Package 'conclust'

October 12, 2022

Type Package	
Title Pairwise Constraints Clustering	
Version 1.1	
Date 2016-08-15	
Author Tran Khanh Hiep, Nguyen Minh Duc	
Maintainer Tran Khanh Hiep <hieptkse03059@fpt.edu.vn></hieptkse03059@fpt.edu.vn>	
Description There are 4 main functions in this package: ckmeans(), lcvqe(), mpckm() and ccls(). They take an unlabeled dataset and two lists of mustlink and cannot-link constraints as input and produce a clustering as output.	
License GPL-3	
NeedsCompilation no	
Repository CRAN	
Date/Publication 2016-08-15 13:16:21	
R topics documented:	
conclust-package	1
ccls	4
lcvqe	4
mpckm	6
Index	8
conclust-package Pairwise Constraints Clustering	
	_
Description	

clustering as output.

There are 4 main functions in this package: ckmeans(), lcvqe(), mpckm() and ccls(). They take an unlabeled dataset and two lists of must-link and cannot-link constraints as input and produce a

2 conclust-package

Details

The DESCRIPTION file:

Package: conclust Type: Package

Title: Pairwise Constraints Clustering

Version: 1.1

Date: 2016-08-15

Author: Tran Khanh Hiep, Nguyen Minh Duc

Maintainer: Tran Khanh Hiep hieptkse03059@fpt.edu.vn

Description: There are 4 main functions in this package: ckmeans(), lcvqe(), mpckm() and ccls(). They take an unlabeled da

License: GPL-3

Index of help topics:

ccls Pairwise Constrained Clustering by Local Search

ckmeans COP K-means algorithm

conclust-package Pairwise Constraints Clustering

lcvqe LCVQE algorithm mpckm MPC K-means algorithm

There are 4 main functions in this package: ckmeans(), lcvqe(), mpckm() and ccls(). They take an unlabeled dataset and two lists of must-link and cannot-link constraints as input and produce a clustering as output.

Author(s)

Tran Khanh Hiep, Nguyen Minh Duc

Maintainer: Tran Khanh Hiep <hieptkse03059@fpt.edu.vn>

References

Wagstaff, Cardie, Rogers, Schrodl (2001), Constrained K-means Clustering with Background Knowledge Bilenko, Basu, Mooney (2004), Integrating Constraints and Metric Learning in Semi-Supervised Clustering Dan Pelleg, Dorit Baras (2007), K-means with large and noisy constraint sets

See Also

Wagstaff, Cardie, Rogers, Schrodl (2001), Constrained K-means Clustering with Background Knowledge Bilenko, Basu, Mooney (2004), Integrating Constraints and Metric Learning in Semi-Supervised Clustering Dan Pelleg, Dorit Baras (2007), K-means with large and noisy constraint sets

Examples

```
data = matrix(c(0, 1, 1, 0, 0, 0, 1, 1), nrow = 4)

mustLink = matrix(c(1, 2), nrow = 1)

cantLink = matrix(c(1, 4), nrow = 1)

k = 2
```

ccls 3

```
pred = ckmeans(data, k, mustLink, cantLink)
pred
pred = mpckm(data, k, mustLink, cantLink)
pred
pred = lcvqe(data, k, mustLink, cantLink)
pred
pred = ccls(data, k, mustLink, cantLink)
pred
```

ccls

Pairwise Constrained Clustering by Local Search

Description

This function takes an unlabeled dataset and two lists of must-link and cannot-link constraints as input and produce a clustering as output.

Usage

```
ccls(data, k = -1, mustLink, cantLink, maxIter = 1, tabuIter = 100, tabuLength = 20)
```

Arguments

data The unlabeled dataset.

k Number of clusters.

mustLink A list of must-link constraints cantLink A list of cannot-link constraints

maxIter Number of iteration

tabuIter Number of iteration in Tabu search
tabuLength The number of elements in the Tabu list

Details

This algorithm minimizes the clustering cost function using Tabu search.

Value

A vector that represents the labels (clusters) of the data points

Note

This is the first algorithm for pairwise constrained clustering by local search.

Author(s)

Tran Khanh Hiep Nguyen Minh Duc

4 ckmeans

References

Tran Khanh Hiep, Nguyen Minh Duc, Bui Quoc Trung (2016), Pairwise Constrained Clustering by Local Search.

See Also

Tran Khanh Hiep, Nguyen Minh Duc, Bui Quoc Trung (2016), Pairwise Constrained Clustering by Local Search.

Examples

ckmeans

COP K-means algorithm

Description

This function takes an unlabeled dataset and two lists of must-link and cannot-link constraints as input and produce a clustering as output.

Usage

```
ckmeans(data, k, mustLink, cantLink, maxIter = 100)
```

Arguments

data The unlabeled dataset.
k Number of clusters.

mustLink A list of must-link constraints cantLink A list of cannot-link constraints

maxIter Number of iteration

Details

This algorithm produces a clustering that satisfies all given constraints.

Value

A vector that represents the labels (clusters) of the data points

lcvqe 5

Note

The constraints should be consistent in order for the algorithm to work.

Author(s)

Tran Khanh Hiep Nguyen Minh Duc

References

Wagstaff, Cardie, Rogers, Schrodl (2001), Constrained K-means Clustering with Background Knowledge

See Also

Wagstaff, Cardie, Rogers, Schrodl (2001), Constrained K-means Clustering with Background Knowledge

Examples

```
\label{eq:data} \begin{array}{lll} \mbox{data} = \mbox{matrix}(c(0,\ 1,\ 1,\ 0,\ 0,\ 0,\ 1,\ 1),\ \mbox{nrow} = 4) \\ \mbox{mustLink} = \mbox{matrix}(c(1,\ 2),\ \mbox{nrow} = 1) \\ \mbox{cantLink} = \mbox{matrix}(c(1,\ 4),\ \mbox{nrow} = 1) \\ \mbox{$k = 2$} \\ \mbox{pred} = \mbox{ckmeans}(\mbox{data},\ k,\ \mbox{mustLink},\ \mbox{cantLink}) \\ \mbox{pred} \end{array}
```

lcvqe

LCVQE algorithm

Description

This function takes an unlabeled dataset and two lists of must-link and cannot-link constraints as input and produce a clustering as output.

Usage

```
lcvqe(data, k, mustLink, cantLink, maxIter = 10)
```

Arguments

data The unlabeled dataset.

k Number of clusters.

mustLink A list of must-link constraints

cantLink A list of cannot-link constraints

maxIter Number of iteration

6 mpckm

Details

This algorithm finds a clustering that satisfies as many constraints as possible

Value

A vector that represents the labels (clusters) of the data points

Note

This algorithm can handle noisy constraints.

Author(s)

Tran Khanh Hiep Nguyen Minh Duc

References

Dan Pelleg, Dorit Baras (2007), K-means with large and noisy constraint sets

See Also

Dan Pelleg, Dorit Baras (2007), K-means with large and noisy constraint sets

Examples

```
\label{eq:data} \begin{array}{lll} \mbox{data} = \mbox{matrix}(c(0,\ 1,\ 1,\ 0,\ 0,\ 0,\ 1,\ 1),\ \mbox{nrow} = 4) \\ \mbox{mustLink} = \mbox{matrix}(c(1,\ 2),\ \mbox{nrow} = 1) \\ \mbox{cantLink} = \mbox{matrix}(c(1,\ 4),\ \mbox{nrow} = 1) \\ \mbox{$k = 2$} \\ \mbox{pred} = \mbox{lcvqe}(\mbox{data},\ \mbox{$k,$ mustLink},\ \mbox{cantLink}) \\ \mbox{pred} \end{array}
```

mpckm

MPC K-means algorithm

Description

This function takes an unlabeled dataset and two lists of must-link and cannot-link constraints as input and produce a clustering as output.

Usage

```
mpckm(data, k, mustLink, cantLink, maxIter = 10)
```

mpckm 7

Arguments

data The unlabeled dataset. k Number of clusters.

mustLink A list of must-link constraints cantLink A list of cannot-link constraints

maxIter Number of iteration

Details

This algorithm finds a clustering that satisfies as many constraints as possible

Value

A vector that represents the labels (clusters) of the data points

Note

This is one of the best algorithm for clustering with constraints.

Author(s)

Tran Khanh Hiep Nguyen Minh Duc

References

Bilenko, Basu, Mooney (2004), Integrating Constraints and Metric Learning in Semi-Supervised Clustering

See Also

Bilenko, Basu, Mooney (2004), Integrating Constraints and Metric Learning in Semi-Supervised Clustering

Examples

```
\label{eq:data} \begin{array}{lll} \mbox{data} = \mbox{matrix}(c(0,\ 1,\ 1,\ 0,\ 0,\ 0,\ 1,\ 1),\ \mbox{nrow} = 4) \\ \mbox{mustLink} = \mbox{matrix}(c(1,\ 2),\ \mbox{nrow} = 1) \\ \mbox{cantLink} = \mbox{matrix}(c(1,\ 4),\ \mbox{nrow} = 1) \\ \mbox{$k = 2$} \\ \mbox{pred} = \mbox{mpckm}(\mbox{data},\ k,\ \mbox{mustLink},\ \mbox{cantLink}) \\ \mbox{pred} \end{array}
```

Index

```
* Tabu search
    ccls, 3
    conclust-package, 1
* ccls
    ccls, 3
    conclust-package, 1
* clustering
    ccls, 3
    ckmeans, 4
    conclust-package, 1
    1cvqe, 5
    mpckm, 6
* constraint
    ccls, 3
    ckmeans, 4
    conclust-package, 1
    1cvqe, 5
    mpckm, 6
* copkmeans
    ckmeans, 4
    conclust-package, 1
* lcvqe
    conclust-package, 1
    1cvqe, 5
* local search
    ccls, 3
    conclust-package, 1
* mpckmeans
    conclust-package, 1
    mpckm, 6
ccls, 3
ckmeans, 4
conclust (conclust-package), 1
conclust-package, 1
1cvqe, 5
mpckm, 6
```