---
title: "deepSTRAPP: Biogeographic range data"
author: "Maël Doré"
date: "`r Sys.Date()`"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{deepSTRAPP: Biogeographic range data}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r set_options, include = FALSE}
knitr::opts_chunk$set(
eval = FALSE, # Chunks of codes will not be evaluated by default
collapse = TRUE,
comment = "#>",
fig.width = 7, fig.height = 5, # Set device size at rendering time (when plots are generated)
fig.align = "center"
)
```
```{r setup, eval = TRUE, include = FALSE}
library(deepSTRAPP)
is_dev_version <- function (pkg = "deepSTRAPP")
{
# # Check if ran on CRAN
# not_cran <- identical(Sys.getenv("NOT_CRAN"), "true") # || interactive()
# Version number check
version <- tryCatch(as.character(utils::packageVersion(pkg)), error = function(e) "")
dev_version <- grepl("\\.9000", version)
# not_cran || dev_version
return(dev_version)
}
```
```{r adjust_dpi_CRAN, include = FALSE, eval = !is_dev_version()}
knitr::opts_chunk$set(
dpi = 50 # Lower DPI to save space
)
```
```{r adjust_dpi_dev, include = FALSE, eval = is_dev_version()}
knitr::opts_chunk$set(
dpi = 72 # Default DPI for the dev version
)
```
This is a simple example that shows how deepSTRAPP can be used to test for __differences__ in diversification rates between two __biogeographic areas__.
It presents the main functions in a typical __deepSTRAPP workflow__.
For an example with __binary data__ (2 levels), please see the example in the __Main tutorial__: `vignette("main_tutorial")`.
For an example with __categorical multinominal data__, see this vignette: `vignette("deepSTRAPP_categorical_3lvl_data")`.
For an example with __continuous data__, see this vignette: `vignette("deepSTRAPP_continuous_data")`.
Please note that the trait data and phylogeny calibration used in this example are __NOT valid biological data__. They were modified in order to provide results illustrating the usefulness of deepSTRAPP.
The R package `BioGeoBEARS` is needed for this workflow to process biogeographic data.
Please install it manually from: https://github.com/nmatzke/BioGeoBEARS.
```{r load_data_biogeo_2lvl}
# ------ Step 0: Load data ------ #
## Load range data
data(Ponerinae_binary_range_table, package = "deepSTRAPP")
dim(Ponerinae_binary_range_table)
View(Ponerinae_binary_range_table)
## Prepare range data for Old World vs. New World
# No overlap in ranges in current taxa
table(Ponerinae_binary_range_table$Old_World, Ponerinae_binary_range_table$New_World)
Ponerinae_NO_tip_data <- stats::setNames(object = Ponerinae_binary_range_table$Old_World,
nm = Ponerinae_binary_range_table$Taxa)
Ponerinae_NO_tip_data <- as.character(Ponerinae_NO_tip_data)
Ponerinae_NO_tip_data[Ponerinae_NO_tip_data == "TRUE"] <- "O" # O = Old World
Ponerinae_NO_tip_data[Ponerinae_NO_tip_data == "FALSE"] <- "N" # N = New World
names(Ponerinae_NO_tip_data) <- Ponerinae_binary_range_table$Taxa
table(Ponerinae_NO_tip_data)
# Select color scheme for ranges
colors_per_ranges <- c("mediumpurple2", "peachpuff2")
names(colors_per_ranges) <- c("N", "O")
## Load phylogeny
data(Ponerinae_tree_old_calib, package = "deepSTRAPP")
plot(Ponerinae_tree_old_calib)
ape::Ntip(Ponerinae_tree_old_calib) == length(Ponerinae_NO_tip_data)
## Check that trait data and phylogeny are named and ordered similarly
all(names(Ponerinae_NO_tip_data) == Ponerinae_tree_old_calib$tip.label)
## Reorder trait data as in phylogeny
Ponerinae_NO_tip_data <- Ponerinae_NO_tip_data[match(x = Ponerinae_tree_old_calib$tip.label,
table = names(Ponerinae_NO_tip_data))]
## Plot data on tips for visualization
pdf(file = "./Ponerinae_biogeo_data_old_calib_on_phylo.pdf", width = 20, height = 150)
# Set plotting parameters
old_par <- par(no.readonly = TRUE)
par(mar = c(0.1,0.1,0.1,0.1), oma = c(0,0,0,0)) # bltr
# Graph presence/absence using plotTree.datamatrix
range_map <- phytools::plotTree.datamatrix(
tree = Ponerinae_tree_old_calib,
X = as.data.frame(Ponerinae_NO_tip_data),
fsize = 0.7, yexp = 1.1,
header = TRUE, xexp = 1.25,
colors = colors_per_ranges)
# Get plot info in "last_plot.phylo"
plot_info <- get("last_plot.phylo", envir=.PlotPhyloEnv)
# Add time line
# Extract root age
root_age <- max(phytools::nodeHeights(Ponerinae_tree_old_calib))
# Define ticks
# ticks_labels <- seq(from = 0, to = 100, by = 20)
ticks_labels <- seq(from = 0, to = 120, by = 20)
axis(side = 1, pos = 0, at = (-1 * ticks_labels) + root_age, labels = ticks_labels, cex.axis = 1.5)
legend(x = root_age/2,
y = 0 - 5, adj = 0,
bty = "n", legend = "", title = "Time [My]", title.cex = 1.5)
# Add a legend
legend(x = plot_info$x.lim[2] - 10,
y = mean(plot_info$y.lim),
# adj = c(0,0),
# x = "topleft",
legend = c("Absence", "Presence"),
pch = 22, pt.bg = c("white","gray30"), pt.cex = 1.8,
cex = 1.5, bty = "n")
dev.off()
# Reset plotting parameters
par(old_par)
## Inputs needed for Step 1 are the tip_data (Ponerinae_NO_tip_data) and the phylogeny
## (Ponerinae_tree_old_calib), and optionally, a color scheme (colors_per_ranges).
```
```{r load_data_biogeo_2lvl_eval, eval = TRUE, echo = FALSE}
## Load phylogeny
data(Ponerinae_tree_old_calib, package = "deepSTRAPP")
## Load and prepare range tip_data
data(Ponerinae_binary_range_table, package = "deepSTRAPP")
Ponerinae_NO_tip_data <- stats::setNames(object = Ponerinae_binary_range_table$Old_World,
nm = Ponerinae_binary_range_table$Taxa)
Ponerinae_NO_tip_data <- as.character(Ponerinae_NO_tip_data)
Ponerinae_NO_tip_data[Ponerinae_NO_tip_data == "FALSE"] <- "N" # N = New World
Ponerinae_NO_tip_data[Ponerinae_NO_tip_data == "TRUE"] <- "O" # O = Old World
names(Ponerinae_NO_tip_data) <- Ponerinae_binary_range_table$Taxa
Ponerinae_NO_tip_data <- Ponerinae_NO_tip_data[match(x = Ponerinae_tree_old_calib$tip.label, table = names(Ponerinae_NO_tip_data))]
# Select color scheme for ranges
colors_per_ranges <- c("mediumpurple2", "peachpuff2")
names(colors_per_ranges) <- c("N", "O")
```
```{r prepare_trait_data_biogeo_2lvl}
# ------ Step 1: Prepare trait data ------ #
## Goal: Map trait evolution on the time-calibrated phylogeny
# 1.1/ Fit evolutionary models to trait data using Maximum Likelihood.
# 1.2/ Select the best fitting model comparing AICc.
# 1.3/ Infer ancestral characters estimates (ACE) at nodes.
# 1.4/ Run stochastic mapping simulations to generate evolutionary histories
# compatible with the best model and inferred ACE. (Only for categorical and biogeographic data)
# 1.5/ Infer ancestral states along branches.
# - For continuous traits: use interpolation to produce a `contMap`.
# - For categorical and biogeographic data: compute posterior frequencies of each state/range
# to produce a `densityMap` for each state/range.
library(deepSTRAPP)
# All these actions are performed by a single function: deepSTRAPP::prepare_trait_data()
?deepSTRAPP::prepare_trait_data()
## The R package `BioGeoBEARS` is needed for this workflow to process biogeographic data.
## Please install it manually from: https://github.com/nmatzke/BioGeoBEARS.
# In this example, to simplify the analyses, we set 'split_multi_area_ranges' = TRUE such as
# multi-range areas ('NO' in this case) are split between unique areas ('N' and 'O')
# to keep only two areas for downstream analyses
# Run prepare_trait_data with default options
# For biogeographic data, a DEC model is assumed by default.
Ponerinae_biogeo_data_old_calib <- prepare_trait_data(
tip_data = Ponerinae_NO_tip_data,
trait_data_type = "biogeographic",
phylo = Ponerinae_tree_old_calib,
evolutionary_models = "DEC+J", # Default = "DEC" for biogeographic
BioGeoBEARS_directory_path = "./BioGeoBEARS_directory/",
prefix_for_files = "Ponerinae_old_calib",
split_multi_area_ranges = TRUE, # Set to TRUE to split multi-range areas NO between N and O
nb_simulations = 100, # Reduce number of simulations to save time
colors_per_levels = colors_per_ranges,
seed = 1234) # Set seed for reproducibility
## Load Result to save time
data(Ponerinae_biogeo_data_old_calib, package = "deepSTRAPP")
# Explore output
str(Ponerinae_biogeo_data_old_calib, 1)
# $densityMaps hold maps for unique areas (Here, 'N' and 'O'), that will be used for downstream analyses.
# $densityMaps_all_ranges hold maps for unique areas AND multi-range areas (Here, also includes 'NO')
## Plot densityMaps for each range
# densityMap for range n°1 (N = "New World")
plot(Ponerinae_biogeo_data_old_calib$densityMaps[[1]])
# densityMap for range n°2 (N = "Old World")
plot(Ponerinae_biogeo_data_old_calib$densityMaps[[2]])
# densityMap for range n°3 (NO = "New World" + "Old World")
plot(Ponerinae_biogeo_data_old_calib$densityMaps_all_ranges[[3]])
## Plot densityMaps for all ranges together
# densityMaps with all unique areas overlaid
plot_densityMaps_overlay(Ponerinae_biogeo_data_old_calib$densityMaps)
# densityMaps with all ranges (including multi-area ranges) overlaid
plot_densityMaps_overlay(Ponerinae_biogeo_data_old_calib$densityMaps_all_ranges)
# As you can see, the probability of multi-range area 'NO' is significant only for deep nodes
# and is not likely to affect any of our downstream analyses if ignored.
## Inspect ancestral ranges at nodes
# Posterior probabilities of each range (= ACE) at internal nodes
Ponerinae_biogeo_data_old_calib$ace # Only with unique areas (Here, N and O)
Ponerinae_biogeo_data_old_calib$ace_all_ranges # Including multi-area ranges too (Here, NO)
## Inputs needed for Step 2 are the densityMaps (Ponerinae_densityMaps), and optionally,
## the tip_data (Ponerinae_NO_tip_data), and the ACE (Ponerinae_ACE)
```
```{r prepare_diversification_data_biogeo_2lvl}
# ------ Step 2: Prepare diversification data ------ #
## Goal: Map evolution of diversification rates and regime shifts on the time-calibrated phylogeny
# Run a BAMM (Bayesian Analysis of Macroevolutionary Mixtures)
## You need the BAMM C++ program installed in your machine to run this step.
## See the BAMM website: http://bamm-project.org/ and the companion R package [BAMMtools].
# 2.1/ Set BAMM - Record BAMM settings and generate all input files needed for BAMM.
# 2.2/ Run BAMM - Run BAMM and move output files in dedicated directory.
# 2.3/ Evaluate BAMM - Produce evaluation plots and ESS data.
# 2.4/ Import BAMM outputs - Load `BAMM_object` in R and subset posterior samples.
# 2.5/ Clean BAMM files - Remove files generated during the BAMM run.
# All these actions are performed by a single function: deepSTRAPP::prepare_diversification_data()
?deepSTRAPP::prepare_diversification_data()
# Run BAMM workflow with deepSTRAPP
## This step is time-consuming. You can skip it and load directly the result if needed
Ponerinae_BAMM_object_old_calib <- prepare_diversification_data(
BAMM_install_directory_path = "./software/bamm-2.5.0/", # To adjust to your own path to BAMM
phylo = Ponerinae_tree_old_calib,
prefix_for_files = "Ponerinae_old_calib",
seed = 1234, # Set seed for reproducibility
numberOfGenerations = 10^7, # Set high for optimal run, but will take a long time
BAMM_output_directory_path = "./BAMM_outputs/")
# Load directly the result
data(Ponerinae_BAMM_object_old_calib)
# This dataset is only available in development versions installed from GitHub.
# It is not available in CRAN versions.
# Use remotes::install_github(repo = "MaelDore/deepSTRAPP") to get the latest development version.
# Explore output
str(Ponerinae_BAMM_object_old_calib, 1)
# Record the regime shift events and macroevolutionary regimes parameters across posterior samples
str(Ponerinae_BAMM_object_old_calib$eventData, 1)
# Mean speciation rates at tips aggregated across all posterior samples
head(Ponerinae_BAMM_object_old_calib$meanTipLambda)
# Mean extinction rates at tips aggregated across all posterior samples
head(Ponerinae_BAMM_object_old_calib$meanTipMu)
# Plot mean net diversification rates and regime shifts on the phylogeny
plot_BAMM_rates(Ponerinae_BAMM_object_old_calib,
labels = FALSE, legend = TRUE)
## Input needed for Step 3 is the BAMM_object (Ponerinae_BAMM_object)
```
```{r run_deepSTRAPP_biogeo_2lvl}
# ------ Step 3: Run a deepSTRAPP workflow ------ #
## Goal: Extract traits, diversification rates and regimes at a given time in the past
## to test for differences with a STRAPP test
# 3.1/ Extract trait data at a given time in the past ('focal_time')
# 3.2/ Extract diversification rates and regimes at a given time in the past ('focal_time')
# 3.3/ Compute STRAPP test
# 3.4/ Repeat previous actions for many timesteps along evolutionary time
# All these actions are performed by a single function:
# For a single 'focal_time': deepSTRAPP::run_deepSTRAPP_for_focal_time()
# For multiple 'time_steps': deepSTRAPP::run_deepSTRAPP_over_time()
?deepSTRAPP::run_deepSTRAPP_for_focal_time()
?deepSTRAPP::run_deepSTRAPP_over_time()
## Set for five time steps of 5 My. Will generate deepSTRAPP workflows for 0 to 40 Mya.
time_step_duration <- 5
time_range <- c(0, 40)
# Run deepSTRAPP on net diversification rates
## This step is time-consuming. You can skip it and load directly the result if needed
Ponerinae_deepSTRAPP_biogeo_old_calib_0_40 <- run_deepSTRAPP_over_time(
densityMaps = Ponerinae_biogeo_data_old_calib$densityMaps,
ace = Ponerinae_biogeo_data_old_calib$ace,
tip_data = Ponerinae_NO_tip_data,
trait_data_type = "biogeographic",
BAMM_object = Ponerinae_BAMM_object_old_calib,
time_range = time_range,
time_step_duration = time_step_duration,
seed = 1234, # Set seed for reproducibility
alpha = 0.10, # Select a generous level of significance for the sake of the example
# Needed to obtain STRAPP stats and plot evaluation histograms (See 4.2)
return_perm_data = TRUE,
# Needed to get trait data and plot rates through time (See 4.3)
extract_trait_data_melted_df = TRUE,
# Needed to get diversification data and plot rates through time (See 4.3)
extract_diversification_data_melted_df = TRUE,
# Needed to obtain STRAPP stats and plot evaluation histograms (See 4.2)
return_STRAPP_results = TRUE,
# Needed to plot updated densityMaps (See 4.4)
return_updated_trait_data_with_Map = TRUE,
# Needed to map diversification rates on updated phylogenies (See 4.5)
return_updated_BAMM_object = TRUE,
verbose = TRUE,
verbose_extended = TRUE)
# Load the deepSTRAPP output summarizing results for 0 to 40 My
data(Ponerinae_deepSTRAPP_biogeo_old_calib_0_40, package = "deepSTRAPP")
# This dataset is only available in development versions installed from GitHub.
# It is not available in CRAN versions.
# Use remotes::install_github(repo = "MaelDore/deepSTRAPP") to get the latest development version.
## Explore output
str(Ponerinae_deepSTRAPP_biogeo_old_calib_0_40, max.level = 1)
# See next step for how to generate plots from those outputs
# Display test summary
# Can be passed down to [deepSTRAPP::plot_STRAPP_pvalues_over_time()] to generate a plot
# showing the evolution of the test results across time
Ponerinae_deepSTRAPP_biogeo_old_calib_0_40$pvalues_summary_df
# Access STRAPP test results
# Can be passed down to [deepSTRAPP::plot_histograms_STRAPP_tests_over_time()] to generate plot
# showing the null distribution of the test statistics
str(Ponerinae_deepSTRAPP_biogeo_old_calib_0_40$STRAPP_results, max.level = 2)
# Access trait data in a melted data.frame
head(Ponerinae_deepSTRAPP_biogeo_old_calib_0_40$trait_data_df_over_time)
# Access the diversification data in a melted data.frame
head(Ponerinae_deepSTRAPP_biogeo_old_calib_0_40$diversification_data_df_over_time)
# Both can be passed down to [deepSTRAPP::plot_rates_through_time()] to generate a plot
# showing the evolution of diversification rates though time in relation to trait values
# Access updated densityMaps for each focal time
# Can be used to plot densityMaps with branch cut-off at focal time
# with [deepSTRAPP::plot_densityMaps_overlay()]
str(Ponerinae_deepSTRAPP_biogeo_old_calib_0_40$updated_trait_data_with_Map_over_time, max.level = 2)
# Access updated BAMM_object for each focal time
# Can be used to map rates and regime shifts on phylogeny with branch cut-off
# at focal time with [deepSTRAPP::plot_BAMM_rates()]
str(Ponerinae_deepSTRAPP_biogeo_old_calib_0_40$updated_BAMM_objects_over_time, max.level = 2)
## Input needed for Step 4 is the deepSTRAPP object (Ponerinae_deepSTRAPP_biogeo_old_calib_0_40)
```
```{r plot_pvalues_biogeo_2lvl}
# ------ Step 4: Plot results ------ #
## Goal: Summarize the outputs in meaningful plots
# 4.1/ Plot evolution of STRAPP tests p-values through time
# 4.2/ Plot histogram of STRAPP test stats
# 4.3/ Plot evolution of rates through time in relation to ranges
# 4.4/ Plot rates vs. ranges across branches for a given 'focal_time'
# 4.5/ Plot updated densityMaps mapping range evolution for a given 'focal_time'
# 4.6/ Plot updated diversification rates and regimes for a given 'focal_time'
# 4.7/ Combine 4.5 and 4.6 to plot both mapped phylogenies with range evolution (4.5)
# and diversification rates and regimes (4.6).
# Each plot is achieved through a dedicated function
# Load the deepSTRAPP output summarizing results for 0 to 40 My
data(Ponerinae_deepSTRAPP_biogeo_old_calib_0_40, package = "deepSTRAPP")
# This dataset is only available in development versions installed from GitHub.
# It is not available in CRAN versions.
# Use remotes::install_github(repo = "MaelDore/deepSTRAPP") to get the latest development version.
### 4.1/ Plot evolution of STRAPP tests p-values through time ####
# ?deepSTRAPP::plot_STRAPP_pvalues_over_time()
## Plot results of Mann-Whitney-Wilcoxon tests across all time-steps
deepSTRAPP::plot_STRAPP_pvalues_over_time(
deepSTRAPP_outputs = Ponerinae_deepSTRAPP_biogeo_old_calib_0_40,
alpha = 0.1)
# This is the main output of deepSTRAPP. It shows the evolution of the significance
# of the STRAPP tests over time.
# This example highlights the importance of deepSTRAPP as the significance
# of STRAPP tests change over time.
# Differences in net diversification rates are not significant in the present
# (assuming a significant threshold of alpha = 0.10).
# Meanwhile, rates are significantly different in the past between 8 My to 30 My (the green area).
# This result supports the idea that differences in biodiversity across bioregions
# (i.e., "Old World" vs. "New World" ants) can be explained by differences of diversification rates
# that was detected in the past.
# Without use of deepSTRAPP, this conclusion would not have been supported by current diversification rates
# alone (although here, results should be discussed is regards to their weak degree of significance).
```
```{r plot_pvalues_biogeo_2lvl_eval_dev, eval = is_dev_version(), echo = FALSE}
# Load the deepSTRAPP output summarizing results for 0 to 40 My
data(Ponerinae_deepSTRAPP_biogeo_old_calib_0_40, package = "deepSTRAPP")
# Produce plot for results of overall Kruskal-Wallis tests over time
ggplot_STRAPP_pvalues <- deepSTRAPP::plot_STRAPP_pvalues_over_time(
deepSTRAPP_outputs = Ponerinae_deepSTRAPP_biogeo_old_calib_0_40,
alpha = 0.1, display_plot = FALSE)
# Adjust main title size
ggplot_STRAPP_pvalues <- ggplot_STRAPP_pvalues +
ggplot2::theme(plot.title = ggplot2::element_text(size = 18))
# Print plot
print(ggplot_STRAPP_pvalues)
```
```{r plot_pvalues_biogeo_2lvl_eval_CRAN, eval = !is_dev_version(), echo = FALSE, out.width = "100%"}
# Plot pre-rendered graph
knitr::include_graphics("figures/1.3_deepSTRAPP_biogeographic_data_4.1_plot_pvalues.PNG")
```
```{r plot_histogram_STRAPP_tests_overall_biogeo_2lvl}
### 4.2/ Plot histogram of STRAPP test stats ####
# Plot an histogram of the distribution of the test statistics used
# to assess the significance of STRAPP tests
# For a single 'focal_time': deepSTRAPP::plot_histogram_STRAPP_test_for_focal_time()
# For multiple 'time_steps': deepSTRAPP::plot_histograms_STRAPP_tests_over_time()
# ?deepSTRAPP::plot_histogram_STRAPP_test_for_focal_time
# ?deepSTRAPP::plot_histograms_STRAPP_tests_over_time
## These functions are used to provide visual illustration of the results of each STRAPP test.
# They can be used to complement the provision of the statistical results summarized in Step 3.
# Display the time-steps
Ponerinae_deepSTRAPP_biogeo_old_calib_0_40$time_steps
## Plot results from Mann-Whitney-Wilcoxon between the two unique areas ####
# Plot the histogram of test stats for time-step n°3 = 10 My
plot_histogram_STRAPP_test_for_focal_time(
deepSTRAPP_outputs = Ponerinae_deepSTRAPP_biogeo_old_calib_0_40,
focal_time = 10)
# The black line represents the expected value under the null hypothesis H0
# => Δ Mann-Whitney-Wilcoxon U-stat = 0.
# The histogram shows the distribution of the test statistics as observed
# across the 1000 posterior samples from BAMM.
# The red line represents the significance threshold for which 90% of the observed data
# exhibited a higher value than expected.
# Since this red line is above the null expectation (quantile 10% = 380.4),
# the test is significant for a value of alpha = 0.10.
# Plot the histograms of test stats for all time-steps
plot_histograms_STRAPP_tests_over_time(
deepSTRAPP_outputs = Ponerinae_deepSTRAPP_biogeo_old_calib_0_40)
```
```{r plot_histogram_STRAPP_tests_biogeo_2lvl_eval_dev, eval = is_dev_version(), echo = FALSE}
# Produce the histogram of test stats for time-step n°3 = 10 My
ggplot_histogram <- plot_histogram_STRAPP_test_for_focal_time(
deepSTRAPP_outputs = Ponerinae_deepSTRAPP_biogeo_old_calib_0_40,
focal_time = 10, display_plot = FALSE)
# Adjust title size
ggplot_histogram <- ggplot_histogram +
ggplot2::theme(plot.title = ggplot2::element_text(size = 18))
# Print plot
print(ggplot_histogram)
```
```{r plot_histogram_STRAPP_tests_biogeo_2lvl_eval_CRAN, eval = !is_dev_version(), echo = FALSE, out.width = "100%"}
# Plot pre-rendered graph
knitr::include_graphics("figures/1.3_deepSTRAPP_biogeographic_data_4.2_plot_STRAPP_tests.PNG")
```
```{r plot_rates_through_time_biogeo_2lvl}
### 4.3/ Plot evolution of rates through time ~ trait data ####
# ?deepSTRAPP::plot_rates_through_time()
# Generate ggplot
plot_rates_through_time(deepSTRAPP_outputs = Ponerinae_deepSTRAPP_biogeo_old_calib_0_40,
colors_per_levels = colors_per_ranges,
plot_CI = TRUE)
# This plot helps to visualize how differences in rates evolved over time.
# You can see that both bioregions "New World" and "Old World" had fairly different rates over time,
# with differences detected as significant between 8 to 30 My.
# However, in the present, we recorded an increase in diversification rates that blurred
# these differences and led to a non-significant STRAPP test when comparing current rates.
# This plot, alongside results of deepSTRAPP, supports the Diversification Rate Hypothesis
# in showing how "Old World" ant lineages may have accumulated faster, especially between 8 to 30 My.
# N.B.: The increase of diversification rates recorded in the present may largely be artifactual,
# due to the fact some lineages in the present will go extinct in the future,
# but have not been recorded as such.
# This bias is named the "pull of the present", and can impair evaluation of
# the Diversification Rate Hypothesis based only on current rates.
# deepSTRAPP offers a solution to this issue by investigating rate differences at any time in the past.
```
```{r plot_rates_through_time_biogeo_2lvl_eval_dev, eval = is_dev_version(), echo = FALSE}
plot_rates_through_time(deepSTRAPP_outputs = Ponerinae_deepSTRAPP_biogeo_old_calib_0_40,
colors_per_levels = colors_per_ranges,
plot_CI = TRUE)
```
```{r plot_rates_through_time_biogeo_2lvl_eval_CRAN, eval = !is_dev_version(), echo = FALSE, out.width = "100%"}
# Plot pre-rendered graph
knitr::include_graphics("figures/1.3_deepSTRAPP_biogeographic_data_4.3_plot_rates_through_time.PNG")
```
```{r plot_rates_vs_traits_biogeo_2lvl}
### 4.4/ Plot rates vs. ranges across branches for a given focal time ####
# ?deepSTRAPP::plot_rates_vs_trait_data_for_focal_time()
# ?deepSTRAPP::plot_rates_vs_trait_data_over_time()
# This plot help to visualize differences in rates vs. ranges across all branches
# found at specific time-steps (i.e., 'focal_time').
# Generate ggplot for time = 10 My
plot_rates_vs_trait_data_for_focal_time(
deepSTRAPP_outputs = Ponerinae_deepSTRAPP_biogeo_old_calib_0_40,
focal_time = 10,
colors_per_levels = colors_per_ranges)
# Here we focus on T = 10 My to highlight the differences detected in the previous steps.
# You can see that "Old World" ants tend to have higher rates than "New World" ants, at this time-step.
# This plot, alongside other results of deepSTRAPP, supports the Diversification Rate Hypothesis in showing
# "Old World" ant lineages may have accumulated faster, especially between 8 to 30 My.
# Additionally, the plot displays summary statistics for the STRAPP test associated with the data shown:
# * An observed statistic computed across the mean rates and trait states (i.e., habitats) shown on the plot.
# Here, U-stat obs = -27346, indicating ants in the "New World" exhibited lower rates than "Old World" ants.
# This is not the statistic of the STRAPP test itself, which is conducted across all BAMM posterior samples.
# * The quantile of null statistic distribution at the significant threshold used to define test significance.
# The test will be considered significant (i.e., the null hypothesis is rejected)
# if this value is higher than zero, as shown on the histogram in Section 4.2.
# Here, Q10% = 380.4, so the test is significant (according to this significance threshold).
# * The p-value of the associated STRAPP test. Here, p = 0.088.
# Plot rates vs. ranges for all time-steps
plot_rates_vs_trait_data_over_time(
deepSTRAPP_outputs = Ponerinae_deepSTRAPP_biogeo_old_calib_0_40,
colors_per_levels = colors_per_ranges)
```
```{r plot_rates_vs_traits_biogeo_2lvl_eval, fig.height = 7, fig.width = 8.5, out.width = "100%", eval = is_dev_version(), echo = FALSE}
# Generate ggplot for time = 10 My
plot_rates_vs_trait_data_for_focal_time(
deepSTRAPP_outputs = Ponerinae_deepSTRAPP_biogeo_old_calib_0_40,
focal_time = 10,
colors_per_levels = colors_per_ranges)
```
```{r plot_rates_vs_traits_biogeo_2lvl_eval_CRAN, eval = !is_dev_version(), echo = FALSE, out.width = "100%"}
# Plot pre-rendered graph
knitr::include_graphics("figures/1.3_deepSTRAPP_biogeographic_data_4.4_plot_rates_vs_traits.PNG")
```
```{r plot_updated_densityMaps_biogeo_2lvl}
### 4.5/ Plot updated densityMaps mapping trait evolution for a given 'focal_time' ####
# ?deepSTRAPP::plot_densityMaps_overlay()
## These plots help to visualize the evolution of trait data across the phylogeny,
## and to focus on tip values at specific time-steps.
# Display the time-steps
Ponerinae_deepSTRAPP_biogeo_old_calib_0_40$time_steps
## The next plot shows the evolution of trait data across the whole phylogeny (100-0 My).
# Plot initial densityMaps (t = 0)
densityMaps_0My <- Ponerinae_deepSTRAPP_biogeo_old_calib_0_40$updated_trait_data_with_Map_over_time[[1]]
plot_densityMaps_overlay(densityMaps_0My$densityMaps,
colors_per_levels = colors_per_ranges,
cex_pies = 0.3, # Reduce pie size
fsize = 0.1) # Reduce tip label size
title(main = "Trait evolution for 100-0 My")
## The next plot shows the evolution of trait data from root to 10 Mya (100-10 My).
# Plot updated densityMaps for time-step n°3 = 10 My
densityMaps_10My <- Ponerinae_deepSTRAPP_biogeo_old_calib_0_40$updated_trait_data_with_Map_over_time[[3]]
plot_densityMaps_overlay(densityMaps_10My$densityMaps,
colors_per_levels = colors_per_ranges,
cex_pies = 0.4, # Reduce pie size
fsize = 0.1) # Reduce tip label size
title(main = "Trait evolution for 100-10 My")
## The next plot shows the evolution of trait data from root to 40 Mya (100-40 My).
# Plot updated densityMaps for time-step n°9 = 40 My
densityMaps_40My <- Ponerinae_deepSTRAPP_biogeo_old_calib_0_40$updated_trait_data_with_Map_over_time[[9]]
plot_densityMaps_overlay(densityMaps_40My$densityMaps,
colors_per_levels = colors_per_ranges,
fsize = 0.2) # Reduce tip label size
title(main = "Trait evolution for 100-40 My")
```
```{r plot_updated_densityMaps_biogeo_2lvl_eval, eval = is_dev_version(), echo = FALSE}
# Plot initial densityMaps (t = 0)
densityMaps_0My <- Ponerinae_deepSTRAPP_biogeo_old_calib_0_40$updated_trait_data_with_Map_over_time[[1]]
plot_densityMaps_overlay(densityMaps_0My$densityMaps,
colors_per_levels = colors_per_ranges,
cex_pies = 0.3, # Reduce pie size
fsize = 0.1)
title(main = "Trait evolution for 100-0 My")
# Plot updated densityMaps for time-step n°9 = 40 My
densityMaps_40My <- Ponerinae_deepSTRAPP_biogeo_old_calib_0_40$updated_trait_data_with_Map_over_time[[9]]
plot_densityMaps_overlay(densityMaps_40My$densityMaps,
colors_per_levels = colors_per_ranges,
fsize = 0.2)
title(main = "Trait evolution for 100-40 My")
```
```{r plot_updated_densityMaps_biogeo_2lvl_eval_CRAN, eval = !is_dev_version(), echo = FALSE, out.width = "100%"}
# Plot pre-rendered graph
knitr::include_graphics("figures/1.3_deepSTRAPP_biogeographic_data_4.5_plot_updated_densityMaps_1.PNG")
knitr::include_graphics("figures/1.3_deepSTRAPP_biogeographic_data_4.5_plot_updated_densityMaps_2.PNG")
```
```{r plot_BAMM_rates_biogeo_2lvl}
### 4.6/ Plot updated diversification rates and regimes for a given 'focal_time' ####
# ?deepSTRAPP::plot_BAMM_rates()
## These plots help to visualize the evolution of diversification rates across the phylogeny,
## and to focus on tip values at specific time-steps.
# Display the time-steps
Ponerinae_deepSTRAPP_biogeo_old_calib_0_40$time_steps
# Extract root age
root_age <- max(phytools::nodeHeights(Ponerinae_tree_old_calib)[,2])
## The next plot shows the evolution of net diversification rates across the whole phylogeny (100-0 My).
# Plot diversification rates on initial phylogeny (t = 0)
BAMM_map_0My <- Ponerinae_deepSTRAPP_biogeo_old_calib_0_40$updated_BAMM_objects_over_time[[1]]
plot_BAMM_rates(BAMM_map_0My, labels = FALSE, par.reset = FALSE)
abline(v = root_age - 10, col = "red", lty = 2) # Show where the phylogeny will be cut for t = 10My
abline(v = root_age - 40, col = "red", lty = 2) # Show where the phylogeny will be cut for t = 40My
title(main = "BAMM rates for 100-0 My")
## The next plot shows the evolution of net diversification rates from root to 10 Mya (100-10 My).
# Plot diversification rates on updated phylogeny for time-step n°3 = 10 My
BAMM_map_10My <- Ponerinae_deepSTRAPP_biogeo_old_calib_0_40$updated_BAMM_objects_over_time[[3]]
plot_BAMM_rates(BAMM_map_10My, labels = FALSE,
colorbreaks = BAMM_map_10My$initial_colorbreaks$net_diversification)
title(main = "BAMM rates for 100-10 My")
## The next plot shows the evolution of net diversification rates from root to 40 Mya (100-40 My).
# Plot diversification rates on updated phylogeny for time-step n°9 = 40 My
BAMM_map_40My <- Ponerinae_deepSTRAPP_biogeo_old_calib_0_40$updated_BAMM_objects_over_time[[9]]
plot_BAMM_rates(BAMM_map_40My, labels = FALSE,
colorbreaks = BAMM_map_40My$initial_colorbreaks$net_diversification)
title(main = "BAMM rates for 100-40 My")
```
```{r plot_BAMM_rates_biogeo_2lvl_eval_dev, eval = is_dev_version(), echo = FALSE}
old_par <- par(no.readonly = TRUE)
par(mfrow = c(1, 2))
# Plot diversification rates on initial phylogeny (t = 0)
BAMM_map_0My <- Ponerinae_deepSTRAPP_biogeo_old_calib_0_40$updated_BAMM_objects_over_time[[1]]
plot_BAMM_rates(BAMM_map_0My, labels = FALSE, legend = TRUE, par.reset = FALSE)
abline(v = max(phytools::nodeHeights(Ponerinae_tree_old_calib)[,2]) - 10, col = "red", lty = 2) # Show where the phylogeny will be cut
title(main = "BAMM rates for 100-0 My")
# Plot diversification rates on updated phylogeny for time-step n°3 = 10 My
BAMM_map_10My <- Ponerinae_deepSTRAPP_biogeo_old_calib_0_40$updated_BAMM_objects_over_time[[3]]
plot_BAMM_rates(BAMM_map_10My, labels = FALSE, legend = TRUE,
colorbreaks = BAMM_map_10My$initial_colorbreaks$net_diversification)
title(main = "BAMM rates for 100-10 My")
par(old_par)
```
```{r plot_BAMM_rates_biogeo_2lvl_eval_CRAN, eval = !is_dev_version(), echo = FALSE, out.width = "100%"}
# Plot pre-rendered graph
knitr::include_graphics("figures/1.3_deepSTRAPP_biogeographic_data_4.6_plot_BAMM_rates.PNG")
```
```{r plot_traits_vs_rates_on_phylogeny_biogeo_2lvl}
### 4.7/ Plot both trait evolution and diversification rates and regimes updated for a given 'focal_time' ####
# ?deepSTRAPP::plot_traits_vs_rates_on_phylogeny_for_focal_time()
## These plots help to visualize simultaneously the evolution of trait and diversification rates
# across the phylogeny, and to focus on tip values at specific time-steps.
# Display the time-steps
Ponerinae_deepSTRAPP_biogeo_old_calib_0_40$time_steps
## The next plot shows the evolution of ranges and rates across the whole phylogeny (100-0 My).
# Plot both mapped phylogenies in the present (t = 0)
plot_traits_vs_rates_on_phylogeny_for_focal_time(
deepSTRAPP_outputs = Ponerinae_deepSTRAPP_biogeo_old_calib_0_40,
focal_time = 0,
ftype = "off", lwd = 0.7,
colors_per_levels = colors_per_ranges,
labels = FALSE, legend = FALSE,
par.reset = FALSE)
## The next plot shows the evolution of ranges and rates from root to 10 Mya (100-10 My).
# Plot both mapped phylogenies for time-step n°3 = 10 My
plot_traits_vs_rates_on_phylogeny_for_focal_time(
deepSTRAPP_outputs = Ponerinae_deepSTRAPP_biogeo_old_calib_0_40,
focal_time = 10,
ftype = "off", lwd = 1.2,
colors_per_levels = colors_per_ranges,
labels = FALSE, legend = FALSE,
par.reset = FALSE)
## The next plot shows the evolution of ranges and rates from root to 40 Mya (100-40 My).
# Plot both mapped phylogenies for time-step n°9 = 40 My
plot_traits_vs_rates_on_phylogeny_for_focal_time(
deepSTRAPP_outputs = Ponerinae_deepSTRAPP_biogeo_old_calib_0_40,
focal_time = 40,
ftype = "off", lwd = 1.2,
colors_per_levels = colors_per_ranges,
labels = FALSE, legend = FALSE,
par.reset = FALSE)
```
```{r plot_traits_vs_rates_on_phylogeny_biogeo_2lvl_eval_dev, eval = is_dev_version(), echo = FALSE}
# Plot both mapped phylogenies in the present (t = 0)
plot_traits_vs_rates_on_phylogeny_for_focal_time(
deepSTRAPP_outputs = Ponerinae_deepSTRAPP_biogeo_old_calib_0_40,
focal_time = 0,
ftype = "off", lwd = 0.7,
colors_per_levels = colors_per_ranges,
labels = FALSE, legend = FALSE,
par.reset = FALSE)
# Plot both mapped phylogenies for time-step n°9 = 40 My
plot_traits_vs_rates_on_phylogeny_for_focal_time(
deepSTRAPP_outputs = Ponerinae_deepSTRAPP_biogeo_old_calib_0_40,
focal_time = 40,
ftype = "off", lwd = 1.2,
colors_per_levels = colors_per_ranges,
labels = FALSE, legend = FALSE,
par.reset = FALSE)
```
```{r plot_traits_vs_rates_on_phylogeny_biogeo_2lvl_eval_CRAN, eval = !is_dev_version(), echo = FALSE, out.width = "100%"}
# Plot pre-rendered graph
knitr::include_graphics("figures/1.3_deepSTRAPP_biogeographic_data_4.7_plot_traits_vs_rate_maps_1.PNG")
knitr::include_graphics("figures/1.3_deepSTRAPP_biogeographic_data_4.7_plot_traits_vs_rate_maps_2.PNG")
```