## ----setup, echo=FALSE, results="hide"---------------------------------------- knitr::opts_chunk$set(tidy = FALSE, cache = FALSE, dev = "png", message = FALSE, error = FALSE, warning = TRUE, fig.dpi = 96) ## ----------------------------------------------------------------------------- library(cinaR) data("atac_seq_consensus_bm") ## ----------------------------------------------------------------------------- dim(bed) ## ----------------------------------------------------------------------------- # bed formatted file head(bed[,1:4]) ## ----------------------------------------------------------------------------- # create contrast vector which will be compared. contrasts<- c("B6", "B6", "B6", "B6", "B6", "NZO", "NZO", "NZO", "NZO", "NZO", "NZO", "B6", "B6", "B6", "B6", "B6", "NZO", "NZO", "NZO", "NZO", "NZO", "NZO") ## ----------------------------------------------------------------------------- # If reference genome is not set hg38 will be used! results <- cinaR(bed, contrasts, reference.genome = "mm10") ## ----------------------------------------------------------------------------- names(results) ## ----------------------------------------------------------------------------- names(results$DA.results) ## ----------------------------------------------------------------------------- colnames(results$DA.results$DA.peaks$B6_NZO) ## ----------------------------------------------------------------------------- head(results$DA.results$DA.peaks$B6_NZO[,1:5]) ## ----------------------------------------------------------------------------- head(results$Enrichment.Results$B6_NZO[,c("module.name","overlapping.genes", "adj.p")]) ## ----------------------------------------------------------------------------- pca_plot(results, contrasts, show.names = F) ## ----------------------------------------------------------------------------- # Overlaid information overlaid.info <- c("B6-18mo", "B6-18mo", "B6-18mo", "B6-18mo", "B6-18mo", "NZO-18mo", "NZO-18mo", "NZO-18mo", "NZO-18mo", "NZO-18mo", "NZO-18mo", "B6-3mo", "B6-3mo", "B6-3mo", "B6-3mo", "B6-3mo", "NZO-3mo", "NZO-3mo", "NZO-3mo", "NZO-3mo", "NZO-3mo", "NZO-3mo") # Sample IDs sample.names <- c("S01783", "S01780", "S01781", "S01778", "S01779", "S03804", "S03805", "S03806", "S03807", "S03808", "S03809", "S04678", "S04679", "S04680", "S04681", "S04682", "S10918", "S10916", "S10919", "S10921", "S10917", "S10920") ## ----------------------------------------------------------------------------- pca_plot(results, overlaid.info, sample.names) ## ----------------------------------------------------------------------------- show_comparisons(results) ## ----------------------------------------------------------------------------- heatmap_differential(results, comparison = "B6_NZO") ## ----------------------------------------------------------------------------- heatmap_differential(results, comparison = "B6_NZO", show_colnames = FALSE) ## ----------------------------------------------------------------------------- heatmap_var_peaks(results) ## ----------------------------------------------------------------------------- heatmap_var_peaks(results, heatmap.peak.count = 200, cluster_cols = F) ## ----------------------------------------------------------------------------- dot_plot(results) ## ----------------------------------------------------------------------------- dot_plot(results, filter.pathways = T) ## ----------------------------------------------------------------------------- contrasts <- sapply(strsplit(colnames(bed), split = "-", fixed = T), function(x){paste(x[1:4], collapse = ".")})[4:25] unique(contrasts) ## ----eval=FALSE--------------------------------------------------------------- # cinaR(matrix = count.matrix, ..., experiment.type = "RNA-Seq") ## ----eval=FALSE--------------------------------------------------------------- # cinaR(..., geneset = new_geneset) ## ----eval=FALSE--------------------------------------------------------------- # # default geneset to be used # data("VP2008") ## ----eval=FALSE--------------------------------------------------------------- # cinaR(..., batch.correction = T) ## ----eval=FALSE--------------------------------------------------------------- # # runs SVA # cinaR(..., batch.correction = T) # # # runs SVA with 2 surrogate variables # cinaR(..., batch.correction = T, sv.number = 2) # # # adds only batch information to the design matrix! (does not run SVA) # # batch.information should be number a vector where # # the length of it equals to the number of samples. # cinaR(..., batch.correction = T, batch.information = c(rep(0, 11), rep(1,11))) ## ----eval=FALSE--------------------------------------------------------------- # # Ages of the samples could be not in biological interests but should be accounted for! # cinaR(..., additional.covariates = c((18, 11), (3, 11))) # # # More than one covariate for instance, sex and age # sex.info <- c("M", "F", "M", "F", "F", "F", "F", "F", "M", "M", "M", # "F", "F", "M", "M", "M", "F", "F", "M", "M", "F", "M") # # age.info <- c((18, 11), (3, 11) # covs <- data.frame(Sex = sex.info, Age = age.info) # # cinaR(..., additional.covariates = covs) ## ----eval=FALSE--------------------------------------------------------------- # results <- cinaR(..., save.DA.peaks = T, DA.peaks.path = "./Peaks_mice.xlsx") ## ----eval=FALSE--------------------------------------------------------------- # # new FDR threshold for DA peaks # results <- cinaR(..., DA.fdr.threshold = 0.1) # # # filters out pathways # results <- cinaR(..., enrichment.FDR.cutoff = 0.1) # # # does not run enrichment pipeline # results <- cinaR(..., run.enrichment = FALSE) # # # creates the piechart from chIpSeeker package # results <- cinaR(..., show.annotation.pie = TRUE) # # # change cut-off value for dot plots # dot_plot(..., fdr.cutoff = 0.05) ## ----session Info------------------------------------------------------------- sessionInfo()