## ----setup, include = FALSE----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) options(pkgdown.max_print = Inf, width = 1000) library(cramR) library(data.table) library(glmnet) library(caret) ## ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- generate_data <- function(n) { X <- data.table( binary = rbinom(n, 1, 0.5), discrete = sample(1:5, n, replace = TRUE), continuous = rnorm(n) ) D <- rbinom(n, 1, 0.5) treatment_effect <- ifelse(X$binary == 1 & X$discrete <= 2, 1, ifelse(X$binary == 0 & X$discrete >= 4, -1, 0.1)) Y <- D * (treatment_effect + rnorm(n)) + (1 - D) * rnorm(n) list(X = X, D = D, Y = Y) } set.seed(123) data <- generate_data(1000) X <- data$X; D <- data$D; Y <- data$Y ## ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- res <- cram_policy( X, D, Y, batch = 20, model_type = "causal_forest", learner_type = NULL, baseline_policy = as.list(rep(0, nrow(X))), alpha = 0.05 ) print(res) ## ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- custom_fit <- function(X, Y, D, n_folds = 5) { treated <- which(D == 1); control <- which(D == 0) m1 <- cv.glmnet(as.matrix(X[treated, ]), Y[treated], alpha = 0, nfolds = n_folds) m0 <- cv.glmnet(as.matrix(X[control, ]), Y[control], alpha = 0, nfolds = n_folds) tau1 <- predict(m1, as.matrix(X[control, ]), s = "lambda.min") - Y[control] tau0 <- Y[treated] - predict(m0, as.matrix(X[treated, ]), s = "lambda.min") tau <- c(tau0, tau1); X_all <- rbind(X[treated, ], X[control, ]) final_model <- cv.glmnet(as.matrix(X_all), tau, alpha = 0) final_model } custom_predict <- function(model, X, D) { as.numeric(predict(model, as.matrix(X), s = "lambda.min") > 0) } res <- cram_policy( X, D, Y, batch = 20, model_type = NULL, custom_fit = custom_fit, custom_predict = custom_predict ) print(res) ## ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- set.seed(42) data_df <- data.frame( x1 = rnorm(100), x2 = rnorm(100), x3 = rnorm(100), Y = rnorm(100) ) caret_params <- list( method = "lm", trControl = trainControl(method = "none") ) res <- cram_ml( data = data_df, formula = Y ~ ., batch = 5, loss_name = "se", caret_params = caret_params ) print(res) ## ----eval = requireNamespace("randomForest", quietly = TRUE)-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- set.seed(42) # Generate binary classification dataset X_data <- data.frame(x1 = rnorm(100), x2 = rnorm(100), x3 = rnorm(100)) Y_data <- rbinom(nrow(X_data), 1, 0.5) data_df <- data.frame(X_data, Y = Y_data) # Define caret parameters: predict labels (default behavior) caret_params_rf <- list( method = "rf", trControl = trainControl(method = "none") ) # Run CRAM ML with accuracy as loss result <- cram_ml( data = data_df, formula = Y ~ ., batch = 5, loss_name = "accuracy", caret_params = caret_params_rf, classify = TRUE ) print(result) ## ----eval = requireNamespace("randomForest", quietly = TRUE)-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- set.seed(42) # Generate binary classification dataset X_data <- data.frame(x1 = rnorm(100), x2 = rnorm(100), x3 = rnorm(100)) Y_data <- rbinom(nrow(X_data), 1, 0.5) data_df <- data.frame(X_data, Y = Y_data) # Define caret parameters for probability output caret_params_rf_probs <- list( method = "rf", trControl = trainControl(method = "none", classProbs = TRUE) ) # Run CRAM ML with logloss as the evaluation loss result <- cram_ml( data = data_df, formula = Y ~ ., batch = 5, loss_name = "logloss", caret_params = caret_params_rf_probs, classify = TRUE ) print(result) ## ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- set.seed(42) T <- 100; K <- 4 pi <- array(runif(T * T * K, 0.1, 1), dim = c(T, T, K)) for (t in 1:T) for (j in 1:T) pi[j, t, ] <- pi[j, t, ] / sum(pi[j, t, ]) arm <- sample(1:K, T, replace = TRUE) reward <- rnorm(T, 1, 0.5) res <- cram_bandit(pi, arm, reward, batch=1, alpha=0.05) print(res) ## ----cleanup-autograph, include=FALSE------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- autograph_files <- list.files(tempdir(), pattern = "^__autograph_generated_file.*\\.py$", full.names = TRUE) if (length(autograph_files) > 0) { try(unlink(autograph_files, recursive = TRUE, force = TRUE), silent = TRUE) }