## ----install, eval = FALSE---------------------------------------------------- # #install climodr # install.packages("climodr") ## ----install dev, eval = FALSE------------------------------------------------ # #install climodr (last a bit, but shouldn't take longer than 5-10 Minutes) # devtools::install_github( # "https://github.com/envima/climodr.git", # auth_token = "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", # dependencies = TRUE, # build_vignettes = TRUE) ## ----setup env---------------------------------------------------------------- library(climodr) # setting up the environment for climodr envrmt <- envi.create(tempdir(), memfrac = 0.8) # load in all the climodr example data for this vignette clim.sample(envrmt = envrmt) # remove everything in the global environment except of our environment path list rm(list = setdiff(ls(), "envrmt")) ## ----prep csv----------------------------------------------------------------- prep.csv(envrmt = envrmt, method = "proc", save_output = TRUE) #check the created csv files csv_files <- grep("_no_NAs.csv$", list.files(envrmt$path_tworkflow), value=TRUE) csv_files ## ----proc csv----------------------------------------------------------------- csv_data <- proc.csv(envrmt = envrmt, method = "monthly", rbind = TRUE, save_output = TRUE) head(csv_data) ## ----spat csv----------------------------------------------------------------- csv_spat <- spat.csv(envrmt = envrmt, method = "monthly", des_file = "plot_description.csv", save_output = TRUE) head(csv_spat) ## ----crop all----------------------------------------------------------------- crop.all(envrmt = envrmt, method = "MB_Timeseries", overwrite = TRUE) ## ----calc indices------------------------------------------------------------- calc.indices(envrmt = envrmt, vi = "all", bands = c("blue", "green", "red", "nir", "nirb", "re1", "re2", "re3", "swir1", "swir2"), overwrite = TRUE) ## ----finalize csv------------------------------------------------------------- csv_fin <- fin.csv(envrmt = envrmt, method = "monthly", save_output = TRUE) head(csv_fin) ## ----autocorr, warning = FALSE------------------------------------------------ autocorr( envrmt = envrmt, method = "monthly", resp = 5, pred = c(8:23), plot.corrplot = TRUE, corrplot = "coef" ) ## ----model, warning = FALSE--------------------------------------------------- calc.model( envrmt = envrmt, method = "monthly", timespan = c(2017), climresp = c(5), classifier = c( "rf", "pls", "lm"), seed = 707, p = 0.8, folds = "LLO", mnote = "vignette", predrows = c(8:23), tc_method = "cv", metric = "RMSE", autocorrelation = TRUE, doParallel = FALSE) ## ----predict------------------------------------------------------------------ climpred( envrmt = envrmt, method = "monthly", mnote = "vignette", AOA = TRUE) ## ----list predictions--------------------------------------------------------- predlist <- list.files(envrmt$path_predictions, pattern = ".tif", recursive = TRUE) head(predlist) ## ----plot predictions--------------------------------------------------------- climplot( envrmt = envrmt, mnote = "vignette", sensor = "Ta_200", aoa = TRUE, mapcolors = rev(heat.colors(50)), scale_position = "bottomleft", north_position = "topright" )