, indicating that nothing has been
passed to newdata. If newdata is specified, the data argument will be ignored.

type.predict Character indicating type of prediction to use. Passed to the type argument of
betareg: :predict.betareg(). Defaults to "response”.

12 augment.betamfx

type.residuals Character indicating type of residuals to use. Passed to the type argument of
betareg: :residuals.betareg(). Defaults to "sweighted2.

Additional arguments. Not used. Needed to match generic signature only. Cau-
tionary note: Misspelled arguments will be absorbed in . . ., where they will be
ignored. If the misspelled argument has a default value, the default value will be
used. For example, if you pass conf.1lvel = 0.9, all computation will proceed
using conf.level = @.95. Two exceptions here are:

* tidy() methods will warn when supplied an exponentiate argument if it
will be ignored.

* augment () methods will warn when supplied a newdata argument if it will
be ignored.

Details

This augment method wraps augment.betareg() for mfx: :betamfx() objects.

Value

A tibble::tibble() with columns:

.cooksd Cooks distance.

.fitted Fitted or predicted value.

.resid The difference between observed and fitted values.
See Also

augment.betareg(), mfx: :betamfx()
Other mfx tidiers: augment.mfx (), glance.betamfx(), glance.mfx(), tidy.betamfx(), tidy.mfx()

Examples

library(mfx)

Simulate some data
set.seed(12345)

n <- 1000

x <= rnorm(n)

Beta outcome

y <- rbeta(n, shapel = plogis(1 + 0.5 * x), shape2 = (abs(0.2 * x)))
Use Smithson and Verkuilen correction
y<-(y*(n-1)+0.5 /n

d <- data.frame(y, x)
mod_betamfx <- betamfx(y ~ x | x, data = d)

tidy(mod_betamfx, conf.int = TRUE)

augment.betareg 13

Compare with the naive model coefficients of the equivalent betareg call (not run)
tidy(betamfx(y ~ x | x, data = d), conf.int = TRUE)

augment (mod_betamfx)
glance(mod_betamfx)

augment.betareg Augment data with information from a(n) betareg object

Description

Augment accepts a model object and a dataset and adds information about each observation in
the dataset. Most commonly, this includes predicted values in the .fitted column, residuals in
the .resid column, and standard errors for the fitted values in a .se.fit column. New columns
always begin with a . prefix to avoid overwriting columns in the original dataset.

Users may pass data to augment via either the data argument or the newdata argument. If the user
passes data to the data argument, it must be exactly the data that was used to fit the model object.
Pass datasets to newdata to augment data that was not used during model fitting. This still requires
that at least all predictor variable columns used to fit the model are present. If the original outcome
variable used to fit the model is not included in newdata, then no .resid column will be included
in the output.

Augment will often behave differently depending on whether data or newdata is given. This is be-
cause there is often information associated with training observations (such as influences or related)
measures that is not meaningfully defined for new observations.

For convenience, many augment methods provide default data arguments, so that augment (fit)
will return the augmented training data. In these cases, augment tries to reconstruct the original
data based on the model object with varying degrees of success.

The augmented dataset is always returned as a tibble::tibble with the same number of rows as the
passed dataset. This means that the passed data must be coercible to a tibble. If a predictor enters
the model as part of a matrix of covariates, such as when the model formula uses splines::ns(),
stats::poly(), or survival::Surv(), it is represented as a matrix column.

We are in the process of defining behaviors for models fit with various na.action arguments, but
make no guarantees about behavior when data is missing at this time.

Usage

S3 method for class 'betareg'
augment(

X,

data = model.frame(x),

newdata = NULL,

type.predict,

type.residuals,

14

Arguments

X

data

newdata

type.predict

type.residuals

Details

augment.betareg

A betareg object produced by a call to betareg: :betareg().

A base::data.frame or tibble: :tibble() containing the original data that was
used to produce the object x. Defaults to stats::model.frame(x) so that
augment(my_fit) returns the augmented original data. Do not pass new data
to the data argument. Augment will report information such as influence and
cooks distance for data passed to the data argument. These measures are only
defined for the original training data.

A base::data.frame() or tibble: :tibble() containing all the original pre-
dictors used to create x. Defaults to NULL, indicating that nothing has been
passed to newdata. If newdata is specified, the data argument will be ignored.

Character indicating type of prediction to use. Passed to the type argument of
the stats: :predict() generic. Allowed arguments vary with model class, so
be sure to read the predict.my_class documentation.

Character indicating type of residuals to use. Passed to the type argument of
stats::residuals() generic. Allowed arguments vary with model class, so
be sure to read the residuals.my_class documentation.

Additional arguments. Not used. Needed to match generic signature only. Cau-
tionary note: Misspelled arguments will be absorbed in . . ., where they will be
ignored. If the misspelled argument has a default value, the default value will be
used. For example, if you pass conf.lvel = 0.9, all computation will proceed
using conf.level = 0.95. Two exceptions here are:

* tidy() methods will warn when supplied an exponentiate argument if it
will be ignored.

* augment () methods will warn when supplied a newdata argument if it will
be ignored.

For additional details on Cook’s distance, see stats::cooks.distance().

Value

A tibble::tibble() with columns:

.cooksd
.fitted

.resid

See Also

Cooks distance.
Fitted or predicted value.

The difference between observed and fitted values.

augment (), betareg: :betareg()

augment.clm 15

Examples

load libraries for models and data
library(betareg)

load dats
data("GasolineYield", package = "betareg")

fit model
mod <- betareg(yield ~ batch + temp, data = GasolineYield)

mod

summarize model fit with tidiers

tidy(mod)

tidy(mod, conf.int = TRUE)

tidy(mod, conf.int = TRUE, conf.level = .99)

augment (mod)

glance(mod)

augment.clm Augment data with information from a(n) clm object

Description

Augment accepts a model object and a dataset and adds information about each observation in
the dataset. Most commonly, this includes predicted values in the .fitted column, residuals in
the .resid column, and standard errors for the fitted values in a .se.fit column. New columns
always begin with a . prefix to avoid overwriting columns in the original dataset.

Users may pass data to augment via either the data argument or the newdata argument. If the user
passes data to the data argument, it must be exactly the data that was used to fit the model object.
Pass datasets to newdata to augment data that was not used during model fitting. This still requires
that at least all predictor variable columns used to fit the model are present. If the original outcome
variable used to fit the model is not included in newdata, then no .resid column will be included
in the output.

Augment will often behave differently depending on whether data or newdata is given. This is be-
cause there is often information associated with training observations (such as influences or related)
measures that is not meaningfully defined for new observations.

For convenience, many augment methods provide default data arguments, so that augment (fit)
will return the augmented training data. In these cases, augment tries to reconstruct the original
data based on the model object with varying degrees of success.

The augmented dataset is always returned as a tibble::tibble with the same number of rows as the
passed dataset. This means that the passed data must be coercible to a tibble. If a predictor enters

16 augment.clm

the model as part of a matrix of covariates, such as when the model formula uses splines: :ns(),
stats::poly(), or survival::Surv(), it is represented as a matrix column.

We are in the process of defining behaviors for models fit with various na.action arguments, but
make no guarantees about behavior when data is missing at this time.

Usage

S3 method for class 'clm'
augment (

X,

data = model.frame(x),

newdata = NULL,

type.predict = c("prob”, "class"),

Arguments

X A clm object returned from ordinal: :clm().

data A base::data.frame or tibble: :tibble() containing the original data that was
used to produce the object x. Defaults to stats::model.frame(x) so that
augment(my_fit) returns the augmented original data. Do not pass new data
to the data argument. Augment will report information such as influence and
cooks distance for data passed to the data argument. These measures are only
defined for the original training data.

newdata A base::data.frame() or tibble::tibble() containing all the original pre-

dictors used to create x. Defaults to NULL, indicating that nothing has been
passed to newdata. If newdata is specified, the data argument will be ignored.

type.predict Which type of prediction to compute, either "prob” or "class”, passed to
ordinal::predict.clm(). Defaults to "prob”.

Additional arguments. Not used. Needed to match generic signature only. Cau-
tionary note: Misspelled arguments will be absorbed in . . ., where they will be
ignored. If the misspelled argument has a default value, the default value will be
used. For example, if you pass conf.1lvel = 0.9, all computation will proceed
using conf.level = 0.95. Two exceptions here are:

* tidy() methods will warn when supplied an exponentiate argument if it
will be ignored.

* augment () methods will warn when supplied a newdata argument if it will
be ignored.

See Also

tidy, ordinal: :clm(), ordinal: :predict.clm()

Other ordinal tidiers: augment.polr(), glance.clmm(), glance.clm(), glance.polr(), glance.svyolr(),
tidy.clmm(), tidy.clm(), tidy.polr(), tidy.svyolr()

augment.coxph 17

Examples

load libraries for models and data
library(ordinal)

fit model
fit <- clm(rating ~ temp * contact, data = wine)

summarize model fit with tidiers
tidy(fit)

tidy(fit, conf.int
tidy(fit, conf.int

TRUE, conf.level = 0.9)
TRUE, conf.type = "Wald”, exponentiate = TRUE)

glance(fit)
augment (fit, type.predict = "prob")
augment (fit, type.predict = "class")

...and again with another model specification
fit2 <- clm(rating ~ temp, nominal = ~contact, data = wine)
tidy(fit2)
glance(fit2)
augment . coxph Augment data with information from a(n) coxph object
Description

Augment accepts a model object and a dataset and adds information about each observation in
the dataset. Most commonly, this includes predicted values in the .fitted column, residuals in
the .resid column, and standard errors for the fitted values in a .se.fit column. New columns
always begin with a . prefix to avoid overwriting columns in the original dataset.

Users may pass data to augment via either the data argument or the newdata argument. If the user
passes data to the data argument, it must be exactly the data that was used to fit the model object.
Pass datasets to newdata to augment data that was not used during model fitting. This still requires
that at least all predictor variable columns used to fit the model are present. If the original outcome
variable used to fit the model is not included in newdata, then no .resid column will be included
in the output.

Augment will often behave differently depending on whether data or newdata is given. This is be-
cause there is often information associated with training observations (such as influences or related)
measures that is not meaningfully defined for new observations.

For convenience, many augment methods provide default data arguments, so that augment (fit)
will return the augmented training data. In these cases, augment tries to reconstruct the original
data based on the model object with varying degrees of success.

18

augment.coxph

The augmented dataset is always returned as a tibble::tibble with the same number of rows as the
passed dataset. This means that the passed data must be coercible to a tibble. If a predictor enters
the model as part of a matrix of covariates, such as when the model formula uses splines: :ns(),
stats::poly(), or survival: :Surv(), it is represented as a matrix column.

We are in the process of defining behaviors for models fit with various na.action arguments, but
make no guarantees about behavior when data is missing at this time.

Usage

S3 method for class 'coxph'

augment (
X’

data = model.frame(x),
newdata = NULL,
type.predict = "1p”,

type.residuals = "martingale”,
)
Arguments

X A coxph object returned from survival: :coxph().

data A base::data.frame or tibble: :tibble() containing the original data that was
used to produce the object x. Defaults to stats::model.frame(x) so that
augment(my_fit) returns the augmented original data. Do not pass new data
to the data argument. Augment will report information such as influence and
cooks distance for data passed to the data argument. These measures are only
defined for the original training data.

newdata A base::data.frame() or tibble: :tibble() containing all the original pre-

type.predict

type.residuals

dictors used to create x. Defaults to NULL, indicating that nothing has been
passed to newdata. If newdata is specified, the data argument will be ignored.

Character indicating type of prediction to use. Passed to the type argument of
the stats: :predict() generic. Allowed arguments vary with model class, so
be sure to read the predict.my_class documentation.

Character indicating type of residuals to use. Passed to the type argument of
stats::residuals() generic. Allowed arguments vary with model class, so
be sure to read the residuals.my_class documentation.

Additional arguments. Not used. Needed to match generic signature only. Cau-
tionary note: Misspelled arguments will be absorbed in . . ., where they will be
ignored. If the misspelled argument has a default value, the default value will be
used. For example, if you pass conf.lvel = 0.9, all computation will proceed
using conf.level = @.95. Two exceptions here are:

* tidy() methods will warn when supplied an exponentiate argument if it
will be ignored.

* augment () methods will warn when supplied a newdata argument if it will
be ignored.

augment.coxph 19

Details

When the modeling was performed with na.action = "na.omit"” (as is the typical default), rows
with NA in the initial data are omitted entirely from the augmented data frame. When the mod-
eling was performed with na.action = "na.exclude”, one should provide the original data as a
second argument, at which point the augmented data will contain those rows (typically with NAs
in place of the new columns). If the original data is not provided to augment() and na.action =
"na.exclude”, a warning is raised and the incomplete rows are dropped.

Value

A tibble::tibble() with columns:

.fitted Fitted or predicted value.
.resid The difference between observed and fitted values.
.se.fit Standard errors of fitted values.

See Also

stats::na.action
augment (), survival: :coxph()
Other coxph tidiers: glance.coxph(), tidy.coxph()

Other survival tidiers: augment.survreg(), glance.aareg(), glance.cch(), glance.coxph(),
glance.pyears(), glance.survdiff (), glance.survexp(), glance.survfit(), glance.survreg(),
tidy.aareg(), tidy.cch(), tidy.coxph(), tidy.pyears(), tidy.survdiff(), tidy.survexp(),
tidy.survfit(), tidy.survreg()

Examples

load libraries for models and data
library(survival)

fit model
cfit <- coxph(Surv(time, status) ~ age + sex, lung)

summarize model fit with tidiers
tidy(cfit)
tidy(cfit, exponentiate = TRUE)

1p <- augment(cfit, lung)
risks <- augment(cfit, lung, type.predict = "risk")
expected <- augment(cfit, lung, type.predict = "expected")

glance(cfit)
also works on clogit models

resp <- levels(logan$occupation)
n <- nrow(logan)

20

augment.decomposed.ts

indx <- rep(1:n, length(resp))
logan2 <- data.frame(
logan[indx, 1,

id = indx,
tocc = factor(rep(resp, each = n))
)
logan2$case <- (logan2$occupation == logan2$tocc)

cl <- clogit(case ~ tocc + tocc:education + strata(id), logan2)

tidy(cl)
glance(cl)

library(ggplot2)

ggplot(lp, aes(age, .fitted, color = sex)) +
geom_point()

ggplot(risks, aes(age, .fitted, color = sex)) +
geom_point()

ggplot(expected, aes(time, .fitted, color = sex)) +
geom_point()

augment.decomposed. ts Augment data with information from a(n) decomposed.ts object

Description

Augment accepts a model object and a dataset and adds information about each observation in
the dataset. Most commonly, this includes predicted values in the .fitted column, residuals in
the .resid column, and standard errors for the fitted values in a .se.fit column. New columns
always begin with a . prefix to avoid overwriting columns in the original dataset.

Users may pass data to augment via either the data argument or the newdata argument. If the user
passes data to the data argument, it must be exactly the data that was used to fit the model object.
Pass datasets to newdata to augment data that was not used during model fitting. This still requires
that at least all predictor variable columns used to fit the model are present. If the original outcome
variable used to fit the model is not included in newdata, then no .resid column will be included
in the output.

Augment will often behave differently depending on whether data or newdata is given. This is be-
cause there is often information associated with training observations (such as influences or related)
measures that is not meaningfully defined for new observations.

For convenience, many augment methods provide default data arguments, so that augment (fit)
will return the augmented training data. In these cases, augment tries to reconstruct the original
data based on the model object with varying degrees of success.

augment.decomposed.ts 21

The augmented dataset is always returned as a tibble::tibble with the same number of rows as the
passed dataset. This means that the passed data must be coercible to a tibble. If a predictor enters
the model as part of a matrix of covariates, such as when the model formula uses splines: :ns(),
stats::poly(), or survival: :Surv(), it is represented as a matrix column.

We are in the process of defining behaviors for models fit with various na.action arguments, but
make no guarantees about behavior when data is missing at this time.

Usage
S3 method for class 'decomposed.ts'
augment(x, ...)
Arguments
X A decomposed. ts object returned from stats: : decompose().

Additional arguments. Not used. Needed to match generic signature only. Cau-
tionary note: Misspelled arguments will be absorbed in . . ., where they will be
ignored. If the misspelled argument has a default value, the default value will be
used. For example, if you pass conf.lvel = 0.9, all computation will proceed
using conf.level = @.95. Two exceptions here are:

e tidy() methods will warn when supplied an exponentiate argument if it
will be ignored.

* augment () methods will warn when supplied a newdata argument if it will
be ignored.

Value

A tibble::tibble with one row for each observation in the original times series:

.seasonal The seasonal component of the decomposition.
.trend The trend component of the decomposition.
.remainder The remainder, or "random" component of the decomposition.
.weight The final robust weights (stl only).
.seasadj The seasonally adjusted (or "deseasonalised") series.
See Also

augment (), stats: :decompose()

Other decompose tidiers: augment.stl()

Examples

time series of temperatures in Nottingham, 1920-1939:
nottem

perform seasonal decomposition on the data with both decompose

22

augment.drc

and stl:
d1 <- decompose(nottem)
d2 <- stl(nottem, s.window = "periodic”, robust = TRUE)

compare the original series to its decompositions.

cbind(
tidy(nottem), augment(dl),
augment (d2)

)

visually compare seasonal decompositions in tidy data frames.

library(tibble)
library(dplyr)
library(tidyr)
library(ggplot2)

decomps <- tibble(
turn the ts objects into data frames.
series = list(as.data.frame(nottem), as.data.frame(nottem)),
add the models in, one for each row.

decomp = c("decompose”, "stl"),
model = list(d1l, d2)
) %%

rowwise() %>%

pull out the fitted data using broom::augment.
mutate(augment = list(broom::augment(model))) %>%
ungroup() %>%

unnest the data frames into a tidy arrangement of
the series next to its seasonal decomposition, grouped
by the method (stl or decompose).

group_by (decomp) %>%

unnest(c(series, augment)) %>%

mutate(index = 1:n()) %>%

ungroup() %>%

select(decomp, index, x, adjusted = .seasadj)

ggplot(decomps) +
geom_line(aes(x = index, y = x), colour = "black") +
geom_line(aes(
X = index, y = adjusted, colour = decomp,
group = decomp

)

augment.drc Augment data with information from a(n) drc object

augment.drc 23

Description

Augment accepts a model object and a dataset and adds information about each observation in
the dataset. Most commonly, this includes predicted values in the .fitted column, residuals in
the .resid column, and standard errors for the fitted values in a .se.fit column. New columns
always begin with a . prefix to avoid overwriting columns in the original dataset.

Users may pass data to augment via either the data argument or the newdata argument. If the user
passes data to the data argument, it must be exactly the data that was used to fit the model object.
Pass datasets to newdata to augment data that was not used during model fitting. This still requires
that at least all predictor variable columns used to fit the model are present. If the original outcome
variable used to fit the model is not included in newdata, then no .resid column will be included
in the output.

Augment will often behave differently depending on whether data or newdata is given. This is be-
cause there is often information associated with training observations (such as influences or related)
measures that is not meaningfully defined for new observations.

For convenience, many augment methods provide default data arguments, so that augment (fit)
will return the augmented training data. In these cases, augment tries to reconstruct the original
data based on the model object with varying degrees of success.

The augmented dataset is always returned as a tibble::tibble with the same number of rows as the
passed dataset. This means that the passed data must be coercible to a tibble. If a predictor enters
the model as part of a matrix of covariates, such as when the model formula uses splines::ns(),
stats::poly(), or survival::Surv(), it is represented as a matrix column.

We are in the process of defining behaviors for models fit with various na.action arguments, but
make no guarantees about behavior when data is missing at this time.

Usage

S3 method for class 'drc'
augment (

X,

data = NULL,

newdata = NULL,

se_fit = FALSE,

conf.int = FALSE,

conf.level = 0.95,

)
Arguments
X A drc object produced by a call to drc: :drm().
data A base::data.frame or tibble: :tibble() containing the original data that was

used to produce the object x. Defaults to stats::model.frame(x) so that
augment(my_fit) returns the augmented original data. Do not pass new data
to the data argument. Augment will report information such as influence and
cooks distance for data passed to the data argument. These measures are only
defined for the original training data.

24

newdata

se_fit

conf.int

conf.level

Value

augment.drc

A base::data.frame() or tibble::tibble() containing all the original pre-
dictors used to create x. Defaults to NULL, indicating that nothing has been
passed to newdata. If newdata is specified, the data argument will be ignored.

Logical indicating whether or not a .se.fit column should be added to the
augmented output. For some models, this calculation can be somewhat time-
consuming. Defaults to FALSE.

Logical indicating whether or not to include a confidence interval in the tidied
output. Defaults to FALSE.

The confidence level to use for the confidence interval if conf. int = TRUE. Must
be strictly greater than O and less than 1. Defaults to 0.95, which corresponds to
a 95 percent confidence interval.

Additional arguments. Not used. Needed to match generic signature only. Cau-
tionary note: Misspelled arguments will be absorbed in . . ., where they will be
ignored. If the misspelled argument has a default value, the default value will be
used. For example, if you pass conf.lvel = 0.9, all computation will proceed
using conf.level = @.95. Two exceptions here are:

e tidy() methods will warn when supplied an exponentiate argument if it
will be ignored.

* augment () methods will warn when supplied a newdata argument if it will
be ignored.

A tibble::tibble() with columns:

.cooksd
.fitted
. lower
.resid
.se.fit

.upper

See Also

Cooks distance.

Fitted or predicted value.

Lower bound on interval for fitted values.

The difference between observed and fitted values.
Standard errors of fitted values.

Upper bound on interval for fitted values.

augment (), drc::drm()
Other drc tidiers: glance.drc(), tidy.drc()

Examples

load libraries for models and data

library(drc)

fit model

mod <- drm(dead / total ~ conc, type,

weights =

total, data = selenium, fct = LL.2(), type = "binomial”

augment.factanal 25

)

summarize model fit with tidiers
tidy(mod)

tidy(mod, conf.int = TRUE)
glance(mod)

augment (mod, selenium)

augment.factanal Augment data with information from a(n) factanal object

Description

Augment accepts a model object and a dataset and adds information about each observation in
the dataset. Most commonly, this includes predicted values in the .fitted column, residuals in
the .resid column, and standard errors for the fitted values in a .se.fit column. New columns
always begin with a . prefix to avoid overwriting columns in the original dataset.

Users may pass data to augment via either the data argument or the newdata argument. If the user
passes data to the data argument, it must be exactly the data that was used to fit the model object.
Pass datasets to newdata to augment data that was not used during model fitting. This still requires
that at least all predictor variable columns used to fit the model are present. If the original outcome
variable used to fit the model is not included in newdata, then no .resid column will be included
in the output.

Augment will often behave differently depending on whether data or newdata is given. This is be-
cause there is often information associated with training observations (such as influences or related)
measures that is not meaningfully defined for new observations.

For convenience, many augment methods provide default data arguments, so that augment (fit)
will return the augmented training data. In these cases, augment tries to reconstruct the original
data based on the model object with varying degrees of success.

The augmented dataset is always returned as a tibble::tibble with the same number of rows as the
passed dataset. This means that the passed data must be coercible to a tibble. If a predictor enters
the model as part of a matrix of covariates, such as when the model formula uses splines::ns(),
stats::poly(), or survival::Surv(), it is represented as a matrix column.

We are in the process of defining behaviors for models fit with various na.action arguments, but
make no guarantees about behavior when data is missing at this time.

Usage

S3 method for class 'factanal'
augment(x, data, ...)

26

Arguments

X

data

Value

augment.felm

A factanal object created by stats: :factanal().

A base::data.frame or tibble: :tibble() containing the original data that was
used to produce the object x. Defaults to stats: :model.frame(x) so that
augment(my_fit) returns the augmented original data. Do not pass new data
to the data argument. Augment will report information such as influence and
cooks distance for data passed to the data argument. These measures are only
defined for the original training data.

Additional arguments. Not used. Needed to match generic signature only. Cau-
tionary note: Misspelled arguments will be absorbed in . . ., where they will be
ignored. If the misspelled argument has a default value, the default value will be
used. For example, if you pass conf.lvel = 0.9, all computation will proceed
using conf.level = @.95. Two exceptions here are:

* tidy() methods will warn when supplied an exponentiate argument if it
will be ignored.

* augment () methods will warn when supplied a newdata argument if it will
be ignored.

When data is not supplied augment . factanal returns one row for each observation, with a factor
score column added for each factor X, (.fsX). This is because stats::factanal(), unlike other
stats methods like stats: :1m(), does not retain the original data.

When data is supplied, augment.factanal returns one row for each observation, with a factor
score column added for each factor X, (. fsX).

See Also

augment (), stats::factanal()

Other factanal tidiers: glance.factanal (), tidy.factanal()

augment.felm

Augment data with information from a(n) felm object

Description

Augment accepts a model object and a dataset and adds information about each observation in
the dataset. Most commonly, this includes predicted values in the .fitted column, residuals in
the .resid column, and standard errors for the fitted values in a .se.fit column. New columns
always begin with a . prefix to avoid overwriting columns in the original dataset.

Users may pass data to augment via either the data argument or the newdata argument. If the user
passes data to the data argument, it must be exactly the data that was used to fit the model object.
Pass datasets to newdata to augment data that was not used during model fitting. This still requires
that at least all predictor variable columns used to fit the model are present. If the original outcome

augment.felm 27

variable used to fit the model is not included in newdata, then no .resid column will be included
in the output.

Augment will often behave differently depending on whether data or newdata is given. This is be-
cause there is often information associated with training observations (such as influences or related)
measures that is not meaningfully defined for new observations.

For convenience, many augment methods provide default data arguments, so that augment (fit)
will return the augmented training data. In these cases, augment tries to reconstruct the original
data based on the model object with varying degrees of success.

The augmented dataset is always returned as a tibble::tibble with the same number of rows as the
passed dataset. This means that the passed data must be coercible to a tibble. If a predictor enters
the model as part of a matrix of covariates, such as when the model formula uses splines: :ns(),
stats::poly(), or survival::Surv(), it is represented as a matrix column.

We are in the process of defining behaviors for models fit with various na.action arguments, but
make no guarantees about behavior when data is missing at this time.

Usage
S3 method for class 'felm'
augment(x, data = model.frame(x), ...)
Arguments
X A felm object returned from 1fe: : felm().
data A base::data.frame or tibble: :tibble() containing the original data that was

used to produce the object x. Defaults to stats::model.frame(x) so that
augment(my_fit) returns the augmented original data. Do not pass new data
to the data argument. Augment will report information such as influence and
cooks distance for data passed to the data argument. These measures are only
defined for the original training data.

Additional arguments. Not used. Needed to match generic signature only. Cau-
tionary note: Misspelled arguments will be absorbed in . . ., where they will be
ignored. If the misspelled argument has a default value, the default value will be
used. For example, if you pass conf.1lvel = 0.9, all computation will proceed
using conf.level = 0.95. Two exceptions here are:

e tidy() methods will warn when supplied an exponentiate argument if it
will be ignored.

* augment () methods will warn when supplied a newdata argument if it will
be ignored.

Value

A tibble::tibble() with columns:

.fitted Fitted or predicted value.

.resid The difference between observed and fitted values.

28 augment.fixest

See Also

augment (), 1fe::felm()
Other felm tidiers: tidy.felm()

Examples

load libraries for models and data
library(1fe)

use built-in ‘airquality‘ dataset
head(airquality)

no FEs; same as 1m()
est@ <- felm(Ozone ~ Temp + Wind + Solar.R, airquality)

summarize model fit with tidiers
tidy(esto)
augment (est@)

add month fixed effects
estl <- felm(Ozone ~ Temp + Wind + Solar.R | Month, airquality)

summarize model fit with tidiers
tidy(est1)

tidy(est1l, fe = TRUE)

augment (est1)

glance(est1)

the "se.type” argument can be used to switch out different standard errors
types on the fly. In turn, this can be useful exploring the effect of

different error structures on model inference.

tidy(estl, se.type = "iid")

tidy(est1, se.type = "robust")

add clustered SEs (also by month)
est2 <- felm(Ozone ~ Temp + Wind + Solar.R | Month | @ | Month, airquality)

summarize model fit with tidiers

tidy(est2, conf.int = TRUE)

tidy(est2, conf.int = TRUE, se.type = "cluster")
tidy(est2, conf.int = TRUE, se.type = "robust"”)
tidy(est2, conf.int = TRUE, se.type = "iid")

augment.fixest Augment data with information from a(n) fixest object

augment.fixest 29

Description

Augment accepts a model object and a dataset and adds information about each observation in
the dataset. Most commonly, this includes predicted values in the .fitted column, residuals in
the .resid column, and standard errors for the fitted values in a .se.fit column. New columns
always begin with a . prefix to avoid overwriting columns in the original dataset.

Users may pass data to augment via either the data argument or the newdata argument. If the user
passes data to the data argument, it must be exactly the data that was used to fit the model object.
Pass datasets to newdata to augment data that was not used during model fitting. This still requires
that at least all predictor variable columns used to fit the model are present. If the original outcome
variable used to fit the model is not included in newdata, then no .resid column will be included
in the output.

Augment will often behave differently depending on whether data or newdata is given. This is be-
cause there is often information associated with training observations (such as influences or related)
measures that is not meaningfully defined for new observations.

For convenience, many augment methods provide default data arguments, so that augment (fit)
will return the augmented training data. In these cases, augment tries to reconstruct the original
data based on the model object with varying degrees of success.

The augmented dataset is always returned as a tibble::tibble with the same number of rows as the
passed dataset. This means that the passed data must be coercible to a tibble. If a predictor enters
the model as part of a matrix of covariates, such as when the model formula uses splines: :ns(),
stats::poly(), or survival: :Surv(), it is represented as a matrix column.

We are in the process of defining behaviors for models fit with various na.action arguments, but
make no guarantees about behavior when data is missing at this time.

Usage

S3 method for class 'fixest'
augment (

X,

data = NULL,

newdata = NULL,

type.predict = c("link"”, "response"),

type.residuals = c("response”, "deviance”, "pearson”, "working"),
)
Arguments
X A fixest object returned from any of the fixest estimators
data A base::data.frame or tibble: :tibble() containing the original data that was

used to produce the object x. Defaults to stats::model.frame(x) so that
augment(my_fit) returns the augmented original data. Do not pass new data
to the data argument. Augment will report information such as influence and
cooks distance for data passed to the data argument. These measures are only
defined for the original training data.

30 augment.fixest

newdata A base::data.frame() or tibble::tibble() containing all the original pre-
dictors used to create x. Defaults to NULL, indicating that nothing has been
passed to newdata. If newdata is specified, the data argument will be ignored.

type.predict Passedto predict. fixest type argument. Defaults to "1ink" (like predict.glm).

type.residuals Passedtopredict.fixest type argument. Defaults to "response” (like residuals. 1m,
but unlike residuals.glm).

Additional arguments passed to summary and confint. Important arguments
are se and cluster. Other arguments are dof, exact_dof, forceCovariance,
and keepBounded. See summary.fixest.

Value
A tibble::tibble() with columns:

.fitted Fitted or predicted value.

.resid The difference between observed and fitted values.

Note

Important note: fixest models do not include a copy of the input data, so you must provide it
manually.

augment.fixest only works for fixest::feols(), fixest::feglm(), and fixest::femlm() mod-
els. It does not work with results from fixest: : fenegbin(), fixest::feNmIm(), or fixest::fepois().
See Also

augment (), fixest: :feglm(), fixest::femlm(), fixest::feols()
Other fixest tidiers: tidy.fixest()

Examples

load libraries for models and data
library(fixest)

gravity <-
feols(
log(Euros) ~ log(dist_km) | Origin + Destination + Product + Year, trade

)

tidy(gravity)
glance(gravity)
augment(gravity, trade)

to get robust or clustered SEs, users can either:

1) specify the arguments directly in the ‘“tidy()‘ call

augment.gam 31

tidy(gravity, conf.int = TRUE, cluster = c("Product”, "Year"))
tidy(gravity, conf.int = TRUE, se = "threeway")

2) or, feed tidy() a summary.fixest object that has already accepted
these arguments

gravity_summ <- summary(gravity, cluster = c("Product”, "Year"))
tidy(gravity_summ, conf.int = TRUE)

approach (1) is preferred.

augment.gam Augment data with information from a(n) gam object

Description

Augment accepts a model object and a dataset and adds information about each observation in
the dataset. Most commonly, this includes predicted values in the .fitted column, residuals in
the .resid column, and standard errors for the fitted values in a .se.fit column. New columns
always begin with a . prefix to avoid overwriting columns in the original dataset.

Users may pass data to augment via either the data argument or the newdata argument. If the user
passes data to the data argument, it must be exactly the data that was used to fit the model object.
Pass datasets to newdata to augment data that was not used during model fitting. This still requires
that at least all predictor variable columns used to fit the model are present. If the original outcome
variable used to fit the model is not included in newdata, then no .resid column will be included
in the output.

Augment will often behave differently depending on whether data or newdata is given. This is be-
cause there is often information associated with training observations (such as influences or related)
measures that is not meaningfully defined for new observations.

For convenience, many augment methods provide default data arguments, so that augment (fit)
will return the augmented training data. In these cases, augment tries to reconstruct the original
data based on the model object with varying degrees of success.

The augmented dataset is always returned as a tibble::tibble with the same number of rows as the
passed dataset. This means that the passed data must be coercible to a tibble. If a predictor enters
the model as part of a matrix of covariates, such as when the model formula uses splines: :ns(),
stats::poly(), or survival::Surv(), it is represented as a matrix column.

We are in the process of defining behaviors for models fit with various na.action arguments, but
make no guarantees about behavior when data is missing at this time.

Usage

S3 method for class 'gam'
augment (

32

X’

augment.gam

data = model.frame(x),
newdata = NULL,

type.predict,

type.residuals,

Arguments

X

data

newdata

type.predict

type.residuals

Details

A gam object returned from a call to mgcv: : gam().

A base::data.frame or tibble: :tibble() containing the original data that was
used to produce the object x. Defaults to stats::model.frame(x) so that
augment(my_fit) returns the augmented original data. Do not pass new data
to the data argument. Augment will report information such as influence and
cooks distance for data passed to the data argument. These measures are only
defined for the original training data.

A base::data.frame() or tibble::tibble() containing all the original pre-
dictors used to create x. Defaults to NULL, indicating that nothing has been
passed to newdata. If newdata is specified, the data argument will be ignored.

Character indicating type of prediction to use. Passed to the type argument of
the stats: :predict() generic. Allowed arguments vary with model class, so
be sure to read the predict.my_class documentation.

Character indicating type of residuals to use. Passed to the type argument of
stats::residuals() generic. Allowed arguments vary with model class, so
be sure to read the residuals.my_class documentation.

Additional arguments. Not used. Needed to match generic signature only. Cau-
tionary note: Misspelled arguments will be absorbed in . . ., where they will be
ignored. If the misspelled argument has a default value, the default value will be
used. For example, if you pass conf.lvel = 0.9, all computation will proceed
using conf.level = 0.95. Two exceptions here are:

e tidy() methods will warn when supplied an exponentiate argument if it
will be ignored.

* augment () methods will warn when supplied a newdata argument if it will
be ignored.

For additional details on Cook’s distance, see stats::cooks.distance().

Value

A tibble::tibble() with columns:

.cooksd
.fitted
.hat

Cooks distance.
Fitted or predicted value.

Diagonal of the hat matrix.

augment.glm 33

.resid The difference between observed and fitted values.
.se.fit Standard errors of fitted values.
.sigma Estimated residual standard deviation when corresponding observation is dropped
from model.
See Also

augment (), mgcv::gam()

Examples

load libraries for models and data
library(mgcv)

fit model
g <- gam(mpg ~ s(hp) + am + gsec, data = mtcars)

summarize model fit with tidiers
tidy(g)
tidy(g, parametric = TRUE)

glance(g)
augment(g)

augment.glm Augment data with information from a(n) glm object

Description

Augment accepts a model object and a dataset and adds information about each observation in
the dataset. Most commonly, this includes predicted values in the .fitted column, residuals in
the .resid column, and standard errors for the fitted values in a .se.fit column. New columns
always begin with a . prefix to avoid overwriting columns in the original dataset.

Users may pass data to augment via either the data argument or the newdata argument. If the user
passes data to the data argument, it must be exactly the data that was used to fit the model object.
Pass datasets to newdata to augment data that was not used during model fitting. This still requires
that at least all predictor variable columns used to fit the model are present. If the original outcome
variable used to fit the model is not included in newdata, then no .resid column will be included
in the output.

Augment will often behave differently depending on whether data or newdata is given. This is be-
cause there is often information associated with training observations (such as influences or related)
measures that is not meaningfully defined for new observations.

For convenience, many augment methods provide default data arguments, so that augment (fit)
will return the augmented training data. In these cases, augment tries to reconstruct the original
data based on the model object with varying degrees of success.

34

augment.glm

The augmented dataset is always returned as a tibble::tibble with the same number of rows as the
passed dataset. This means that the passed data must be coercible to a tibble. If a predictor enters
the model as part of a matrix of covariates, such as when the model formula uses splines: :ns(),
stats::poly(), or survival: :Surv(), it is represented as a matrix column.

We are in the process of defining behaviors for models fit with various na.action arguments, but
make no guarantees about behavior when data is missing at this time.

Usage

S3 method for class 'glm'

augment (
X)

data = model.frame(x),

newdata = NULL,

type.predict = c("link", "response”, "terms"),
type.residuals = c("deviance”, "pearson"),
se_fit = FALSE,

Arguments

X
data

newdata

type.predict

type.residuals

se_fit

A glm object returned from stats: :glm().

A base::data.frame or tibble: :tibble() containing the original data that was
used to produce the object x. Defaults to stats::model.frame(x) so that
augment(my_fit) returns the augmented original data. Do not pass new data
to the data argument. Augment will report information such as influence and
cooks distance for data passed to the data argument. These measures are only
defined for the original training data.

A base::data.frame() or tibble::tibble() containing all the original pre-
dictors used to create x. Defaults to NULL, indicating that nothing has been
passed to newdata. If newdata is specified, the data argument will be ignored.

Passed to stats: :predict.glm() type argument. Defaults to "1ink".

Passed to stats: :residuals.glm() and to stats::rstandard.glm() type
arguments. Defaults to "deviance”.

Logical indicating whether or not a .se.fit column should be added to the
augmented output. For some models, this calculation can be somewhat time-
consuming. Defaults to FALSE.

Additional arguments. Not used. Needed to match generic signature only. Cau-
tionary note: Misspelled arguments will be absorbed in . . ., where they will be
ignored. If the misspelled argument has a default value, the default value will be
used. For example, if you pass conf.lvel = 0.9, all computation will proceed
using conf.level = @.95. Two exceptions here are:

* tidy() methods will warn when supplied an exponentiate argument if it
will be ignored.

* augment () methods will warn when supplied a newdata argument if it will
be ignored.

augment.glmRob 35

Details

If the weights for any of the observations in the model are 0, then columns ".infl" and ".hat" in the
result will be 0 for those observations.

A .resid column is not calculated when data is specified via the newdata argument.

Value

A tibble::tibble() with columns:

.cooksd Cooks distance.
.fitted Fitted or predicted value.
.hat Diagonal of the hat matrix.
.resid The difference between observed and fitted values.
.se.fit Standard errors of fitted values.
.sigma Estimated residual standard deviation when corresponding observation is dropped
from model.
.std.resid Standardised residuals.
See Also

stats::glm()

Other Im tidiers: augment.1m(), glance.glm(), glance.1lm(), glance.summary.1lm(), glance.svyglm(),
tidy.glm(), tidy.1m.beta(), tidy.1m(), tidy.mim(), tidy.summary.1lm()

augment.glmRob Augment data with information from a(n) glmRob object

Description

Augment accepts a model object and a dataset and adds information about each observation in
the dataset. Most commonly, this includes predicted values in the .fitted column, residuals in
the .resid column, and standard errors for the fitted values in a .se.fit column. New columns
always begin with a . prefix to avoid overwriting columns in the original dataset.

Users may pass data to augment via either the data argument or the newdata argument. If the user
passes data to the data argument, it must be exactly the data that was used to fit the model object.
Pass datasets to newdata to augment data that was not used during model fitting. This still requires
that at least all predictor variable columns used to fit the model are present. If the original outcome
variable used to fit the model is not included in newdata, then no .resid column will be included
in the output.

Augment will often behave differently depending on whether data or newdata is given. This is be-
cause there is often information associated with training observations (such as influences or related)
measures that is not meaningfully defined for new observations.

36

augment.glmrob

For convenience, many augment methods provide default data arguments, so that augment (fit)
will return the augmented training data. In these cases, augment tries to reconstruct the original
data based on the model object with varying degrees of success.

The augmented dataset is always returned as a tibble::tibble with the same number of rows as the
passed dataset. This means that the passed data must be coercible to a tibble. If a predictor enters
the model as part of a matrix of covariates, such as when the model formula uses splines: :ns(),
stats::poly(), or survival: :Surv(), it is represented as a matrix column.

We are in the process of defining behaviors for models fit with various na.action arguments, but
make no guarantees about behavior when data is missing at this time.

Usage

S3 method for class 'glmRob'

augment(x, ...)
Arguments

X Unused.

Unused.
augment.glmrob Augment data with information from a(n) glmrob object

Description

Augment accepts a model object and a dataset and adds information about each observation in
the dataset. Most commonly, this includes predicted values in the .fitted column, residuals in
the .resid column, and standard errors for the fitted values in a .se.fit column. New columns
always begin with a . prefix to avoid overwriting columns in the original dataset.

Users may pass data to augment via either the data argument or the newdata argument. If the user
passes data to the data argument, it must be exactly the data that was used to fit the model object.
Pass datasets to newdata to augment data that was not used during model fitting. This still requires
that at least all predictor variable columns used to fit the model are present. If the original outcome
variable used to fit the model is not included in newdata, then no .resid column will be included
in the output.

Augment will often behave differently depending on whether data or newdata is given. This is be-
cause there is often information associated with training observations (such as influences or related)
measures that is not meaningfully defined for new observations.

For convenience, many augment methods provide default data arguments, so that augment (fit)
will return the augmented training data. In these cases, augment tries to reconstruct the original
data based on the model object with varying degrees of success.

The augmented dataset is always returned as a tibble::tibble with the same number of rows as the
passed dataset. This means that the passed data must be coercible to a tibble. If a predictor enters
the model as part of a matrix of covariates, such as when the model formula uses splines::ns(),
stats::poly(), or survival: :Surv(), it is represented as a matrix column.

We are in the process of defining behaviors for models fit with various na.action arguments, but
make no guarantees about behavior when data is missing at this time.

augment.glmrob

Usage

37

S3 method for class 'glmrob'

augment (
X,

data = model.frame(x),

newdata = NULL,

type.predict = c("link"”, "response"),
type.residuals = c("deviance”, "pearson"),
se_fit = FALSE,

Arguments

X

data

newdata

type.predict

type.residuals

se_fit

Details

A glmrob object returned from robustbase: :glmrob().

A base::data.frame or tibble: :tibble() containing the original data that was
used to produce the object x. Defaults to stats::model.frame(x) so that
augment(my_fit) returns the augmented original data. Do not pass new data
to the data argument. Augment will report information such as influence and
cooks distance for data passed to the data argument. These measures are only
defined for the original training data.

A base::data.frame() or tibble::tibble() containing all the original pre-
dictors used to create x. Defaults to NULL, indicating that nothing has been
passed to newdata. If newdata is specified, the data argument will be ignored.

Character indicating type of prediction to use. Passed to the type argument of
the stats: :predict() generic. Allowed arguments vary with model class, so
be sure to read the predict.my_class documentation.

Character indicating type of residuals to use. Passed to the type argument of
stats::residuals() generic. Allowed arguments vary with model class, so
be sure to read the residuals.my_class documentation.

Logical indicating whether or not a .se.fit column should be added to the
augmented output. For some models, this calculation can be somewhat time-
consuming. Defaults to FALSE.

Additional arguments. Not used. Needed to match generic signature only. Cau-
tionary note: Misspelled arguments will be absorbed in . . ., where they will be
ignored. If the misspelled argument has a default value, the default value will be
used. For example, if you pass conf.lvel = 0.9, all computation will proceed
using conf.level = @.95. Two exceptions here are:

* tidy() methods will warn when supplied an exponentiate argument if it
will be ignored.

* augment () methods will warn when supplied a newdata argument if it will
be ignored.

For tidiers for robust models from the MASS package see tidy.rlm().

38

augment.htest

Value

A tibble::tibble() with columns:

.fitted Fitted or predicted value.
.resid The difference between observed and fitted values.
See Also

robustbase: :glmrob()
Other robustbase tidiers: augment.lmrob(), glance.lmrob(), tidy.glmrob(), tidy.1lmrob()

Examples

if (requireNamespace("robustbase”, quietly = TRUE)) {
load libraries for models and data
library(robustbase)

data(coleman)
set.seed(0)

m <- Imrob(Y ~ ., data = coleman)
tidy(m)

augment (m)

glance(m)

data(carrots)

Rfit <- glmrob(cbind(success, total - success) ~ logdose + block,

family = binomial, data = carrots, method = "Mqgle”,
control = glmrobMgle.control(tcc = 1.2)

)

tidy(Rfit)

augment (Rfit)

3
augment.htest Augment data with information from a(n) htest object
Description

Augment accepts a model object and a dataset and adds information about each observation in
the dataset. Most commonly, this includes predicted values in the .fitted column, residuals in
the .resid column, and standard errors for the fitted values in a .se.fit column. New columns
always begin with a . prefix to avoid overwriting columns in the original dataset.

Users may pass data to augment via either the data argument or the newdata argument. If the user
passes data to the data argument, it must be exactly the data that was used to fit the model object.

augment.htest 39

Pass datasets to newdata to augment data that was not used during model fitting. This still requires
that at least all predictor variable columns used to fit the model are present. If the original outcome
variable used to fit the model is not included in newdata, then no .resid column will be included
in the output.

Augment will often behave differently depending on whether data or newdata is given. This is be-
cause there is often information associated with training observations (such as influences or related)
measures that is not meaningfully defined for new observations.

For convenience, many augment methods provide default data arguments, so that augment (fit)
will return the augmented training data. In these cases, augment tries to reconstruct the original
data based on the model object with varying degrees of success.

The augmented dataset is always returned as a tibble::tibble with the same number of rows as the
passed dataset. This means that the passed data must be coercible to a tibble. If a predictor enters
the model as part of a matrix of covariates, such as when the model formula uses splines: :ns(),
stats::poly(), or survival::Surv(), it is represented as a matrix column.

We are in the process of defining behaviors for models fit with various na.action arguments, but
make no guarantees about behavior when data is missing at this time.

Usage
S3 method for class 'htest'
augment(x, ...)
Arguments
X An htest objected, such as those created by stats: :cor.test(), stats::t.test(),

stats::wilcox.test(), stats::chisq.test(), etc.

Additional arguments. Not used. Needed to match generic signature only. Cau-
tionary note: Misspelled arguments will be absorbed in . . ., where they will be
ignored. If the misspelled argument has a default value, the default value will be
used. For example, if you pass conf.lvel = 0.9, all computation will proceed
using conf.level = @.95. Two exceptions here are:

e tidy() methods will warn when supplied an exponentiate argument if it
will be ignored.

¢ augment () methods will warn when supplied a newdata argument if it will
be ignored.
Details

See stats::chisq.test() for more details on how residuals are computed.

Value
A tibble::tibble() with exactly one row and columns:

.observed Observed count.
.prop Proportion of the total.

.row.prop Row proportion (2 dimensions table only).

40 augment.ivreg
.col.prop Column proportion (2 dimensions table only).
.expected Expected count under the null hypothesis.
.resid Pearson residuals.
.std.resid Standardized residual.
See Also

augment (), stats::chisq.test()
Other htest tidiers: tidy.htest(), tidy.pairwise.htest(), tidy.power.htest()

Examples

tt <- t.test(rnorm(10))
tidy(tt)

the glance output will be the same for each of the below tests
glance(tt)

tt <- t.test(mpg ~ am, data = mtcars)

tidy(tt)

wt <- wilcox.test(mpg ~ am, data = mtcars, conf.int = TRUE, exact = FALSE)
tidy(wt)

ct <- cor.test(mtcars$wt, mtcars$mpg)

tidy(ct)

chit <- chisq.test(xtabs(Freq ~ Sex + Class, data = as.data.frame(Titanic)))

tidy(chit)
augment(chit)

augment.ivreg Augment data with information from a(n) ivreg object

Description

Augment accepts a model object and a dataset and adds information about each observation in
the dataset. Most commonly, this includes predicted values in the .fitted column, residuals in
the .resid column, and standard errors for the fitted values in a .se.fit column. New columns
always begin with a . prefix to avoid overwriting columns in the original dataset.

augment.ivreg 41

Users may pass data to augment via either the data argument or the newdata argument. If the user
passes data to the data argument, it must be exactly the data that was used to fit the model object.
Pass datasets to newdata to augment data that was not used during model fitting. This still requires
that at least all predictor variable columns used to fit the model are present. If the original outcome
variable used to fit the model is not included in newdata, then no .resid column will be included
in the output.

Augment will often behave differently depending on whether data or newdata is given. This is be-
cause there is often information associated with training observations (such as influences or related)
measures that is not meaningfully defined for new observations.

For convenience, many augment methods provide default data arguments, so that augment (fit)
will return the augmented training data. In these cases, augment tries to reconstruct the original
data based on the model object with varying degrees of success.

The augmented dataset is always returned as a tibble::tibble with the same number of rows as the
passed dataset. This means that the passed data must be coercible to a tibble. If a predictor enters
the model as part of a matrix of covariates, such as when the model formula uses splines: :ns(),
stats::poly(), or survival::Surv(), it is represented as a matrix column.

We are in the process of defining behaviors for models fit with various na.action arguments, but
make no guarantees about behavior when data is missing at this time.

Usage
S3 method for class 'ivreg'
augment(x, data = model.frame(x), newdata = NULL, ...)
Arguments
X An ivreg object created by a call to AER: :ivreg().
data A base::data.frame or tibble: :tibble() containing the original data that was

used to produce the object x. Defaults to stats::model.frame(x) so that
augment(my_fit) returns the augmented original data. Do not pass new data
to the data argument. Augment will report information such as influence and
cooks distance for data passed to the data argument. These measures are only
defined for the original training data.

newdata A base::data.frame() or tibble: :tibble() containing all the original pre-
dictors used to create x. Defaults to NULL, indicating that nothing has been
passed to newdata. If newdata is specified, the data argument will be ignored.

Additional arguments. Not used. Needed to match generic signature only. Cau-
tionary note: Misspelled arguments will be absorbed in . . ., where they will be
ignored. If the misspelled argument has a default value, the default value will be
used. For example, if you pass conf.lvel = 0.9, all computation will proceed
using conf.level = 0.95. Two exceptions here are:

* tidy() methods will warn when supplied an exponentiate argument if it
will be ignored.

* augment () methods will warn when supplied a newdata argument if it will
be ignored.

42 augment.ivreg

Details

This tidier currently only supports ivreg-classed objects outputted by the AER package. The ivreg
package also outputs objects of class ivreg, and will be supported in a later release.

Value

A tibble::tibble() with columns:

.fitted Fitted or predicted value.
.resid The difference between observed and fitted values.
See Also

augment (), AER: :ivreg()

Other ivreg tidiers: glance.ivreg(), tidy.ivreg()

Examples

load libraries for models and data
library(AER)

load data
data("CigarettesSW"”, package = "AER")

fit model

ivr <- ivreg(
log(packs) ~ income | population,
data = CigarettesSW,
subset = year == "1995"

)

summarize model fit with tidiers

tidy(ivr)

tidy(ivr, conf.int = TRUE)

tidy(ivr, conf.int = TRUE, instruments = TRUE)

augment(ivr)
augment (ivr, data = CigarettesSW)

augment (ivr, newdata = CigarettesSW)

glance(ivr)

augment.kmeans 43

augment.kmeans Augment data with information from a(n) kmeans object

Description

Augment accepts a model object and a dataset and adds information about each observation in
the dataset. Most commonly, this includes predicted values in the .fitted column, residuals in
the .resid column, and standard errors for the fitted values in a .se.fit column. New columns
always begin with a . prefix to avoid overwriting columns in the original dataset.

Users may pass data to augment via either the data argument or the newdata argument. If the user
passes data to the data argument, it must be exactly the data that was used to fit the model object.
Pass datasets to newdata to augment data that was not used during model fitting. This still requires
that at least all predictor variable columns used to fit the model are present. If the original outcome
variable used to fit the model is not included in newdata, then no .resid column will be included
in the output.

Augment will often behave differently depending on whether data or newdata is given. This is be-
cause there is often information associated with training observations (such as influences or related)
measures that is not meaningfully defined for new observations.

For convenience, many augment methods provide default data arguments, so that augment (fit)
will return the augmented training data. In these cases, augment tries to reconstruct the original
data based on the model object with varying degrees of success.

The augmented dataset is always returned as a tibble::tibble with the same number of rows as the
passed dataset. This means that the passed data must be coercible to a tibble. If a predictor enters
the model as part of a matrix of covariates, such as when the model formula uses splines: :ns(),
stats::poly(), or survival::Surv(), it is represented as a matrix column.

We are in the process of defining behaviors for models fit with various na.action arguments, but
make no guarantees about behavior when data is missing at this time.

Usage
S3 method for class 'kmeans'
augment(x, data, ...)
Arguments
X A kmeans object created by stats: :kmeans().
data A base::data.frame or tibble: :tibble() containing the original data that was

used to produce the object x. Defaults to stats::model.frame(x) so that
augment(my_fit) returns the augmented original data. Do not pass new data
to the data argument. Augment will report information such as influence and
cooks distance for data passed to the data argument. These measures are only
defined for the original training data.

Additional arguments. Not used. Needed to match generic signature only. Cau-
tionary note: Misspelled arguments will be absorbed in . . ., where they will be
ignored. If the misspelled argument has a default value, the default value will be

44 augment.Im

used. For example, if you pass conf.lvel = 0.9, all computation will proceed
using conf.level = @.95. Two exceptions here are:

* tidy() methods will warn when supplied an exponentiate argument if it
will be ignored.

* augment () methods will warn when supplied a newdata argument if it will
be ignored.

Value

A tibble::tibble() with columns:

.cluster Cluster assignment.

See Also

augment (), stats: :kmeans()

Other kmeans tidiers: glance.kmeans(), tidy.kmeans()

Examples

library(cluster)
library(modeldata)
library(dplyr)
data(hpc_data)

x <- hpc_datal[, 2:5]
fit <- pam(x, k = 4)
tidy(fit)

glance(fit)
augment (fit, x)

augment.1m Augment data with information from a(n) Im object

Description

Augment accepts a model object and a dataset and adds information about each observation in
the dataset. Most commonly, this includes predicted values in the .fitted column, residuals in
the .resid column, and standard errors for the fitted values in a .se.fit column. New columns
always begin with a . prefix to avoid overwriting columns in the original dataset.

Users may pass data to augment via either the data argument or the newdata argument. If the user
passes data to the data argument, it must be exactly the data that was used to fit the model object.

augment.Im 45

Pass datasets to newdata to augment data that was not used during model fitting. This still requires
that at least all predictor variable columns used to fit the model are present. If the original outcome
variable used to fit the model is not included in newdata, then no .resid column will be included
in the output.

Augment will often behave differently depending on whether data or newdata is given. This is be-
cause there is often information associated with training observations (such as influences or related)
measures that is not meaningfully defined for new observations.

For convenience, many augment methods provide default data arguments, so that augment (fit)
will return the augmented training data. In these cases, augment tries to reconstruct the original
data based on the model object with varying degrees of success.

The augmented dataset is always returned as a tibble::tibble with the same number of rows as the
passed dataset. This means that the passed data must be coercible to a tibble. If a predictor enters
the model as part of a matrix of covariates, such as when the model formula uses splines: :ns(),
stats::poly(), or survival: :Surv(), it is represented as a matrix column.

We are in the process of defining behaviors for models fit with various na.action arguments, but
make no guarantees about behavior when data is missing at this time.

Usage

S3 method for class 'lm'
augment (
X)
data = model.frame(x),
newdata = NULL,
se_fit = FALSE,

interval = c("none”, "confidence"”, "prediction"),
)
Arguments

X An 1m object created by stats: :1m().

data A base::data.frame or tibble::tibble() containing the original data that was
used to produce the object x. Defaults to stats: :model.frame(x) so that
augment(my_fit) returns the augmented original data. Do not pass new data
to the data argument. Augment will report information such as influence and
cooks distance for data passed to the data argument. These measures are only
defined for the original training data.

newdata A base::data.frame() or tibble::tibble() containing all the original pre-
dictors used to create x. Defaults to NULL, indicating that nothing has been
passed to newdata. If newdata is specified, the data argument will be ignored.

se_fit Logical indicating whether or not a .se.fit column should be added to the
augmented output. For some models, this calculation can be somewhat time-
consuming. Defaults to FALSE.

interval Character indicating the type of confidence interval columns to be added to the

augmented output. Passed on to predict() and defaults to "none".

46 augment.Im

Additional arguments. Not used. Needed to match generic signature only. Cau-
tionary note: Misspelled arguments will be absorbed in . . ., where they will be
ignored. If the misspelled argument has a default value, the default value will be
used. For example, if you pass conf.lvel = 0.9, all computation will proceed
using conf.level = @.95. Two exceptions here are:

e tidy() methods will warn when supplied an exponentiate argument if it
will be ignored.

* augment () methods will warn when supplied a newdata argument if it will
be ignored.

Details

When the modeling was performed with na.action = "na.omit"” (as is the typical default), rows
with NA in the initial data are omitted entirely from the augmented data frame. When the mod-
eling was performed with na.action = "na.exclude”, one should provide the original data as a
second argument, at which point the augmented data will contain those rows (typically with NAs
in place of the new columns). If the original data is not provided to augment() and na.action =
"na.exclude”, a warning is raised and the incomplete rows are dropped.

Some unusual 1m objects, such as r1lm from MASS, may omit . cooksd and .std.resid. gam from
mgcv omits . sigma.

When newdata is supplied, only returns . fitted, .resid and .se.fit columns.

Value

A tibble::tibble() with columns:

.cooksd Cooks distance.
.fitted Fitted or predicted value.
.hat Diagonal of the hat matrix.
. lower Lower bound on interval for fitted values.
.resid The difference between observed and fitted values.
.se.fit Standard errors of fitted values.
.sigma Estimated residual standard deviation when corresponding observation is dropped
from model.
.std.resid Standardised residuals.
.upper Upper bound on interval for fitted values.
See Also

stats::na.action
augment(), stats: :predict.1m()

Other Im tidiers: augment.glm(), glance.glm(), glance.1lm(), glance.summary.1lm(), glance.svyglm(),
tidy.glm(), tidy.1lm.beta(), tidy.1m(), tidy.mim(), tidy.summary.1lm()

augment.Im

Examples

library(ggplot2)
library(dplyr)

mod <- lm(mpg ~ wt + gsec, data = mtcars)

tidy(mod)
glance(mod)

coefficient plot
d <- tidy(mod, conf.int = TRUE)

ggplot(d, aes(estimate, term, xmin = conf.low, xmax = conf.high, height = 0)) +
geom_point() +
geom_vline(xintercept = @, 1ty = 4) +
geom_errorbarh()

aside: There are tidy() and glance() methods for 1m.summary objects too.

this can be useful when you want to conserve memory by converting large 1lm
objects into their leaner summary.lm equivalents.

s <- summary(mod)

tidy(s, conf.int = TRUE)

glance(s)

augment (mod)
augment(mod, mtcars, interval = "confidence")

predict on new data
newdata <- mtcars %>%
head(6) %>%
mutate(wt = wt + 1)
augment (mod, newdata = newdata)

ggplot2 example where we also construct 95% prediction interval

simpler bivariate model since we're plotting in 2D
mod2 <- Im(mpg ~ wt, data = mtcars)

au <- augment(mod2, newdata = newdata, interval = "prediction”)

ggplot(au, aes(wt, mpg)) +
geom_point() +
geom_line(aes(y = .fitted)) +
geom_ribbon(aes(ymin = .lower, ymax = .upper), col = NA, alpha = 0.3)

predict on new data without outcome variable. Output does not include .resid
newdata <- newdata %>%

select(-mpg)

augment(mod, newdata = newdata)

47

48

augment.ImRob

au <- augment(mod, data = mtcars)

ggplot(au, aes(.hat, .std.resid)) +
geom_vline(size = 2, colour = "white", xintercept = @) +
geom_hline(size = 2, colour = "white"”, yintercept = @) +
geom_point() +
geom_smooth(se = FALSE)

plot(mod, which = 6)

ggplot(au, aes(.hat, .cooksd)) +
geom_vline(xintercept = @, colour = NA) +
geom_abline(slope = seq(@, 3, by = 0.5), colour = "white") +
geom_smooth(se = FALSE) +
geom_point()

column-wise models

a <- matrix(rnorm(20), nrow = 10)
b <- a + rnorm(length(a))

result <- Im(b ~ a)

tidy(result)

augment. 1mRob Augment data with information from a(n) ImRob object

Description

Augment accepts a model object and a dataset and adds information about each observation in
the dataset. Most commonly, this includes predicted values in the .fitted column, residuals in
the .resid column, and standard errors for the fitted values in a .se.fit column. New columns
always begin with a . prefix to avoid overwriting columns in the original dataset.

Users may pass data to augment via either the data argument or the newdata argument. If the user
passes data to the data argument, it must be exactly the data that was used to fit the model object.
Pass datasets to newdata to augment data that was not used during model fitting. This still requires
that at least all predictor variable columns used to fit the model are present. If the original outcome
variable used to fit the model is not included in newdata, then no .resid column will be included
in the output.

Augment will often behave differently depending on whether data or newdata is given. This is be-
cause there is often information associated with training observations (such as influences or related)
measures that is not meaningfully defined for new observations.

For convenience, many augment methods provide default data arguments, so that augment (fit)
will return the augmented training data. In these cases, augment tries to reconstruct the original
data based on the model object with varying degrees of success.

The augmented dataset is always returned as a tibble::tibble with the same number of rows as the
passed dataset. This means that the passed data must be coercible to a tibble. If a predictor enters

augment.ImRob

49

the model as part of a matrix of covariates, such as when the model formula uses splines: :ns(),
stats::poly(), or survival::Surv(), it is represented as a matrix column.

We are in the process of defining behaviors for models fit with various na.action arguments, but
make no guarantees about behavior when data is missing at this time.

Usage

S3 method for class 'lmRob'

augment(x, data

Arguments

X

data

newdata

Details

= model.frame(x), newdata = NULL, ...)

A 1mRob object returned from robust: : ImRob ().

A base::data.frame or tibble: :tibble() containing the original data that was
used to produce the object x. Defaults to stats::model.frame(x) so that
augment(my_fit) returns the augmented original data. Do not pass new data
to the data argument. Augment will report information such as influence and
cooks distance for data passed to the data argument. These measures are only
defined for the original training data.

A base::data.frame() or tibble::tibble() containing all the original pre-
dictors used to create x. Defaults to NULL, indicating that nothing has been
passed to newdata. If newdata is specified, the data argument will be ignored.

Additional arguments. Not used. Needed to match generic signature only. Cau-
tionary note: Misspelled arguments will be absorbed in . . ., where they will be
ignored. If the misspelled argument has a default value, the default value will be
used. For example, if you pass conf.lvel = 0.9, all computation will proceed
using conf.level = @.95. Two exceptions here are:

e tidy() methods will warn when supplied an exponentiate argument if it
will be ignored.

e augment () methods will warn when supplied a newdata argument if it will
be ignored.

For tidiers for robust models from the MASS package see tidy.rlm().

See Also

robust: :1mRob()

Other robust tidiers: glance.glmRob(), glance.1lmRob(), tidy.glmRob(), tidy.1mRob()

Examples

load modeling library

library(robust)

50

augment.Imrob

fit model
m <- ImRob(mpg ~ wt, data = mtcars)

summarize model fit with tidiers
tidy(m)

augment (m)

glance(m)

augment. lmrob Augment data with information from a(n) Imrob object

Description

Augment accepts a model object and a dataset and adds information about each observation in
the dataset. Most commonly, this includes predicted values in the .fitted column, residuals in
the .resid column, and standard errors for the fitted values in a .se.fit column. New columns
always begin with a . prefix to avoid overwriting columns in the original dataset.

Users may pass data to augment via either the data argument or the newdata argument. If the user
passes data to the data argument, it must be exactly the data that was used to fit the model object.
Pass datasets to newdata to augment data that was not used during model fitting. This still requires
that at least all predictor variable columns used to fit the model are present. If the original outcome
variable used to fit the model is not included in newdata, then no .resid column will be included
in the output.

Augment will often behave differently depending on whether data or newdata is given. This is be-
cause there is often information associated with training observations (such as influences or related)
measures that is not meaningfully defined for new observations.

For convenience, many augment methods provide default data arguments, so that augment (fit)
will return the augmented training data. In these cases, augment tries to reconstruct the original
data based on the model object with varying degrees of success.

The augmented dataset is always returned as a tibble::tibble with the same number of rows as the
passed dataset. This means that the passed data must be coercible to a tibble. If a predictor enters
the model as part of a matrix of covariates, such as when the model formula uses splines: :ns(),
stats::poly(), or survival::Surv(), it is represented as a matrix column.

We are in the process of defining behaviors for models fit with various na.action arguments, but
make no guarantees about behavior when data is missing at this time.

Usage

S3 method for class 'lmrob'
augment(x, data = model.frame(x), newdata = NULL, se_fit = FALSE, ...)

augment.Imrob

Arguments

X

data

newdata

se_fit

Details

51

A 1mrob object returned from robustbase: : Imrob().

A base::data.frame or tibble: :tibble() containing the original data that was
used to produce the object x. Defaults to stats::model.frame(x) so that
augment(my_fit) returns the augmented original data. Do not pass new data
to the data argument. Augment will report information such as influence and
cooks distance for data passed to the data argument. These measures are only
defined for the original training data.

A base::data.frame() or tibble::tibble() containing all the original pre-
dictors used to create x. Defaults to NULL, indicating that nothing has been
passed to newdata. If newdata is specified, the data argument will be ignored.

Logical indicating whether or not a .se.fit column should be added to the
augmented output. For some models, this calculation can be somewhat time-
consuming. Defaults to FALSE.

Additional arguments. Not used. Needed to match generic signature only. Cau-
tionary note: Misspelled arguments will be absorbed in . . ., where they will be
ignored. If the misspelled argument has a default value, the default value will be
used. For example, if you pass conf.lvel = 0.9, all computation will proceed
using conf.level = @.95. Two exceptions here are:

* tidy() methods will warn when supplied an exponentiate argument if it
will be ignored.

* augment () methods will warn when supplied a newdata argument if it will
be ignored.

For tidiers for robust models from the MASS package see tidy.rlm().

Value

A tibble::tibble() with columns:

.fitted

.resid

See Also

Fitted or predicted value.

The difference between observed and fitted values.

robustbase: : 1lmrob()

Other robustbase tidiers: augment.glmrob(), glance.lmrob(), tidy.glmrob(), tidy.1lmrob()

Examples

if (requireNamespace("robustbase”, quietly = TRUE)) {
load libraries for models and data
library(robustbase)

52 augment.loess

data(coleman)
set.seed(0)

m <- Imrob(Y ~ ., data = coleman)
tidy(m)

augment (m)

glance(m)

data(carrots)

Rfit <- glmrob(cbind(success, total - success) ~ logdose + block,

family = binomial, data = carrots, method = "Mgle"”,
control = glmrobMgle.control(tcc = 1.2)

)

tidy(Rfit)

augment (Rfit)

3
augment.loess Tidy a(n) loess object
Description

Tidy summarizes information about the components of a model. A model component might be a
single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers
to be a model component varies across models but is usually self-evident. If a model has several
distinct types of components, you will need to specify which components to return.

Usage

S3 method for class 'loess'

augment(x, data = model.frame(x), newdata = NULL, se_fit = FALSE, ...)
Arguments

X A loess objects returned by stats: :loess().

data A base::data.frame or tibble: :tibble() containing the original data that was

used to produce the object x. Defaults to stats::model.frame(x) so that
augment(my_fit) returns the augmented original data. Do not pass new data
to the data argument. Augment will report information such as influence and
cooks distance for data passed to the data argument. These measures are only
defined for the original training data.

newdata A base::data.frame() or tibble: :tibble() containing all the original pre-
dictors used to create x. Defaults to NULL, indicating that nothing has been
passed to newdata. If newdata is specified, the data argument will be ignored.

augment.loess 53

se_fit Logical indicating whether or not a .se.fit column should be added to the
augmented output. For some models, this calculation can be somewhat time-
consuming. Defaults to FALSE.

Additional arguments. Not used. Needed to match generic signature only. Cau-
tionary note: Misspelled arguments will be absorbed in . . ., where they will be
ignored. If the misspelled argument has a default value, the default value will be
used. For example, if you pass conf.lvel = 0.9, all computation will proceed
using conf.level = 0.95. Two exceptions here are:

* tidy() methods will warn when supplied an exponentiate argument if it
will be ignored.

* augment () methods will warn when supplied a newdata argument if it will
be ignored.

Details

When the modeling was performed with na.action = "na.omit” (as is the typical default), rows
with NA in the initial data are omitted entirely from the augmented data frame. When the mod-
eling was performed with na.action = "na.exclude”, one should provide the original data as a
second argument, at which point the augmented data will contain those rows (typically with NAs
in place of the new columns). If the original data is not provided to augment() and na.action =
"na.exclude”, a warning is raised and the incomplete rows are dropped.

Note that 1oess objects by default will not predict on data outside of a bounding hypercube defined
by the training data unless the original 1oess object was fit with control = loess.control(surface = \"direct\")).
See stats::predict.loess() for details.

Value

A tibble::tibble() with columns:

.fitted Fitted or predicted value.
.resid The difference between observed and fitted values.
.se.fit Standard errors of fitted values.

See Also

stats::na.action

augment (), stats::loess(), stats: :predict.loess()

Examples

lo <- loess(

mpg ~ hp + wt,
mtcars,
control = loess.control(surface = "direct"”)

)

augment (lo)

54

augment.Mclust

with all columns of original data
augment(lo, mtcars)

with a new dataset
augment(lo, newdata = head(mtcars))

augment.Mclust Augment data with information from a(n) Mclust object

Description

Augment accepts a model object and a dataset and adds information about each observation in
the dataset. Most commonly, this includes predicted values in the .fitted column, residuals in
the .resid column, and standard errors for the fitted values in a .se.fit column. New columns
always begin with a . prefix to avoid overwriting columns in the original dataset.

Users may pass data to augment via either the data argument or the newdata argument. If the user
passes data to the data argument, it must be exactly the data that was used to fit the model object.
Pass datasets to newdata to augment data that was not used during model fitting. This still requires
that at least all predictor variable columns used to fit the model are present. If the original outcome
variable used to fit the model is not included in newdata, then no .resid column will be included
in the output.

Augment will often behave differently depending on whether data or newdata is given. This is be-
cause there is often information associated with training observations (such as influences or related)
measures that is not meaningfully defined for new observations.

For convenience, many augment methods provide default data arguments, so that augment (fit)
will return the augmented training data. In these cases, augment tries to reconstruct the original
data based on the model object with varying degrees of success.

The augmented dataset is always returned as a tibble::tibble with the same number of rows as the
passed dataset. This means that the passed data must be coercible to a tibble. If a predictor enters
the model as part of a matrix of covariates, such as when the model formula uses splines: :ns(),
stats::poly(), or survival: :Surv(), it is represented as a matrix column.

We are in the process of defining behaviors for models fit with various na.action arguments, but
make no guarantees about behavior when data is missing at this time.

Usage
S3 method for class 'Mclust'’
augment(x, data = NULL, ...)
Arguments

X An Mclust object return from mclust: :Mclust().

augment.Mclust 55

data A base::data.frame or tibble::tibble() containing the original data that was
used to produce the object x. Defaults to stats: :model.frame(x) so that
augment(my_fit) returns the augmented original data. Do not pass new data
to the data argument. Augment will report information such as influence and
cooks distance for data passed to the data argument. These measures are only
defined for the original training data.

Additional arguments. Not used. Needed to match generic signature only. Cau-
tionary note: Misspelled arguments will be absorbed in . . ., where they will be
ignored. If the misspelled argument has a default value, the default value will be
used. For example, if you pass conf.1lvel = 0.9, all computation will proceed
using conf.level = @.95. Two exceptions here are:

e tidy() methods will warn when supplied an exponentiate argument if it
will be ignored.

* augment () methods will warn when supplied a newdata argument if it will
be ignored.

Value
A tibble::tibble() with columns:

.class Predicted class.

.uncertainty The uncertainty associated with the classification. Equal to one minus the model
class probability.

See Also

augment (), mclust: :Mclust()
Other mclust tidiers: tidy.Mclust()

Examples

load library for models and data
library(mclust)

load data manipulation libraries
library(dplyr)
library(tibble)
library(purrr)
library(tidyr)

set.seed(27)

centers <- tibble(
cluster = factor(1:3),
number points in each cluster
num_points = c(100, 150, 50),
x1 coordinate of cluster center
x1 = ¢c(5, 0, -3),

56

augment.mfx

x2 coordinate of cluster center
x2 =c(-1, 1, -2)

points <- centers %>%
mutate(
x1 = map2(num_points, x1, rnorm),
x2 = map2(num_points, x2, rnorm)
) %%
select(-num_points, -cluster) %>%
unnest(c(x1, x2))

fit model
m <- Mclust(points)

summarize model fit with tidiers
tidy(m)

augment(m, points)

glance(m)

augment.mfx Augment data with information from a(n) mfx object

Description

Augment accepts a model object and a dataset and adds information about each observation in
the dataset. Most commonly, this includes predicted values in the .fitted column, residuals in
the .resid column, and standard errors for the fitted values in a .se.fit column. New columns
always begin with a . prefix to avoid overwriting columns in the original dataset.

Users may pass data to augment via either the data argument or the newdata argument. If the user
passes data to the data argument, it must be exactly the data that was used to fit the model object.
Pass datasets to newdata to augment data that was not used during model fitting. This still requires
that at least all predictor variable columns used to fit the model are present. If the original outcome
variable used to fit the model is not included in newdata, then no .resid column will be included
in the output.

Augment will often behave differently depending on whether data or newdata is given. This is be-
cause there is often information associated with training observations (such as influences or related)
measures that is not meaningfully defined for new observations.

For convenience, many augment methods provide default data arguments, so that augment (fit)
will return the augmented training data. In these cases, augment tries to reconstruct the original
data based on the model object with varying degrees of success.

The augmented dataset is always returned as a tibble::tibble with the same number of rows as the
passed dataset. This means that the passed data must be coercible to a tibble. If a predictor enters
the model as part of a matrix of covariates, such as when the model formula uses splines: :ns(),
stats::poly(), or survival::Surv(), it is represented as a matrix column.

We are in the process of defining behaviors for models fit with various na.action arguments, but
make no guarantees about behavior when data is missing at this time.

augment.mfx

Usage

S3 method for class 'mfx'

augment (
X,
data = model.frame(x$fit),
newdata = NULL,
type.predict = c("link"”, "response”, "terms"),
type.residuals = c("deviance", "pearson”),
se_fit = FALSE,

)

S3 method for class 'logitmfx'

augment (
X,
data = model.frame(x$fit),
newdata = NULL,
type.predict = c("link"”, "response”, "terms"),
type.residuals = c("deviance", "pearson”),
se_fit = FALSE,

)

S3 method for class 'negbinmfx'

augment(
X,
data = model.frame(x$fit),
newdata = NULL,
type.predict = c("link"”, "response"”, "terms"),
type.residuals = c("deviance", "pearson”),
se_fit = FALSE,

)

S3 method for class 'poissonmfx'

augment (
X,
data = model.frame(x$fit),
newdata = NULL,
type.predict = c("link"”, "response”, "terms"),
type.residuals = c("deviance”, "pearson"),
se_fit = FALSE,

)

S3 method for class 'probitmfx'
augment (
X,

58

augment.mfx

data = model.frame(x$fit),

newdata = NULL,

type.predict = c("link"”, "response", "terms"),
type.residuals = c("deviance”, "pearson”),
se_fit = FALSE,

Arguments

X

data

newdata

type.predict

type.residuals

se_fit

Details

A logitmfx, negbinmfx, poissonmfx, or probitmfx object. (Note that betamfx
objects receive their own set of tidiers.)

A base::data.frame or tibble: :tibble() containing the original data that was
used to produce the object x. Defaults to stats::model.frame(x) so that
augment(my_fit) returns the augmented original data. Do not pass new data
to the data argument. Augment will report information such as influence and
cooks distance for data passed to the data argument. These measures are only
defined for the original training data.

A base::data.frame() or tibble::tibble() containing all the original pre-
dictors used to create x. Defaults to NULL, indicating that nothing has been
passed to newdata. If newdata is specified, the data argument will be ignored.

Passed to stats: :predict.glm() type argument. Defaults to "1ink".

Passed to stats::residuals.glm() and to stats::rstandard.glm() type
arguments. Defaults to "deviance”.

Logical indicating whether or not a .se.fit column should be added to the
augmented output. For some models, this calculation can be somewhat time-
consuming. Defaults to FALSE.

Additional arguments. Not used. Needed to match generic signature only. Cau-
tionary note: Misspelled arguments will be absorbed in . . ., where they will be
ignored. If the misspelled argument has a default value, the default value will be
used. For example, if you pass conf.lvel = .9, all computation will proceed
using conf.level = @.95. Two exceptions here are:

e tidy() methods will warn when supplied an exponentiate argument if it
will be ignored.

* augment () methods will warn when supplied a newdata argument if it will
be ignored.

This generic augment method wraps augment.glm() for applicable objects from the mfx package.

Value

A tibble::tibble() with columns:

.cooksd
.fitted

Cooks distance.

Fitted or predicted value.

augment.mjoint 59

.hat Diagonal of the hat matrix.
.resid The difference between observed and fitted values.
.se.fit Standard errors of fitted values.
.sigma Estimated residual standard deviation when corresponding observation is dropped
from model.
.std.resid Standardised residuals.
See Also

augment.glm(), mfx::logitmfx (), mfx::negbinmfx (), mfx: :poissonmfx (), mfx: :probitmfx()

Other mfx tidiers: augment.betamfx(), glance.betamfx(), glance.mfx(), tidy.betamfx(),
tidy.mfx()

Examples

load libraries for models and data
library(mfx)

get the marginal effects from a logit regression
mod_logmfx <- logitmfx(am ~ cyl + hp + wt, atmean = TRUE, data = mtcars)

tidy(mod_logmfx, conf.int = TRUE)

compare with the naive model coefficients of the same logit call
tidy(
glm(am ~ cyl + hp + wt, family = binomial, data = mtcars),
conf.int = TRUE
)

augment (mod_logmfx)
glance(mod_logmfx)

another example, this time using probit regression
mod_probmfx <- probitmfx(am ~ cyl + hp + wt, atmean = TRUE, data = mtcars)

tidy(mod_probmfx, conf.int = TRUE)
augment (mod_probmfx)
glance(mod_probmfx)

augment.mjoint Augment data with information from a(n) mjoint object

60 augment.mjoint

Description

Augment accepts a model object and a dataset and adds information about each observation in
the dataset. Most commonly, this includes predicted values in the .fitted column, residuals in
the .resid column, and standard errors for the fitted values in a .se.fit column. New columns
always begin with a . prefix to avoid overwriting columns in the original dataset.

Users may pass data to augment via either the data argument or the newdata argument. If the user
passes data to the data argument, it must be exactly the data that was used to fit the model object.
Pass datasets to newdata to augment data that was not used during model fitting. This still requires
that at least all predictor variable columns used to fit the model are present. If the original outcome
variable used to fit the model is not included in newdata, then no .resid column will be included
in the output.

Augment will often behave differently depending on whether data or newdata is given. This is be-
cause there is often information associated with training observations (such as influences or related)
measures that is not meaningfully defined for new observations.

For convenience, many augment methods provide default data arguments, so that augment (fit)
will return the augmented training data. In these cases, augment tries to reconstruct the original
data based on the model object with varying degrees of success.

The augmented dataset is always returned as a tibble::tibble with the same number of rows as the
passed dataset. This means that the passed data must be coercible to a tibble. If a predictor enters
the model as part of a matrix of covariates, such as when the model formula uses splines: :ns(),
stats::poly(), or survival: :Surv(), it is represented as a matrix column.

We are in the process of defining behaviors for models fit with various na.action arguments, but
make no guarantees about behavior when data is missing at this time.

Usage
S3 method for class 'mjoint'
augment(x, data = x$data, ...)
Arguments
X An mjoint object returned from joineRML: :mjoint().
data A base::data.frame or tibble: :tibble() containing the original data that was

used to produce the object x. Defaults to stats::model.frame(x) so that
augment(my_fit) returns the augmented original data. Do not pass new data
to the data argument. Augment will report information such as influence and
cooks distance for data passed to the data argument. These measures are only
defined for the original training data.

Additional arguments. Not used. Needed to match generic signature only. Cau-
tionary note: Misspelled arguments will be absorbed in . . ., where they will be
ignored. If the misspelled argument has a default value, the default value will be
used. For example, if you pass conf.lvel = 0.9, all computation will proceed
using conf.level = @.95. Two exceptions here are:
e tidy() methods will warn when supplied an exponentiate argument if it
will be ignored.
* augment () methods will warn when supplied a newdata argument if it will
be ignored.

augment.mjoint 61

Details

See joineRML: :fitted.mjoint() and joineRML: :residuals.mjoint() for more information
on the difference between population-level and individual-level fitted values and residuals.

If fitting a joint model with a single longitudinal process, make sure you are using a named 1ist to
define the formula for the fixed and random effects of the longitudinal submodel.

Value

A tibble::tibble() with one row for each original observation with addition columns:

.fitted_j_o population-level fitted values for the j-th longitudinal process

.fitted_j_1 individuals-level fitted values for the j-th longitudinal process

.resid_j_o population-level residuals for the j-th longitudinal process

.resid_j_1 individual-level residuals for the j-th longitudinal process
Examples

broom only skips running these examples because the example models take a
while to generatethey should run just fine, though!
Not run:

load libraries for models and data
library(joineRML)

fit a joint model with bivariate longitudinal outcomes
data(heart.valve)

hvd <- heart.valve[!is.na(heart.valve$log.grad) &
lis.na(heart.valve$log.lvmi) &
heart.valve$num <= 50,]

fit <- mjoint(
formLongFixed = list(

"grad” = log.grad ~ time + sex + hs,
"lvmi” = log.lvmi ~ time + sex
),
formLongRandom = list(
"grad”" =~ 1 | num,
"lvmi" = ~ time | num
),
formSurv = Surv(fuyrs, status) ~ age,
data = hvd,
inits = list("gamma” = c(0.11, 1.51, 0.80)),
timeVar = "time”

)

extract the survival fixed effects

62

augment.mlogit

tidy(fit)

extract the longitudinal fixed effects
tidy(fit, component = "longitudinal”)

extract the survival fixed effects with confidence intervals
tidy(fit, ci = TRUE)

extract the survival fixed effects with confidence intervals based
on bootstrapped standard errors

bSE <- bootSE(fit, nboot = 5, safe.boot = TRUE)

tidy(fit, boot_se = bSE, ci = TRUE)

augment original data with fitted longitudinal values and residuals
hvd2 <- augment(fit)

extract model statistics
glance(fit)

End(Not run)

augment.mlogit Augment data with information from a(n) mlogit object

Description

Augment accepts a model object and a dataset and adds information about each observation in
the dataset. Most commonly, this includes predicted values in the .fitted column, residuals in
the .resid column, and standard errors for the fitted values in a .se.fit column. New columns
always begin with a . prefix to avoid overwriting columns in the original dataset.

Users may pass data to augment via either the data argument or the newdata argument. If the user
passes data to the data argument, it must be exactly the data that was used to fit the model object.
Pass datasets to newdata to augment data that was not used during model fitting. This still requires
that at least all predictor variable columns used to fit the model are present. If the original outcome
variable used to fit the model is not included in newdata, then no .resid column will be included
in the output.

Augment will often behave differently depending on whether data or newdata is given. This is be-
cause there is often information associated with training observations (such as influences or related)
measures that is not meaningfully defined for new observations.

For convenience, many augment methods provide default data arguments, so that augment (fit)
will return the augmented training data. In these cases, augment tries to reconstruct the original
data based on the model object with varying degrees of success.

The augmented dataset is always returned as a tibble::tibble with the same number of rows as the
passed dataset. This means that the passed data must be coercible to a tibble. If a predictor enters
the model as part of a matrix of covariates, such as when the model formula uses splines: :ns(),
stats::poly(), or survival::Surv(), it is represented as a matrix column.

augment.mlogit 63

We are in the process of defining behaviors for models fit with various na.action arguments, but
make no guarantees about behavior when data is missing at this time.

Usage
S3 method for class 'mlogit'
augment(x, data = x$model, ...)
Arguments
X an object returned from mlogit: :mlogit().
data Not currently used

Additional arguments. Not used. Needed to match generic signature only. Cau-
tionary note: Misspelled arguments will be absorbed in . . ., where they will be
ignored. If the misspelled argument has a default value, the default value will be
used. For example, if you pass conf.lvel = 0.9, all computation will proceed
using conf.level = @.95. Two exceptions here are:

e tidy() methods will warn when supplied an exponentiate argument if it
will be ignored.

* augment () methods will warn when supplied a newdata argument if it will

be ignored.
Details
At the moment this only works on the estimation dataset. Need to set it up to predict on another
dataset.
Value

A tibble::tibble() with columns:

.fitted Fitted or predicted value.

.probability Class probability of modal class.

.resid The difference between observed and fitted values.
See Also

augment ()

Other mlogit tidiers: glance.mlogit(), tidy.mlogit()

Examples

load libraries for models and data
library(mlogit)

data("Fishing"”, package = "mlogit")
Fish <- dfidx(Fishing, varying = 2:9, shape = "wide"”, choice = "mode")

64

fit model
m <- mlogit(mode

augment.nlrq

~ price + catch | income, data = Fish)

summarize model fit with tidiers

tidy(m)
augment (m)
glance(m)

augment.nlrq

Tidy a(n) nlrq object

Description

Tidy summarizes information about the components of a model. A model component might be a
single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers
to be a model component varies across models but is usually self-evident. If a model has several
distinct types of components, you will need to specify which components to return.

Usage

S3 method for class 'nlrq'

augment(x, data

Arguments

X

data

newdata

= NULL, newdata = NULL, ...)

A nlrq object returned from quantreg: :nlrq().

A base::data.frame or tibble: :tibble() containing the original data that was
used to produce the object x. Defaults to stats::model.frame(x) so that
augment(my_fit) returns the augmented original data. Do not pass new data
to the data argument. Augment will report information such as influence and
cooks distance for data passed to the data argument. These measures are only
defined for the original training data.

A base::data.frame() or tibble: :tibble() containing all the original pre-
dictors used to create x. Defaults to NULL, indicating that nothing has been
passed to newdata. If newdata is specified, the data argument will be ignored.

Additional arguments. Not used. Needed to match generic signature only. Cau-
tionary note: Misspelled arguments will be absorbed in . . ., where they will be
ignored. If the misspelled argument has a default value, the default value will be
used. For example, if you pass conf.lvel = 0.9, all computation will proceed
using conf.level = @.95. Two exceptions here are:

* tidy() methods will warn when supplied an exponentiate argument if it
will be ignored.

* augment () methods will warn when supplied a newdata argument if it will
be ignored.

augment.nls 65

See Also

augment (), quantreg: :nlrq()

Other quantreg tidiers: augment.rqs(), augment.rq(), glance.nlrq(), glance.rq(), tidy.nlrq(),
tidy.ras(), tidy.rqQ)

Examples

fit model
n <- nls(mpg ~ k * e*wt, data = mtcars, start = list(k =1, e = 2))

summarize model fit with tidiers + visualization
tidy(n)

augment(n)

glance(n)

library(ggplot2)
ggplot(augment(n), aes(wt, mpg)) +
geom_point() +

geom_line(aes(y = .fitted))

newdata <- head(mtcars)
newdata$wt <- newdata$wt + 1

augment(n, newdata = newdata)

augment.nls Augment data with information from a(n) nls object

Description

Augment accepts a model object and a dataset and adds information about each observation in
the dataset. Most commonly, this includes predicted values in the .fitted column, residuals in
the .resid column, and standard errors for the fitted values in a .se.fit column. New columns
always begin with a . prefix to avoid overwriting columns in the original dataset.

Users may pass data to augment via either the data argument or the newdata argument. If the user
passes data to the data argument, it must be exactly the data that was used to fit the model object.
Pass datasets to newdata to augment data that was not used during model fitting. This still requires
that at least all predictor variable columns used to fit the model are present. If the original outcome
variable used to fit the model is not included in newdata, then no .resid column will be included
in the output.

Augment will often behave differently depending on whether data or newdata is given. This is be-
cause there is often information associated with training observations (such as influences or related)
measures that is not meaningfully defined for new observations.

66 augment.nls

For convenience, many augment methods provide default data arguments, so that augment (fit)
will return the augmented training data. In these cases, augment tries to reconstruct the original
data based on the model object with varying degrees of success.

The augmented dataset is always returned as a tibble::tibble with the same number of rows as the
passed dataset. This means that the passed data must be coercible to a tibble. If a predictor enters
the model as part of a matrix of covariates, such as when the model formula uses splines: :ns(),
stats::poly(), or survival::Surv(), it is represented as a matrix column.

We are in the process of defining behaviors for models fit with various na.action arguments, but
make no guarantees about behavior when data is missing at this time.

Usage
S3 method for class 'nls'
augment(x, data = NULL, newdata = NULL, ...)
Arguments
X An nls object returned from stats: :nls().
data A base::data.frame or tibble: :tibble() containing the original data that was

used to produce the object x. Defaults to stats::model.frame(x) so that
augment(my_fit) returns the augmented original data. Do not pass new data
to the data argument. Augment will report information such as influence and
cooks distance for data passed to the data argument. These measures are only
defined for the original training data.

newdata A base::data.frame() or tibble::tibble() containing all the original pre-
dictors used to create x. Defaults to NULL, indicating that nothing has been
passed to newdata. If newdata is specified, the data argument will be ignored.

Additional arguments. Not used. Needed to match generic signature only. Cau-
tionary note: Misspelled arguments will be absorbed in . . ., where they will be
ignored. If the misspelled argument has a default value, the default value will be
used. For example, if you pass conf.1lvel = 0.9, all computation will proceed
using conf.level = 0.95. Two exceptions here are:

* tidy() methods will warn when supplied an exponentiate argument if it
will be ignored.

* augment () methods will warn when supplied a newdata argument if it will
be ignored.

Details

augment.nls does not currently support confidence intervals due to a lack of support in stats::predict.nls().

Value

A tibble::tibble() with columns:

.fitted Fitted or predicted value.

.resid The difference between observed and fitted values.

augment.pam 67

See Also

tidy, stats::nls(), stats::predict.nls()
Other nls tidiers: glance.nls(), tidy.nls()

Examples

fit model
n <- nls(mpg ~ k * e*wt, data = mtcars, start = list(k = 1, e = 2))

summarize model fit with tidiers + visualization
tidy(n)

augment(n)

glance(n)

library(ggplot2)
ggplot(augment(n), aes(wt, mpg)) +
geom_point() +

geom_line(aes(y = .fitted))

newdata <- head(mtcars)
newdata$wt <- newdata$wt + 1

augment(n, newdata = newdata)

augment . pam Augment data with information from a(n) pam object

Description

Augment accepts a model object and a dataset and adds information about each observation in
the dataset. Most commonly, this includes predicted values in the .fitted column, residuals in
the .resid column, and standard errors for the fitted values in a .se.fit column. New columns
always begin with a . prefix to avoid overwriting columns in the original dataset.

Users may pass data to augment via either the data argument or the newdata argument. If the user
passes data to the data argument, it must be exactly the data that was used to fit the model object.
Pass datasets to newdata to augment data that was not used during model fitting. This still requires
that at least all predictor variable columns used to fit the model are present. If the original outcome
variable used to fit the model is not included in newdata, then no .resid column will be included
in the output.

Augment will often behave differently depending on whether data or newdata is given. This is be-
cause there is often information associated with training observations (such as influences or related)
measures that is not meaningfully defined for new observations.

68

augment.pam

For convenience, many augment methods provide default data arguments, so that augment (fit)
will return the augmented training data. In these cases, augment tries to reconstruct the original
data based on the model object with varying degrees of success.

The augmented dataset is always returned as a tibble::tibble with the same number of rows as the
passed dataset. This means that the passed data must be coercible to a tibble. If a predictor enters
the model as part of a matrix of covariates, such as when the model formula uses splines: :ns(),
stats::poly(), or survival::Surv(), it is represented as a matrix column.

We are in the process of defining behaviors for models fit with various na.action arguments, but
make no guarantees about behavior when data is missing at this time.

Usage

S3 method for class 'pam'

augment(x, data

Arguments

X

data

Value

= NULL, ...)

An pam object returned from cluster: :pam()

A base::data.frame or tibble: :tibble() containing the original data that was
used to produce the object x. Defaults to stats::model.frame(x) so that
augment(my_fit) returns the augmented original data. Do not pass new data
to the data argument. Augment will report information such as influence and
cooks distance for data passed to the data argument. These measures are only
defined for the original training data.

Additional arguments. Not used. Needed to match generic signature only. Cau-
tionary note: Misspelled arguments will be absorbed in . . ., where they will be
ignored. If the misspelled argument has a default value, the default value will be
used. For example, if you pass conf.lvel = 0.9, all computation will proceed
using conf.level = @.95. Two exceptions here are:

e tidy() methods will warn when supplied an exponentiate argument if it
will be ignored.

* augment () methods will warn when supplied a newdata argument if it will
be ignored.

A tibble::tibble() with columns:

.cluster
.fitted

.resid

See Also

Cluster assignment.
Fitted or predicted value.

The difference between observed and fitted values.

augment (), cluster: :pam()

Other pam tidiers: glance.pam(), tidy.pam()

augment.plm 69

Examples

load libraries for models and data
library(dplyr)

library(ggplot2)

library(cluster)

library(modeldata)

data(hpc_data)

x <- hpc_data[, 2:5]
p <- pam(x, k = 4)

summarize model fit with tidiers + visualization

tidy(p)

glance(p)
augment(p, x)

augment(p, x) %>%
ggplot(aes(compounds, input_fields)) +
geom_point(aes(color = .cluster)) +
geom_text(aes(label = cluster), data = tidy(p), size = 10)

augment.plm Augment data with information from a(n) plm object

Description

Augment accepts a model object and a dataset and adds information about each observation in
the dataset. Most commonly, this includes predicted values in the .fitted column, residuals in
the .resid column, and standard errors for the fitted values in a .se.fit column. New columns
always begin with a . prefix to avoid overwriting columns in the original dataset.

Users may pass data to augment via either the data argument or the newdata argument. If the user
passes data to the data argument, it must be exactly the data that was used to fit the model object.
Pass datasets to newdata to augment data that was not used during model fitting. This still requires
that at least all predictor variable columns used to fit the model are present. If the original outcome
variable used to fit the model is not included in newdata, then no .resid column will be included
in the output.

Augment will often behave differently depending on whether data or newdata is given. This is be-
cause there is often information associated with training observations (such as influences or related)
measures that is not meaningfully defined for new observations.

For convenience, many augment methods provide default data arguments, so that augment (fit)
will return the augmented training data. In these cases, augment tries to reconstruct the original
data based on the model object with varying degrees of success.

The augmented dataset is always returned as a tibble::tibble with the same number of rows as the
passed dataset. This means that the passed data must be coercible to a tibble. If a predictor enters

70

augment.plm

the model as part of a matrix of covariates, such as when the model formula uses splines: :ns(),
stats::poly(), or survival::Surv(), it is represented as a matrix column.

We are in the process of defining behaviors for models fit with various na.action arguments, but
make no guarantees about behavior when data is missing at this time.

Usage

S3 method for class 'plm'

augment(x, data

Arguments

X

data

Value

= model.frame(x), ...)

A plm objected returned by plm: :plm().

A base::data.frame or tibble: :tibble() containing the original data that was
used to produce the object x. Defaults to stats::model.frame(x) so that
augment(my_fit) returns the augmented original data. Do not pass new data
to the data argument. Augment will report information such as influence and
cooks distance for data passed to the data argument. These measures are only
defined for the original training data.

Additional arguments. Not used. Needed to match generic signature only. Cau-
tionary note: Misspelled arguments will be absorbed in . . ., where they will be
ignored. If the misspelled argument has a default value, the default value will be
used. For example, if you pass conf.lvel = 0.9, all computation will proceed
using conf.level = @.95. Two exceptions here are:

* tidy() methods will warn when supplied an exponentiate argument if it
will be ignored.

* augment () methods will warn when supplied a newdata argument if it will
be ignored.

A tibble::tibble() with columns:

.fitted

.resid

See Also

Fitted or predicted value.

The difference between observed and fitted values.

augment (), plm: :plm()

Other plm tidiers: glance.plm(), tidy.plm()

Examples

load libraries for models and data

library(plm)

augment.poLCA 71

load data
data("Produc”, package = "plm")

fit model

zz <- plm(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,
data = Produc, index = c("state", "year")

)

summarize model fit with tidiers

summary (zz)

tidy(zz)

tidy(zz, conf.int = TRUE)
tidy(zz, conf.int = TRUE, conf.level = 0.9)

augment(zz)
glance(zz)

augment.poLCA Augment data with information from a(n) poLCA object

Description

Augment accepts a model object and a dataset and adds information about each observation in
the dataset. Most commonly, this includes predicted values in the .fitted column, residuals in
the .resid column, and standard errors for the fitted values in a .se.fit column. New columns
always begin with a . prefix to avoid overwriting columns in the original dataset.

Users may pass data to augment via either the data argument or the newdata argument. If the user
passes data to the data argument, it must be exactly the data that was used to fit the model object.
Pass datasets to newdata to augment data that was not used during model fitting. This still requires
that at least all predictor variable columns used to fit the model are present. If the original outcome
variable used to fit the model is not included in newdata, then no .resid column will be included
in the output.

Augment will often behave differently depending on whether data or newdata is given. This is be-
cause there is often information associated with training observations (such as influences or related)
measures that is not meaningfully defined for new observations.

For convenience, many augment methods provide default data arguments, so that augment (fit)
will return the augmented training data. In these cases, augment tries to reconstruct the original
data based on the model object with varying degrees of success.

The augmented dataset is always returned as a tibble::tibble with the same number of rows as the
passed dataset. This means that the passed data must be coercible to a tibble. If a predictor enters
the model as part of a matrix of covariates, such as when the model formula uses splines: :ns(),
stats::poly(), or survival: :Surv(), it is represented as a matrix column.

We are in the process of defining behaviors for models fit with various na.action arguments, but
make no guarantees about behavior when data is missing at this time.

72

Usage

augment.poLCA

S3 method for class 'poLCA'
augment(x, data = NULL, ...)

Arguments

X

data

Details

A poLCA object returned from poLCA: : poLCA().

A base::data.frame or tibble: :tibble() containing the original data that was
used to produce the object x. Defaults to stats::model.frame(x) so that
augment(my_fit) returns the augmented original data. Do not pass new data
to the data argument. Augment will report information such as influence and
cooks distance for data passed to the data argument. These measures are only
defined for the original training data.

Additional arguments. Not used. Needed to match generic signature only. Cau-
tionary note: Misspelled arguments will be absorbed in . . ., where they will be
ignored. If the misspelled argument has a default value, the default value will be
used. For example, if you pass conf.1lvel = 0.9, all computation will proceed
using conf.level = @.95. Two exceptions here are:

* tidy() methods will warn when supplied an exponentiate argument if it
will be ignored.

* augment () methods will warn when supplied a newdata argument if it will
be ignored.

If the data argument is given, those columns are included in the output (only rows for which
predictions could be made). Otherwise, the y element of the poLCA object, which contains the
manifest variables used to fit the model, are used, along with any covariates, if present, in x.

Note that while the probability of all the classes (not just the predicted modal class) can be found in
the posterior element, these are not included in the augmented output.

Value

A tibble::tibble() with columns:

.class

.probability

See Also

Predicted class.

Class probability of modal class.

augment (), poLCA: :poLCA()

Other poLCA tidiers: glance.poLCA(), tidy.poLCA()

augment.poLCA

Examples

load libraries for models and data
library(poLCA)
library(dplyr)

generate data
data(values)

f <- cbind(A, B, C, D) ~ 1

fit model
M1 <- poLCA(f, values, nclass = 2, verbose = FALSE)

M1

summarize model fit with tidiers + visualization
tidy(M1)

augment (M1)

glance(M1)

library(ggplot2)
ggplot(tidy(M1), aes(factor(class), estimate, fill = factor(outcome))) +
geom_bar(stat = "identity”, width = 1) +

facet_wrap(~variable)

three-class model with a single covariate.
data(election)

f2a <- cbind(
MORALG, CARESG, KNOWG, LEADG, DISHONG, INTELG,
MORALB, CARESB, KNOWB, LEADB, DISHONB, INTELB
) ~ PARTY

nes2a <- poLCA(f2a, election, nclass = 3, nrep = 5, verbose = FALSE)

td <- tidy(nes2a)
td

ggplot(td, aes(outcome, estimate, color = factor(class), group = class)) +
geom_line() +
facet_wrap(~variable, nrow = 2) +
theme(axis.text.x = element_text(angle = 90, hjust = 1))

au <- augment(nes2a)

au

count(au, .class)

73

74

augment.polr

if the original data is provided, it leads to NAs in new columns
for rows that weren't predicted
au2 <- augment(nes2a, data = election)

au2

dim(au2)

augment.polr Augment data with information from a(n) polr object

Description

Augment accepts a model object and a dataset and adds information about each observation in
the dataset. Most commonly, this includes predicted values in the .fitted column, residuals in
the .resid column, and standard errors for the fitted values in a .se.fit column. New columns
always begin with a . prefix to avoid overwriting columns in the original dataset.

Users may pass data to augment via either the data argument or the newdata argument. If the user
passes data to the data argument, it must be exactly the data that was used to fit the model object.
Pass datasets to newdata to augment data that was not used during model fitting. This still requires
that at least all predictor variable columns used to fit the model are present. If the original outcome
variable used to fit the model is not included in newdata, then no .resid column will be included
in the output.

Augment will often behave differently depending on whether data or newdata is given. This is be-
cause there is often information associated with training observations (such as influences or related)
measures that is not meaningfully defined for new observations.

For convenience, many augment methods provide default data arguments, so that augment (fit)
will return the augmented training data. In these cases, augment tries to reconstruct the original
data based on the model object with varying degrees of success.

The augmented dataset is always returned as a tibble::tibble with the same number of rows as the
passed dataset. This means that the passed data must be coercible to a tibble. If a predictor enters
the model as part of a matrix of covariates, such as when the model formula uses splines::ns(),
stats::poly(), or survival::Surv(), it is represented as a matrix column.

We are in the process of defining behaviors for models fit with various na.action arguments, but
make no guarantees about behavior when data is missing at this time.

Usage

S3 method for class 'polr'
augment (
X,
data = model.frame(x),
newdata = NULL,
type.predict = c("class"),

augment.polr 75

Arguments

X A polr object returned from MASS: :polr ().

data A base::data.frame or tibble::tibble() containing the original data that was
used to produce the object x. Defaults to stats::model.frame(x) so that
augment(my_fit) returns the augmented original data. Do not pass new data
to the data argument. Augment will report information such as influence and
cooks distance for data passed to the data argument. These measures are only
defined for the original training data.

newdata A base::data.frame() or tibble::tibble() containing all the original pre-

dictors used to create x. Defaults to NULL, indicating that nothing has been
passed to newdata. If newdata is specified, the data argument will be ignored.

type.predict Which type of prediction to compute, passed to MASS: : :predict.polr(). Only
supports "class” at the moment.

Additional arguments. Not used. Needed to match generic signature only. Cau-
tionary note: Misspelled arguments will be absorbed in . . ., where they will be
ignored. If the misspelled argument has a default value, the default value will be
used. For example, if you pass conf.lvel = 0.9, all computation will proceed
using conf.level = 0.95. Two exceptions here are:

e tidy() methods will warn when supplied an exponentiate argument if it
will be ignored.

* augment () methods will warn when supplied a newdata argument if it will
be ignored.

See Also
tidy (), MASS: :polr()

Other ordinal tidiers: augment.clm(), glance.clmm(), glance.clm(), glance.polr(), glance.svyolr(),
tidy.clmm(), tidy.clm(), tidy.polr(), tidy.svyolr()

Examples

load libraries for models and data
library(MASS)

fit model
fit <- polr(Sat ~ Infl + Type + Cont, weights = Freq, data = housing)

summarize model fit with tidiers
tidy(fit, exponentiate = TRUE, conf.int = TRUE)

glance(fit)
augment(fit, type.predict = "class")

fit2 <- polr(factor(gear) ~ am + mpg + gsec, data = mtcars)

tidy(fit, p.values = TRUE)

76

augment.prcomp

augment.prcomp Augment data with information from a(n) prcomp object

Description

Augment accepts a model object and a dataset and adds information about each observation in
the dataset. Most commonly, this includes predicted values in the .fitted column, residuals in
the .resid column, and standard errors for the fitted values in a .se.fit column. New columns
always begin with a . prefix to avoid overwriting columns in the original dataset.

Users may pass data to augment via either the data argument or the newdata argument. If the user
passes data to the data argument, it must be exactly the data that was used to fit the model object.
Pass datasets to newdata to augment data that was not used during model fitting. This still requires
that at least all predictor variable columns used to fit the model are present. If the original outcome
variable used to fit the model is not included in newdata, then no .resid column will be included
in the output.

Augment will often behave differently depending on whether data or newdata is given. This is be-
cause there is often information associated with training observations (such as influences or related)
measures that is not meaningfully defined for new observations.

For convenience, many augment methods provide default data arguments, so that augment (fit)
will return the augmented training data. In these cases, augment tries to reconstruct the original
data based on the model object with varying degrees of success.

The augmented dataset is always returned as a tibble::tibble with the same number of rows as the
passed dataset. This means that the passed data must be coercible to a tibble. If a predictor enters
the model as part of a matrix of covariates, such as when the model formula uses splines: :ns(),
stats::poly(), or survival::Surv(), it is represented as a matrix column.

We are in the process of defining behaviors for models fit with various na.action arguments, but
make no guarantees about behavior when data is missing at this time.

Usage
S3 method for class 'prcomp'
augment(x, data = NULL, newdata, ...)
Arguments
X A prcomp object returned by stats: :prcomp().
data A base::data.frame or tibble: :tibble() containing the original data that was

used to produce the object x. Defaults to stats::model.frame(x) so that
augment(my_fit) returns the augmented original data. Do not pass new data
to the data argument. Augment will report information such as influence and
cooks distance for data passed to the data argument. These measures are only
defined for the original training data.

augment.rlm 77

newdata A base::data.frame() or tibble::tibble() containing all the original pre-
dictors used to create x. Defaults to NULL, indicating that nothing has been
passed to newdata. If newdata is specified, the data argument will be ignored.

Additional arguments. Not used. Needed to match generic signature only. Cau-
tionary note: Misspelled arguments will be absorbed in . . ., where they will be
ignored. If the misspelled argument has a default value, the default value will be
used. For example, if you pass conf.1lvel = 0.9, all computation will proceed
using conf.level = 0.95. Two exceptions here are:

e tidy() methods will warn when supplied an exponentiate argument if it
will be ignored.

* augment () methods will warn when supplied a newdata argument if it will
be ignored.
Value
A tibble::tibble containing the original data along with additional columns containing each obser-
vation’s projection into PCA space.
See Also

stats: :prcomp(), svd_tidiers

Other svd tidiers: tidy.prcomp(), tidy_irlba(), tidy_svd()

augment.rlm Augment data with information from a(n) rlm object

Description

Augment accepts a model object and a dataset and adds information about each observation in
the dataset. Most commonly, this includes predicted values in the .fitted column, residuals in
the .resid column, and standard errors for the fitted values in a .se.fit column. New columns
always begin with a . prefix to avoid overwriting columns in the original dataset.

Users may pass data to augment via either the data argument or the newdata argument. If the user
passes data to the data argument, it must be exactly the data that was used to fit the model object.
Pass datasets to newdata to augment data that was not used during model fitting. This still requires
that at least all predictor variable columns used to fit the model are present. If the original outcome
variable used to fit the model is not included in newdata, then no .resid column will be included
in the output.

Augment will often behave differently depending on whether data or newdata is given. This is be-
cause there is often information associated with training observations (such as influences or related)
measures that is not meaningfully defined for new observations.

For convenience, many augment methods provide default data arguments, so that augment (fit)
will return the augmented training data. In these cases, augment tries to reconstruct the original
data based on the model object with varying degrees of success.

78

augment.rim

The augmented dataset is always returned as a tibble::tibble with the same number of rows as the
passed dataset. This means that the passed data must be coercible to a tibble. If a predictor enters
the model as part of a matrix of covariates, such as when the model formula uses splines: :ns(),
stats::poly(), or survival: :Surv(), it is represented as a matrix column.

We are in the process of defining behaviors for models fit with various na.action arguments, but
make no guarantees about behavior when data is missing at this time.

Usage

S3 method for class 'rlm'

augment(x, data

Arguments

X
data

newdata

se_fit

Value
A tibble

.fitted
.hat
.resid
.se.fit

.sigma

= model.frame(x), newdata = NULL, se_fit = FALSE, ...)

An rlm object returned by MASS: : r1m().

A base::data.frame or tibble: :tibble() containing the original data that was
used to produce the object x. Defaults to stats::model.frame(x) so that
augment(my_fit) returns the augmented original data. Do not pass new data
to the data argument. Augment will report information such as influence and
cooks distance for data passed to the data argument. These measures are only
defined for the original training data.

A base::data.frame() or tibble: :tibble() containing all the original pre-
dictors used to create x. Defaults to NULL, indicating that nothing has been
passed to newdata. If newdata is specified, the data argument will be ignored.

Logical indicating whether or not a .se.fit column should be added to the
augmented output. For some models, this calculation can be somewhat time-
consuming. Defaults to FALSE.

Additional arguments. Not used. Needed to match generic signature only. Cau-
tionary note: Misspelled arguments will be absorbed in . . ., where they will be
ignored. If the misspelled argument has a default value, the default value will be
used. For example, if you pass conf.lvel = 0.9, all computation will proceed
using conf.level = @.95. Two exceptions here are:

e tidy() methods will warn when supplied an exponentiate argument if it
will be ignored.

* augment () methods will warn when supplied a newdata argument if it will
be ignored.

::tibble () with columns:

Fitted or predicted value.

Diagonal of the hat matrix.

The difference between observed and fitted values.
Standard errors of fitted values.

Estimated residual standard deviation when corresponding observation is dropped
from model.

augment.rma 79

See Also

MASS: :rim()
Other rlm tidiers: glance.rlm(), tidy.rlm()

Examples

load libraries for models and data
library(MASS)

fit model
r <- rlm(stack.loss ~ ., stackloss)

summarize model fit with tidiers
tidy(r)

augment(r)

glance(r)

augment.rma Augment data with information from a(n) rma object

Description

Augment accepts a model object and a dataset and adds information about each observation in
the dataset. Most commonly, this includes predicted values in the .fitted column, residuals in
the .resid column, and standard errors for the fitted values in a .se.fit column. New columns
always begin with a . prefix to avoid overwriting columns in the original dataset.

Users may pass data to augment via either the data argument or the newdata argument. If the user
passes data to the data argument, it must be exactly the data that was used to fit the model object.
Pass datasets to newdata to augment data that was not used during model fitting. This still requires
that at least all predictor variable columns used to fit the model are present. If the original outcome
variable used to fit the model is not included in newdata, then no .resid column will be included
in the output.

Augment will often behave differently depending on whether data or newdata is given. This is be-
cause there is often information associated with training observations (such as influences or related)
measures that is not meaningfully defined for new observations.

For convenience, many augment methods provide default data arguments, so that augment (fit)
will return the augmented training data. In these cases, augment tries to reconstruct the original
data based on the model object with varying degrees of success.

The augmented dataset is always returned as a tibble::tibble with the same number of rows as the
passed dataset. This means that the passed data must be coercible to a tibble. If a predictor enters
the model as part of a matrix of covariates, such as when the model formula uses splines: :ns(),
stats::poly(), or survival::Surv(), it is represented as a matrix column.

We are in the process of defining behaviors for models fit with various na.action arguments, but
make no guarantees about behavior when data is missing at this time.

80 augment.rma

Usage
S3 method for class 'rma'
augment(x, interval = c("prediction”, "confidence"”), ...)
Arguments
X An rma object such as those created by metafor: :rma(), metafor::rma.uni(),

metafor::rma.glmm(), metafor::rma.mh(), metafor::rma.mv(), ormetafor::rma.peto().

interval For rma.mv models, should prediction intervals ("prediction”, default) or con-
fidence intervals ("confidence") intervals be returned? For rma.uni models,
prediction intervals are always returned. For rma.mh and rma.peto models,
confidence intervals are always returned.

Additional arguments. Not used. Needed to match generic signature only. Cau-
tionary note: Misspelled arguments will be absorbed in . . ., where they will be
ignored. If the misspelled argument has a default value, the default value will be
used. For example, if you pass conf.lvel = 0.9, all computation will proceed
using conf.level = 0.95. Two exceptions here are:

e tidy() methods will warn when supplied an exponentiate argument if it
will be ignored.

* augment () methods will warn when supplied a newdata argument if it will
be ignored.

Value

A tibble::tibble() with columns:

.fitted Fitted or predicted value.
.lower Lower bound on interval for fitted values.
.moderator In meta-analysis, the moderators used to calculate the predicted values.

.moderator.level
In meta-analysis, the level of the moderators used to calculate the predicted

values.
.resid The difference between observed and fitted values.
.se.fit Standard errors of fitted values.
.upper Upper bound on interval for fitted values.
.observed The observed values for the individual studies

Examples

load modeling library
library(metafor)

generate data and fit
df <-

augment.rq 81

escalc(

measure = "RR",

ai = tpos,

bi = tneg,

ci = cpos,

di = cneg,

data = dat.bcg
)

meta_analysis <- rma(yi, vi, data = df, method = "EB")

summarize model fit with tidiers
augment (meta_analysis)

augment.rq Augment data with information from a(n) rq object

Description

Augment accepts a model object and a dataset and adds information about each observation in
the dataset. Most commonly, this includes predicted values in the .fitted column, residuals in
the .resid column, and standard errors for the fitted values in a .se.fit column. New columns
always begin with a . prefix to avoid overwriting columns in the original dataset.

Users may pass data to augment via either the data argument or the newdata argument. If the user
passes data to the data argument, it must be exactly the data that was used to fit the model object.
Pass datasets to newdata to augment data that was not used during model fitting. This still requires
that at least all predictor variable columns used to fit the model are present. If the original outcome
variable used to fit the model is not included in newdata, then no .resid column will be included
in the output.

Augment will often behave differently depending on whether data or newdata is given. This is be-
cause there is often information associated with training observations (such as influences or related)
measures that is not meaningfully defined for new observations.

For convenience, many augment methods provide default data arguments, so that augment (fit)
will return the augmented training data. In these cases, augment tries to reconstruct the original
data based on the model object with varying degrees of success.

The augmented dataset is always returned as a tibble::tibble with the same number of rows as the
passed dataset. This means that the passed data must be coercible to a tibble. If a predictor enters
the model as part of a matrix of covariates, such as when the model formula uses splines::ns(),
stats::poly(), or survival::Surv(), it is represented as a matrix column.

We are in the process of defining behaviors for models fit with various na.action arguments, but
make no guarantees about behavior when data is missing at this time.

Usage

S3 method for class 'rq'
augment(x, data = model.frame(x), newdata = NULL, ...)

82

Arguments

X

data

newdata

Details

augment.rq

An rq object returned from quantreg: :rq().

A base::data.frame or tibble: :tibble() containing the original data that was
used to produce the object x. Defaults to stats::model.frame(x) so that
augment(my_fit) returns the augmented original data. Do not pass new data
to the data argument. Augment will report information such as influence and
cooks distance for data passed to the data argument. These measures are only
defined for the original training data.

A base::data.frame() or tibble::tibble() containing all the original pre-
dictors used to create x. Defaults to NULL, indicating that nothing has been
passed to newdata. If newdata is specified, the data argument will be ignored.

Arguments passed on to quantreg: :predict.rq

object object of class rq or rqs or rq.process produced by rq

interval type of interval desired: default is ‘none’, when set to ’confidence’
the function returns a matrix predictions with point predictions for each of
the *newdata’ points as well as lower and upper confidence limits.

level converage probability for the *confidence’ intervals.

type For predict.rq, the method for ’confidence’ intervals, if desired. If ’per-
centile’ then one of the bootstrap methods is used to generate percentile
intervals for each prediction, if ’direct’ then a version of the Portnoy and
Zhou (1998) method is used, and otherwise an estimated covariance ma-
trix for the parameter estimates is used. Further arguments to determine
the choice of bootstrap method or covariance matrix estimate can be passed
via the ...argument. For predict.rqgs and predict.rq.process when
stepfun = TRUE, type is "Qhat", "Fhat" or "that" depending on whether the
user would like to have estimates of the conditional quantile, distribution or
density functions respectively. As noted below the two former estimates
can be monotonized with the function rearrange. When the "fhat" option
is invoked, a list of conditional density functions is returned based on Sil-
verman’s adaptive kernel method as implemented in akj and approxfun.

na.action function determining what should be done with missing values in
‘newdata’. The default is to predict "NA’.

Depending on the arguments passed on to predict.rq via ..., a confidence interval is also cal-
culated on the fitted values resulting in columns . lower and .upper. Does not provide confidence
intervals when data is specified via the newdata argument.

Value

A tibble::tibble() with columns:

.fitted
.resid

.tau

Fitted or predicted value.
The difference between observed and fitted values.

Quantile.

augment.rqs 83

See Also

augment, quantreg: :rq(), quantreg: :predict.rq()

Other quantreg tidiers: augment.nlrq(), augment.rqgs(), glance.nlrq(), glance.rq(), tidy.nlrq(),
tidy.rqgs(), tidy.rq()

Examples

load modeling library and data
library(quantreg)

data(stackloss)

median (11) regression fit for the stackloss data.
mod1 <- rqg(stack.loss ~ stack.x, .5)

weighted sample median
mod2 <- rq(rnorm(50) ~ 1, weights = runif(50))

summarize model fit with tidiers
tidy(mod1)

glance(mod1)

augment (mod1)

tidy(mod2)
glance(mod2)
augment (mod2)

varying tau to generate an rgs object
mod3 <- rqg(stack.loss ~ stack.x, tau = c(.25, .5))

tidy(mod3)
augment (mod3)

glance cannot handle rgs objects like ‘mod3‘--use a purrr
‘map‘-based workflow instead

augment.rgs Augment data with information from a(n) rqs object

Description

Augment accepts a model object and a dataset and adds information about each observation in
the dataset. Most commonly, this includes predicted values in the .fitted column, residuals in
the .resid column, and standard errors for the fitted values in a .se.fit column. New columns
always begin with a . prefix to avoid overwriting columns in the original dataset.

84 augment.rqs

Users may pass data to augment via either the data argument or the newdata argument. If the user
passes data to the data argument, it must be exactly the data that was used to fit the model object.
Pass datasets to newdata to augment data that was not used during model fitting. This still requires
that at least all predictor variable columns used to fit the model are present. If the original outcome
variable used to fit the model is not included in newdata, then no .resid column will be included
in the output.

Augment will often behave differently depending on whether data or newdata is given. This is be-
cause there is often information associated with training observations (such as influences or related)
measures that is not meaningfully defined for new observations.

For convenience, many augment methods provide default data arguments, so that augment (fit)
will return the augmented training data. In these cases, augment tries to reconstruct the original
data based on the model object with varying degrees of success.

The augmented dataset is always returned as a tibble::tibble with the same number of rows as the
passed dataset. This means that the passed data must be coercible to a tibble. If a predictor enters
the model as part of a matrix of covariates, such as when the model formula uses splines: :ns(),
stats::poly(), or survival::Surv(), it is represented as a matrix column.

We are in the process of defining behaviors for models fit with various na.action arguments, but
make no guarantees about behavior when data is missing at this time.

Usage
S3 method for class 'rqgs'
augment(x, data = model.frame(x), newdata, ...)
Arguments
X An rqgs object returned from quantreg: :rq().
data A base::data.frame or tibble::tibble() containing the original data that was

used to produce the object x. Defaults to stats: :model.frame(x) so that
augment(my_fit) returns the augmented original data. Do not pass new data
to the data argument. Augment will report information such as influence and
cooks distance for data passed to the data argument. These measures are only
defined for the original training data.

newdata A base::data.frame() or tibble::tibble() containing all the original pre-
dictors used to create x. Defaults to NULL, indicating that nothing has been
passed to newdata. If newdata is specified, the data argument will be ignored.

Arguments passed on to quantreg: :predict.rq

object object of class rq or rgs or rq.process produced by rq

interval type of interval desired: default is *none’, when set to ’confidence’
the function returns a matrix predictions with point predictions for each of
the “newdata’ points as well as lower and upper confidence limits.

level converage probability for the *confidence’ intervals.

type For predict.rq, the method for ’confidence’ intervals, if desired. If per-
centile’ then one of the bootstrap methods is used to generate percentile
intervals for each prediction, if ’direct’ then a version of the Portnoy and

augment.rqs 85

Zhou (1998) method is used, and otherwise an estimated covariance ma-
trix for the parameter estimates is used. Further arguments to determine
the choice of bootstrap method or covariance matrix estimate can be passed
via the ...argument. For predict.rgs and predict.rq.process when
stepfun = TRUE, type is "Qhat", "Fhat" or "fhat" depending on whether the
user would like to have estimates of the conditional quantile, distribution or
density functions respectively. As noted below the two former estimates
can be monotonized with the function rearrange. When the "fhat" option
is invoked, a list of conditional density functions is returned based on Sil-
verman’s adaptive kernel method as implemented in akj and approxfun.

na.action function determining what should be done with missing values in
‘newdata’. The default is to predict "NA’.

Details

Depending on the arguments passed on to predict.rq via ..., a confidence interval is also cal-
culated on the fitted values resulting in columns . lower and .upper. Does not provide confidence
intervals when data is specified via the newdata argument.

See Also

augment, quantreg: :rq(), quantreg: :predict.rqs()

Other quantreg tidiers: augment.nlrq(), augment.rq(), glance.nlrq(), glance.rq(), tidy.nlrq(),
tidy.rgs(), tidy.rq()

Examples

load modeling library and data
library(quantreg)

data(stackloss)

median (11) regression fit for the stackloss data.
mod1 <- rq(stack.loss ~ stack.x, .5)

weighted sample median
mod2 <- rq(rnorm(50) ~ 1, weights = runif(50))

summarize model fit with tidiers
tidy(mod1)

glance(mod1)

augment (mod1)

tidy(mod2)
glance(mod2)
augment (mod2)

varying tau to generate an rgs object
mod3 <- rq(stack.loss ~ stack.x, tau = c(.25, .5))

86 augment.sarlm

tidy(mod3)
augment (mod3)

glance cannot handle rgs objects like ‘mod3‘--use a purrr
‘map‘-based workflow instead

augment.sarlm Augment data with information from a(n) spatialreg object

Description

Augment accepts a model object and a dataset and adds information about each observation in
the dataset. Most commonly, this includes predicted values in the .fitted column, residuals in
the .resid column, and standard errors for the fitted values in a .se.fit column. New columns
always begin with a . prefix to avoid overwriting columns in the original dataset.

Users may pass data to augment via either the data argument or the newdata argument. If the user
passes data to the data argument, it must be exactly the data that was used to fit the model object.
Pass datasets to newdata to augment data that was not used during model fitting. This still requires
that at least all predictor variable columns used to fit the model are present. If the original outcome
variable used to fit the model is not included in newdata, then no .resid column will be included
in the output.

Augment will often behave differently depending on whether data or newdata is given. This is be-
cause there is often information associated with training observations (such as influences or related)
measures that is not meaningfully defined for new observations.

For convenience, many augment methods provide default data arguments, so that augment (fit)
will return the augmented training data. In these cases, augment tries to reconstruct the original
data based on the model object with varying degrees of success.

The augmented dataset is always returned as a tibble::tibble with the same number of rows as the
passed dataset. This means that the passed data must be coercible to a tibble. If a predictor enters
the model as part of a matrix of covariates, such as when the model formula uses splines: :ns(),
stats::poly(), or surviv