--- title: "Introduction to Convergence Analysis with convergenceDFM" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Introduction to Convergence Analysis with convergenceDFM} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ```{r setup} library(convergenceDFM) ``` ## Introduction The `convergenceDFM` package provides a comprehensive framework for analyzing economic convergence using Dynamic Factor Models (DFM) and Factor Ornstein-Uhlenbeck processes. ## Basic Usage ```{r example, eval=FALSE} # Load example data data("example_marxist_data") # Run complete analysis results <- run_complete_factor_analysis_robust( X_matrix = marxist_prices[, -1], Y_matrix = bayesian_cpi[, -1], max_comp = 3, dfm_lags = 1, ou_chains = 4, ou_iter = 2000 ) # View results summary(results) ``` ## Convergence Tests The package includes several convergence tests: 1. **Formal convergence tests**: Unit root tests, cointegration 2. **Robustness tests**: Permutation, reweighting, jackknife 3. **Rotation null tests**: Testing coupling between factor spaces ## Visualization ```{r viz, eval=FALSE} # Visualize factor dynamics visualize_factor_dynamics( dfm_result = results$dfm, ou_result = results$factor_ou, factors_data = results$factors ) ```