## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE, eval=FALSE) ## ----------------------------------------------------------------------------- # library(cloudml) # job <- cloudml_train("mnist_mlp.R") ## ----------------------------------------------------------------------------- # job_status(job) ## ----------------------------------------------------------------------------- # job_status() # get status of last job ## ----------------------------------------------------------------------------- # job_collect() # collect last job # job_collect(job) # collect specific job ## ----------------------------------------------------------------------------- # ls_runs() ## ----------------------------------------------------------------------------- # # view the latest run # view_run() # # # view a specific run # view_run("runs/cloudml_2017_12_15_182614794") ## ----------------------------------------------------------------------------- # job_list() ## ----------------------------------------------------------------------------- # job_status("cloudml_2017_12_18_203510175") ## ----------------------------------------------------------------------------- # job_stream_logs("cloudml_2017_12_18_203510175") ## ----------------------------------------------------------------------------- # job_cancel("cloudml_2017_12_18_203510175") ## ----------------------------------------------------------------------------- # library(keras) # # FLAGS <- flags( # flag_integer("dense_units1", 128), # flag_numeric("dropout1", 0.4), # flag_integer("dense_units2", 128), # flag_numeric("dropout2", 0.3), # ) ## ----------------------------------------------------------------------------- # input <- layer_input(shape = c(784)) # predictions <- input %>% # layer_dense(units = FLAGS$dense_units1, activation = 'relu') %>% # layer_dropout(rate = FLAGS$dropout1) %>% # layer_dense(units = FLAGS$dense_units2, activation = 'relu') %>% # layer_dropout(rate = FLAGS$dropout2) %>% # layer_dense(units = 10, activation = 'softmax') # # model <- keras_model(input, predictions) %>% compile( # loss = 'categorical_crossentropy', # optimizer = optimizer_rmsprop(lr = 0.001), # metrics = c('accuracy') # ) # # history <- model %>% fit( # x_train, y_train, # batch_size = 128, # epochs = 30, # verbose = 1, # validation_split = 0.2 # ) ## ----------------------------------------------------------------------------- # cloudml_train("minst_mlp.R", flags = list(dropout1 = 0.3, dropout2 = 0.2)) ## ----------------------------------------------------------------------------- # cloudml_train("train.R", master_type = "standard_gpu") ## ----------------------------------------------------------------------------- # cloudml_train("train.R", master_type = "standard_p100") ## ----------------------------------------------------------------------------- # cloudml_train("train.R", master_type = "complex_model_m_p100") ## ----------------------------------------------------------------------------- # cloudml_train("mnist_mlp.R", config = "tuning.yml")