## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE) ## ----caRa--------------------------------------------------------------------- library(caRamel) ## ----schaffer----------------------------------------------------------------- schaffer <- function(i) { if (x[i,1] <= 1) { s1 <- -x[i,1] } else if (x[i,1] <= 3) { s1 <- x[i,1] - 2 } else if (x[i,1] <= 4) { s1 <- 4 - x[i,1] } else { s1 <- x[i,1] - 4 } s2 <- (x[i,1] - 5) * (x[i,1] - 5) return(c(s1, s2)) } ## ----schaffer_variable-------------------------------------------------------- nvar <- 1 # number of variables bounds <- matrix(data = 1, nrow = nvar, ncol = 2) # upper and lower bounds bounds[, 1] <- -5 * bounds[, 1] bounds[, 2] <- 10 * bounds[, 2] ## ----schaffer_objectives------------------------------------------------------ nobj <- 2 # number of objectives minmax <- c(FALSE, FALSE) # min and min ## ----schaffer_param----------------------------------------------------------- popsize <- 100 # size of the genetic population archsize <- 100 # size of the archive for the Pareto front maxrun <- 1000 # maximum number of calls prec <- matrix(1.e-3, nrow = 1, ncol = nobj) # accuracy for the convergence phase ## ----schaffer_launch, fig.show="hide", results="hide"------------------------- results <- caRamel(nobj, nvar, minmax, bounds, schaffer, popsize, archsize, maxrun, prec, carallel=FALSE) # no parallelism ## ----schaffer_OK-------------------------------------------------------------- print(results$success==TRUE) ## ----schaffer_plot1----------------------------------------------------------- plot(results$objectives[,1], results$objectives[,2], main="Schaffer Pareto front", xlab="Objective #1", ylab="Objective #2") ## ----schaffer_plot2----------------------------------------------------------- plot(results$parameters, main="Corresponding values for X", xlab="Element of the archive", ylab="X Variable") ## ----kursawe------------------------------------------------------------------ kursawe <- function(i) { k1 <- -10 * exp(-0.2 * sqrt(x[i,1] ^ 2 + x[i,2] ^ 2)) - 10 * exp(-0.2 * sqrt(x[i,2] ^2 + x[i,3] ^ 2)) k2 <- abs(x[i,1]) ^ 0.8 + 5 * sin(x[i,1] ^ 3) + abs(x[i,2]) ^ 0.8 + 5 * sin(x[i,2] ^3) + abs(x[i,3]) ^ 0.8 + 5 * sin(x[i,3] ^ 3) return(c(k1, k2)) } ## ----kursawe_variable--------------------------------------------------------- nvar <- 3 # number of variables bounds <- matrix(data = 1, nrow = nvar, ncol = 2) # upper and lower bounds bounds[, 1] <- -5 * bounds[, 1] bounds[, 2] <- 5 * bounds[, 2] ## ----kursawe_objectives------------------------------------------------------- nobj <- 2 # number of objectives minmax <- c(FALSE, FALSE) # min and min ## ----kursawe_param, fig.show="hide", results="hide"--------------------------- popsize <- 100 # size of the genetic population archsize <- 100 # size of the archive for the Pareto front maxrun <- 1000 # maximum number of calls prec <- matrix(1.e-3, nrow = 1, ncol = nobj) # accuracy for the convergence phase results <- caRamel(nobj, nvar, minmax, bounds, kursawe, popsize, archsize, maxrun, prec, carallel=FALSE) # no parallelism ## ----kursawe_OK_plot---------------------------------------------------------- print(results$success==TRUE) plot(results$objectives[,1], results$objectives[,2], main="Kursawe Pareto front", xlab="Objective #1", ylab="Objective #2") ## ----kursawe_plot_conv-------------------------------------------------------- matplot(results$save_crit[,1],cbind(results$save_crit[,2],results$save_crit[,3]),type="l",col=c("blue","red"), main="Convergence", xlab="Number of calls", ylab="Objectives values")