## ----set_options, include = FALSE--------------------------------------------- knitr::opts_chunk$set( eval = FALSE, # Chunks of codes will not be evaluated by default collapse = TRUE, comment = "#>", fig.width = 7, fig.height = 5 # Set device size at rendering time (when plots are generated) ) ## ----setup, eval = TRUE, include = FALSE-------------------------------------- library(deepSTRAPP) is_dev_version <- function (pkg = "deepSTRAPP") { # # Check if ran on CRAN # not_cran <- identical(Sys.getenv("NOT_CRAN"), "true") # || interactive() # Version number check version <- tryCatch(as.character(utils::packageVersion(pkg)), error = function(e) "") dev_version <- grepl("\\.9000", version) # not_cran || dev_version return(dev_version) } ## ----adjust_dpi_CRAN, include = FALSE, eval = !is_dev_version()--------------- knitr::opts_chunk$set( dpi = 50 # Lower DPI to save space ) ## ----adjust_dpi_dev, include = FALSE, eval = is_dev_version()----------------- # knitr::opts_chunk$set( # dpi = 72 # Default DPI for the dev version # ) ## ----load_data_cont----------------------------------------------------------- # # ------ Step 0: Load data ------ # # # ## Load trait df # data("Ponerinae_trait_tip_data", package = "deepSTRAPP") # # dim(Ponerinae_trait_tip_data) # View(Ponerinae_trait_tip_data) # # # Extract continuous trait data as a named vector # Ponerinae_cont_tip_data <- setNames(object = Ponerinae_trait_tip_data$fake_cont_tip_data, # nm = Ponerinae_trait_tip_data$Taxa) # # # This not valid biological data. For the sake of this example, we will assume this is size data. # # # Select a color scheme from lowest to highest values (i.e., smallest to largest ants) # color_scale = c("darkgreen", "limegreen", "orange", "red") # # ## Load phylogeny with old time-calibration # data("Ponerinae_tree_old_calib", package = "deepSTRAPP") # # plot(Ponerinae_tree_old_calib) # ape::Ntip(Ponerinae_tree_old_calib) == length(Ponerinae_cont_tip_data) # # ## Check that trait data and phylogeny are named and ordered similarly # all(names(Ponerinae_cont_tip_data) == Ponerinae_tree_old_calib$tip.label) # # # ## Inputs needed for Step 1 are the tip_data (Ponerinae_cont_tip_data) and the phylogeny # # (Ponerinae_tree_old_calib), and optionally, a color scheme (color_scale). # ## ----prepare_trait_data_cont-------------------------------------------------- # # ------ Step 1: Prepare trait data ------ # # # ## Goal: Map trait evolution on the time-calibrated phylogeny # # # 1.1/ Fit evolutionary models to trait data using Maximum Likelihood. # # 1.2/ Select the best fitting model comparing AICc. # # 1.3/ Infer ancestral characters estimates (ACE) at nodes. # # 1.4/ Infer ancestral states along branches using interpolation to produce a `contMap`. # # library(deepSTRAPP) # # # All these actions are performed by a single function: deepSTRAPP::prepare_trait_data() # ?deepSTRAPP::prepare_trait_data() # # # Run prepare_trait_data with default options # # For continuous trait, a BM model is assumed by default. # Ponerinae_trait_object <- prepare_trait_data(tip_data = Ponerinae_cont_tip_data, # trait_data_type = "continuous", # phylo = Ponerinae_tree_old_calib, # seed = 1234) # Set seed for reproducibility # # # Explore output # str(Ponerinae_trait_object, 1) # # # Extract the contMap representing continuous trait evolution on the phylogeny # Ponerinae_contMap <- Ponerinae_trait_object$contMap # plot_contMap(Ponerinae_contMap) # # # Extract the Ancestral Character Estimates (ACE) = trait values at nodes # Ponerinae_ACE <- Ponerinae_trait_object$ace # head(Ponerinae_ACE) # # ## Inputs needed for Step 2 are the contMap, and optionally, the tip_data (Ponerinae_cont_tip_data), # # and the ACE (Ponerinae_ACE) # ## ----prepare_diversification_data_cont---------------------------------------- # # ------ Step 2: Prepare diversification data ------ # # # ## Goal: Map evolution of diversification rates and regime shifts on the time-calibrated phylogeny # # # Run a BAMM (Bayesian Analysis of Macroevolutionary Mixtures) # # # You need the BAMM C++ program installed in your machine to run this step. # # See the BAMM website: http://bamm-project.org/ and the companion R package [BAMMtools]. # # # 2.1/ Set BAMM - Record BAMM settings and generate all input files needed for BAMM. # # 2.2/ Run BAMM - Run BAMM and move output files in dedicated directory. # # 2.3/ Evaluate BAMM - Produce evaluation plots and ESS data. # # 2.4/ Import BAMM outputs - Load `BAMM_object` in R and subset posterior samples. # # 2.5/ Clean BAMM files - Remove files generated during the BAMM run. # # # All these actions are performed by a single function: deepSTRAPP::prepare_diversification_data() # ?deepSTRAPP::prepare_diversification_data() # # # Run BAMM workflow with deepSTRAPP # ## This step is time-consuming. You can skip it and load directly the result if needed # Ponerinae_BAMM_object_old_calib <- prepare_diversification_data( # BAMM_install_directory_path = "./software/bamm-2.5.0/", # To adjust to your own path to BAMM # phylo = Ponerinae_tree_old_calib, # prefix_for_files = "Ponerinae", # seed = 1234, # Set seed for reproducibility # numberOfGenerations = 10^7, # Set high for optimal run, but will take a long time # BAMM_output_directory_path = "./BAMM_outputs/") # # # Load directly the result # data(Ponerinae_BAMM_object_old_calib) # # This dataset is only available in development versions installed from GitHub. # # It is not available in CRAN versions. # # Use remotes::install_github(repo = "MaelDore/deepSTRAPP") to get the latest development version. # # # Explore output # str(Ponerinae_BAMM_object_old_calib, 1) # # Record the regime shift events and macroevolutionary regimes parameters across posterior samples # str(Ponerinae_BAMM_object_old_calib$eventData, 1) # # Mean speciation rates at tips aggregated across all posterior samples # head(Ponerinae_BAMM_object_old_calib$meanTipLambda) # # Mean extinction rates at tips aggregated across all posterior samples # head(Ponerinae_BAMM_object_old_calib$meanTipMu) # # # Plot mean net diversification rates and regime shifts on the phylogeny # plot_BAMM_rates(Ponerinae_BAMM_object_old_calib, # labels = FALSE, legend = TRUE) # # ## Input needed for Step 3 is the BAMM_object (Ponerinae_BAMM_object) # ## ----run_deepSTRAPP_cont------------------------------------------------------ # # ------ Step 3: Run a deepSTRAPP workflow ------ # # # ## Goal: Extract traits, diversification rates and regimes at a given time in the past # # to test for differences with a STRAPP test # # # 3.1/ Extract trait data at a given time in the past ('focal_time') # # 3.2/ Extract diversification rates and regimes at a given time in the past ('focal_time') # # 3.3/ Compute STRAPP test # # 3.4/ Repeat previous actions for many timesteps along evolutionary time # # # All these actions are performed by a single function: # # For a single 'focal_time': deepSTRAPP::run_deepSTRAPP_for_focal_time() # # For multiple 'time_steps': deepSTRAPP::run_deepSTRAPP_over_time() # ?deepSTRAPP::run_deepSTRAPP_for_focal_time() # ?deepSTRAPP::run_deepSTRAPP_over_time() # # ## Set for time steps of 5 My. Will generate deepSTRAPP workflows for 0 to 40 Mya. # # nb_time_steps <- 5 # time_step_duration <- 5 # time_range <- c(0, 40) # # # Run deepSTRAPP on net diversification rates # ## This step is time-consuming. You can skip it and load directly the result if needed # Ponerinae_deepSTRAPP_cont_old_calib_0_40 <- run_deepSTRAPP_over_time( # contMap = Ponerinae_contMap, # ace = Ponerinae_ACE, # tip_data = Ponerinae_cont_tip_data, # trait_data_type = "continuous", # BAMM_object = Ponerinae_BAMM_object_old_calib, # # nb_time_steps = nb_time_steps, # time_range = time_range, # time_step_duration = time_step_duration, # seed = 1234, # Set seed for reproducibility # # Needed to obtain STRAPP stats and plot evaluation histograms (See 4.2) # return_perm_data = TRUE, # # Needed to get trait data and plot rates through time (See 4.3) # extract_trait_data_melted_df = TRUE, # # Needed to get diversification data and plot rates through time (See 4.3) # extract_diversification_data_melted_df = TRUE, # # Needed to obtain STRAPP stats and plot evaluation histograms (See 4.2) # return_STRAPP_results = TRUE, # # Needed to plot updated contMaps (See 4.4) # return_updated_trait_data_with_Map = TRUE, # # Needed to map diversification rates on updated phylogenies (See 4.5) # return_updated_BAMM_object = TRUE, # verbose = TRUE, # verbose_extended = TRUE) # # # Load the deepSTRAPP output summarizing results for 0 to 40 My # data(Ponerinae_deepSTRAPP_cont_old_calib_0_40, package = "deepSTRAPP") # # This dataset is only available in development versions installed from GitHub. # # It is not available in CRAN versions. # # Use remotes::install_github(repo = "MaelDore/deepSTRAPP") to get the latest development version. # # ## Explore output # str(Ponerinae_deepSTRAPP_cont_old_calib_0_40, max.level = 1) # # # See next step for how to generate plots from those outputs # # # Display test summary # # Can be passed down to [deepSTRAPP::plot_STRAPP_pvalues_over_time()] to generate a plot # # showing the evolution of the test results across time # Ponerinae_deepSTRAPP_cont_old_calib_0_40$pvalues_summary_df # # # Access STRAPP test results # # Can be passed down to [deepSTRAPP::plot_histograms_STRAPP_tests_over_time()] to generate plot # # showing the null distribution of the test statistics # str(Ponerinae_deepSTRAPP_cont_old_calib_0_40$STRAPP_results, max.level = 2) # # # Access trait data in a melted data.frame # head(Ponerinae_deepSTRAPP_cont_old_calib_0_40$trait_data_df_over_time) # # Access the diversification data in a melted data.frame # head(Ponerinae_deepSTRAPP_cont_old_calib_0_40$diversification_data_df_over_time) # # Both can be passed down to [deepSTRAPP::plot_rates_through_time()] to generate a plot # # showing the evolution of diversification rates though time in relation to trait values # # # Access updated contMaps for each focal time # # Can be used to plot contMap with branch cut-off at focal time with [deepSTRAPP::plot_contMap()] # str(Ponerinae_deepSTRAPP_cont_old_calib_0_40$updated_trait_data_with_Map_over_time, max.level = 2) # # # Access updated BAMM_object for each focal time # # Can be used to map rates and regime shifts on phylogeny with branch cut-off # # at focal time with [deepSTRAPP::plot_BAMM_rates()] # str(Ponerinae_deepSTRAPP_cont_old_calib_0_40$updated_BAMM_objects_over_time, max.level = 2) # # ## Input needed for Step 4 is the deepSTRAPP object (Ponerinae_deepSTRAPP_cont_old_calib_0_40) # ## ----plot_pvalues_cont-------------------------------------------------------- # # ------ Step 4: Plot results ------ # # # ## Goal: Summarize the outputs in meaningful plots # # # 4.1/ Plot evolution of STRAPP tests p-values through time # # 4.2/ Plot histogram of STRAPP test stats # # 4.3/ Plot evolution of rates through time in relation to trait values # # 4.4/ Plot rates vs. trait values across branches for a given 'focal_time' # # 4.5/ Plot updated densityMaps mapping trait evolution for a given 'focal_time' # # 4.6/ Plot updated diversification rates and regimes for a given 'focal_time' # # 4.7/ Combine 4.5 and 4.6 to plot both mapped phylogenies with trait evolution (4.5) # # and diversification rates and regimes (4.6). # # # Each plot is achieved through a dedicated function # # # Load the deepSTRAPP output summarizing results for 0 to 40 My # data(Ponerinae_deepSTRAPP_cont_old_calib_0_40, package = "deepSTRAPP") # # This dataset is only available in development versions installed from GitHub. # # It is not available in CRAN versions. # # Use remotes::install_github(repo = "MaelDore/deepSTRAPP") to get the latest development version. # # ### 4.1/ Plot evolution of STRAPP tests p-values through time #### # # # ?deepSTRAPP::plot_STRAPP_pvalues_over_time() # # ## Plot results of Spearman's tests over time # deepSTRAPP::plot_STRAPP_pvalues_over_time( # deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cont_old_calib_0_40) # # # This is the main output of deepSTRAPP. It shows the evolution of the significance # # of the STRAPP tests over time. # # This example highlights the importance of deepSTRAPP as the significance of STRAPP tests # # change over time. # # Correlation between trait values and net diversification rates are not significant in the present # # (assuming a significant threshold of alpha = 0.05). # # Meanwhile, correlations were significant in the past between 5 My to 25 My (the green area). # # This result supports the idea that differences in biodiversity in relation to trait values # # (e.g., ant size) can be explained by correlations between rates and net diversification rates # # that occurred in the past. Without use of deepSTRAPP, this conclusion would not have been supported # # by current diversification rates alone. # # ## ----plot_pvalues_cont_eval_dev, eval = is_dev_version(), echo = FALSE-------- # # # Load the deepSTRAPP output summarizing results for 0 to 40 My # data(Ponerinae_deepSTRAPP_cont_old_calib_0_40, package = "deepSTRAPP") # # # Produce the results of overall Kruskal-Wallis tests over time # ggplot_STRAPP_pvalues <- deepSTRAPP::plot_STRAPP_pvalues_over_time( # deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cont_old_calib_0_40, # display_plot = FALSE) # # Adjust main title size # ggplot_STRAPP_pvalues <- ggplot_STRAPP_pvalues + # ggplot2::theme(plot.title = ggplot2::element_text(size = 18)) # # Print plot # print(ggplot_STRAPP_pvalues) # ## ----plot_pvalues_cont_eval_CRAN, eval = !is_dev_version(), echo = FALSE, out.width = "100%"---- # Plot pre-rendered graph knitr::include_graphics("figures/1.1_deepSTRAPP_continuous_data_4.1_plot_pvalues.PNG") ## ----plot_histogram_STRAPP_tests_cont----------------------------------------- # ### 4.2/ Plot histogram of STRAPP test stats #### # # # Plot an histogram of the distribution of the test statistics used to assess # # the significance of STRAPP tests # # For a single 'focal_time': deepSTRAPP::plot_histogram_STRAPP_test_for_focal_time() # # For multiple 'time_steps': deepSTRAPP::plot_histograms_STRAPP_tests_over_time() # # # ?deepSTRAPP::plot_histogram_STRAPP_test_for_focal_time # # ?deepSTRAPP::plot_histograms_STRAPP_tests_over_time # # ## These functions are used to provide visual illustration of the results of each STRAPP test. # # They can be used to complement the provision of the statistical results summarized in Step 3. # # # Display the time-steps # Ponerinae_deepSTRAPP_cont_old_calib_0_40$time_steps # # # Plot the histogram of test stats for time-step n°5 = 20 My # plot_histogram_STRAPP_test_for_focal_time( # deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cont_old_calib_0_40, # focal_time = 20) # # # The black line represents the expected value under the null hypothesis H0 => Δ abs(Spearman rho stat) = 0. # # The histogram shows the distribution of the test statistics as observed # # across the 1000 posterior samples from BAMM. # # The red line represents the significance threshold for which 95% of the observed data # # exhibited a higher value than expected. # # Since this red line is above the null expectation (quantile 5% = 0.036), # # the test is significant for a value of alpha = 0.05. # # Therefore, ant size was significantly correlated with net diversification rates 20 Mya. # # Since we performed a two-tailed test (default), we do not know the direction of this correlation (yet). # # # Plot the histograms of test stats for all time-steps # plot_histograms_STRAPP_tests_over_time( # deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cont_old_calib_0_40) # ## ----plot_histogram_STRAPP_tests_cont_eval_dev, fig.width = 8.5, fig.height = 6, out.width = "100%", eval = is_dev_version(), echo = FALSE---- # # # Plot the histogram of test stats for time-step n°5 = 20 My # plot_histogram_STRAPP_test_for_focal_time( # deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cont_old_calib_0_40, # focal_time = 20) # ## ----plot_histogram_STRAPP_tests_cont_eval_CRAN, eval = !is_dev_version(), echo = FALSE, out.width = "100%"---- # Plot pre-rendered graph knitr::include_graphics("figures/1.1_deepSTRAPP_continuous_data_4.2_plot_STRAPP_tests.PNG") ## ----plot_rates_through_time_cont--------------------------------------------- # ### 4.3/ Plot evolution of rates through time ~ trait data #### # # # ?deepSTRAPP::plot_rates_through_time() # # # Generate ggplot # plot_rates_through_time(deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cont_old_calib_0_40, # plot_CI = TRUE) # # # This plot helps to visualize how correlations between trait values and rates evolved over time. # # Here, we observe a "negative" correlation as ants in the lowest quartile of trait values (in blue) # # display the highest net diversification rates over time, while ants in the highest quartile # # of trait values (in red) display the lowest net diversification rates over time. # # However, in the present, we recorded an increase in diversification rates that blurred # # these differences and led to a non-significant STRAPP test when comparing current rates. # # This plot, alongside results of deepSTRAPP, supports the Diversification Rate Hypothesis # # in showing how ant lineages with low trait values (e.g., small size) may have accumulated faster # # than ant lineages with high trait value (e.g., large size), especially between 5 to 25 My. # # # N.B.: The increase of diversification rates recorded in the present may largely be artifactual, # # due to the fact some lineages in the present will go extinct in the future, # # but have not yet been recorded as such. # # This bias is named the "pull of the present", and can impair evaluation of # # the Diversification Rate Hypothesis based only on current rates. # # deepSTRAPP offers a solution to this issue by investigating rate differences at any time in the past. # # ## ----plot_rates_through_time_cont_eval_dev, fig.width = 8.5, out.width = "100%", eval = is_dev_version(), echo = FALSE---- # # # Produce RTT plot # ggplot_RTT_list <- plot_rates_through_time(deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cont_old_calib_0_40, # plot_CI = TRUE, display_plot = FALSE) # # Adjust title size # ggplot_RTT <- ggplot_RTT_list$rates_TT_ggplot + # ggplot2::theme(plot.title = ggplot2::element_text(size = 18), # axis.title = ggplot2::element_text(size = 16)) # # Print plot # print(ggplot_RTT) # ## ----plot_rates_through_time_cont_eval_CRAN, eval = !is_dev_version(), echo = FALSE, out.width = "100%"---- # Plot pre-rendered graph knitr::include_graphics("figures/1.1_deepSTRAPP_continuous_data_4.3_plot_rates_through_time.PNG") ## ----plot_rates_vs_traits_cont------------------------------------------------ # ### 4.4/ Plot rates vs. ranges across branches for a given focal time #### # # # ?deepSTRAPP::plot_rates_vs_trait_data_for_focal_time() # # ?deepSTRAPP::plot_rates_vs_trait_data_over_time() # # # This plot help to visualize differences in rates vs. ranges across all branches # # found at specific time-steps (i.e., 'focal_time'). # # # Generate ggplot for time = 20 My # plot_rates_vs_trait_data_for_focal_time( # deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cont_old_calib_0_40, # focal_time = 20, # color_scale = color_scale) # # # Here we focus on T = 20 My to highlight the correlation detected in the previous steps. # # You can see that ants in the highest trait values (in red) exhibits the lowest rates, at this time-step. # # This plot, alongside other results of deepSTRAPP, supports the Diversification Rate Hypothesis in showing # # how ant lineages with low trait values (e.g., small size) may have accumulated faster # # than ant lineages with high trait value (e.g., large size), especially between 5 to 25 My. # # Additionally, the plot displays summary statistics for the STRAPP test associated with the data shown: # # * An observed statistic computed across the mean rates and trait values shown on the plot. # # Here, rho obs = -0.743, indicating a negative correlation between size and diversification in ponerine ants. # # This is not the statistic of the STRAPP test itself, which is conducted across all BAMM posterior samples. # # * The quantile of null statistic distribution at the significant threshold used to define test significance. # # The test will be considered significant (i.e., the null hypothesis is rejected) # # if this value is higher than zero, as shown on the histogram in Section 4.2. # # Here, Q5% = 0.036, so the test is significant (according to this significance threshold). # # * The p-value of the associated STRAPP test. Here, p = 0.022. # # # Plot rates vs. ranges for all time-steps # plot_rates_vs_trait_data_over_time( # deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cont_old_calib_0_40, # color_scale = color_scale) # ## ----plot_rates_vs_traits_cont_eval_dev, fig.height = 7, fig.width = 8.5, out.width = "100%", eval = is_dev_version(), echo = FALSE---- # # Select a color scheme from lowest to highest values # color_scale = c("darkgreen", "limegreen", "orange", "red") # # # Generate ggplot for time = 20 My # plot_rates_vs_trait_data_for_focal_time( # deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cont_old_calib_0_40, # focal_time = 20, # color_scale = color_scale) ## ----plot_rates_vs_traits_cont_eval_CRAN, eval = !is_dev_version(), echo = FALSE, out.width = "100%"---- # Plot pre-rendered graph knitr::include_graphics("figures/1.1_deepSTRAPP_continuous_data_4.4_plot_rates_vs_traits.PNG") ## ----plot_updated_contMap_cont, eval = FALSE, echo = TRUE--------------------- # ### 4.5/ Plot updated contMap mapping trait evolution for a given 'focal_time' #### # # # ?deepSTRAPP::plot_contMap() # # ## These plots help to visualize the evolution of trait values across the phylogeny, # ## and to focus on tip values at specific time-steps. # # # Display the time-steps # Ponerinae_deepSTRAPP_cont_old_calib_0_40$time_steps # # # Extract root age # root_age <- max(phytools::nodeHeights(Ponerinae_tree_old_calib)[,2]) # # ## The next plot shows the evolution of trait values across the whole phylogeny (100-0 My). # # # Plot initial contMap (t = 0) # contMap_0My <- Ponerinae_deepSTRAPP_cont_old_calib_0_40$updated_trait_data_with_Map_over_time[[1]] # plot_contMap(contMap_0My$contMap, # color_scale = c("darkgreen", "limegreen", "orange", "red"), # lwd = 0.7, # Adjust width of branches # fsize = c(0.1, 1)) # Reduce tip label size # abline(v = root_age - 20, col = "red", lty = 2) # Show where the phylogeny will be cut # # ## The next plot shows the evolution of trait values from root to 20Mya (100-20 My). # # # Plot updated contMap for time-step n°5 = 20 My # contMap_20My <- Ponerinae_deepSTRAPP_cont_old_calib_0_40$updated_trait_data_with_Map_over_time[[5]] # plot_contMap(contMap_20My$contMap, # color_scale = c("darkgreen", "limegreen", "orange", "red"), # lwd = 0.9, # Adjust width of branches # fsize = c(0.2, 1)) # Reduce tip label size ## ----plot_updated_contMap_cont_eval_dev, eval = is_dev_version(), echo = TRUE---- # # # Extract root age # root_age <- max(phytools::nodeHeights(Ponerinae_tree_old_calib)[,2]) # # ## The next plot shows the evolution of trait values across the whole phylogeny (100-0 My). # # # Plot initial contMap (t = 0) # contMap_0My <- Ponerinae_deepSTRAPP_cont_old_calib_0_40$updated_trait_data_with_Map_over_time[[1]] # plot_contMap(contMap_0My$contMap, # color_scale = c("darkgreen", "limegreen", "orange", "red"), # lwd = 0.7, # Adjust width of branches # fsize = c(0.1, 1)) # Reduce tip label size # abline(v = root_age - 20, col = "red", lty = 2) # Show where the phylogeny will be cut # # ## The next plot shows the evolution of trait values from root to 20Mya (100-20 My). # # # Plot updated contMap for time-step n°5 = 20 My # contMap_20My <- Ponerinae_deepSTRAPP_cont_old_calib_0_40$updated_trait_data_with_Map_over_time[[5]] # plot_contMap(contMap_20My$contMap, # color_scale = c("darkgreen", "limegreen", "orange", "red"), # lwd = 0.9, # Adjust width of branches # fsize = c(0.2, 1)) # Reduce tip label size ## ----plot_updated_contMap_cont_eval_CRAN, eval = !is_dev_version(), echo = FALSE, out.width = "100%"---- # Plot pre-rendered graph knitr::include_graphics("figures/1.1_deepSTRAPP_continuous_data_4.5_plot_updated_contMap_1.PNG") knitr::include_graphics("figures/1.1_deepSTRAPP_continuous_data_4.5_plot_updated_contMap_2.PNG") ## ----plot_BAMM_rates_cont----------------------------------------------------- # ### 4.6/ Plot updated diversification rates and regimes for a given 'focal_time' #### # # # ?deepSTRAPP::plot_BAMM_rates() # # ## These plots help to visualize the evolution of diversification rates across the phylogeny, # ## and to focus on tip values at specific time-steps. # # # Display the time-steps # Ponerinae_deepSTRAPP_cont_old_calib_0_40$time_steps # # # Extract root age # root_age <- max(phytools::nodeHeights(Ponerinae_tree_old_calib)[,2]) # # ## The next plot shows the evolution of net diversification rates across the whole phylogeny (100-0 My). # # # Plot diversification rates on initial phylogeny (t = 0) # BAMM_map_0My <- Ponerinae_deepSTRAPP_cont_old_calib_0_40$updated_BAMM_objects_over_time[[1]] # plot_BAMM_rates(BAMM_map_0My, labels = FALSE, par.reset = FALSE) # abline(v = root_age - 20, col = "red", lty = 2) # Show where the phylogeny will be cut # title(main = "BAMM rates for 100-0 My") # # ## The next plot shows the evolution of net diversification rates from root to 20 Mya (100-20 My). # # # Plot diversification rates on updated phylogeny for time-step n°5 = 20 My # BAMM_map_20My <- Ponerinae_deepSTRAPP_cont_old_calib_0_40$updated_BAMM_objects_over_time[[5]] # plot_BAMM_rates(BAMM_map_20My, labels = FALSE, # colorbreaks = BAMM_map_20My$initial_colorbreaks$net_diversification) # title(main = "BAMM rates for 100-20 My") # ## ----plot_BAMM_rates_cont_eval_dev, eval = is_dev_version(), echo = FALSE----- # old_par <- par(no.readonly = TRUE) # par(mfrow = c(1, 2)) # # # Plot diversification rates on initial phylogeny (t = 0) # BAMM_map_0My <- Ponerinae_deepSTRAPP_cont_old_calib_0_40$updated_BAMM_objects_over_time[[1]] # plot_BAMM_rates(BAMM_map_0My, labels = FALSE, legend = TRUE, par.reset = FALSE) # abline(v = max(phytools::nodeHeights(Ponerinae_tree_old_calib)[,2]) - 20, col = "red", lty = 2) # Show where the phylogeny will be cut # title(main = "BAMM rates for 100-0 My") # # # Plot diversification rates on updated phylogeny for time-step n°5 = 20 My # BAMM_map_20My <- Ponerinae_deepSTRAPP_cont_old_calib_0_40$updated_BAMM_objects_over_time[[5]] # plot_BAMM_rates(BAMM_map_20My, labels = FALSE, legend = TRUE, # colorbreaks = BAMM_map_20My$initial_colorbreaks$net_diversification) # title(main = "BAMM rates for 100-20 My") # # par(old_par) ## ----plot_BAMM_rates_cont_eval_CRAN, eval = !is_dev_version(), echo = FALSE, out.width = "100%"---- # Plot pre-rendered graph knitr::include_graphics("figures/1.1_deepSTRAPP_continuous_data_4.6_plot_BAMM_rates.PNG") ## ----plot_traits_vs_rate_maps_cont-------------------------------------------- # ### 4.7/ Plot both trait evolution and diversification rates and regimes updated for a given 'focal_time' #### # # # ?deepSTRAPP::plot_traits_vs_rates_on_phylogeny_for_focal_time() # # ## These plots help to visualize simultaneously the evolution of trait and diversification rates # ## across the phylogeny, and to focus on tip values at specific time-steps. # # # Display the time-steps # Ponerinae_deepSTRAPP_cont_old_calib_0_40$time_steps # # ## The next plot shows the evolution of trait values and rates across the whole phylogeny (100-0 My). # # # Plot diversification rates on initial phylogeny (t = 0) # plot_traits_vs_rates_on_phylogeny_for_focal_time( # deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cont_old_calib_0_40, # focal_time = 0, # ftype = "off", lwd = 0.7, # color_scale = c("darkgreen", "limegreen", "orange", "red"), # labels = FALSE, legend = FALSE, # par.reset = FALSE) # # ## The next plot shows the evolution of trait values and rates from root to 20 Mya (100-20 My). # # # Plot diversification rates on updated phylogeny for time-step n°5 = 20 My # plot_traits_vs_rates_on_phylogeny_for_focal_time( # deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cont_old_calib_0_40, # focal_time = 20, # ftype = "off", lwd = 1.2, # color_scale = c("darkgreen", "limegreen", "orange", "red"), # labels = FALSE, legend = FALSE, # par.reset = FALSE) # ## ----plot_traits_vs_rate_maps_cont_eval_dev, fig.height = 7, eval = is_dev_version(), echo = FALSE---- # # Plot diversification rates on initial phylogeny (t = 0) # plot_traits_vs_rates_on_phylogeny_for_focal_time( # deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cont_old_calib_0_40, # focal_time = 0, # ftype = "off", lwd = 0.7, # color_scale = c("darkgreen", "limegreen", "orange", "red"), # labels = FALSE, legend = FALSE, # par.reset = FALSE) # # # Plot diversification rates on updated phylogeny for time-step n°5 = 20 My # plot_traits_vs_rates_on_phylogeny_for_focal_time( # deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cont_old_calib_0_40, # focal_time = 20, # ftype = "off", lwd = 1.2, # color_scale = c("darkgreen", "limegreen", "orange", "red"), # labels = FALSE, legend = FALSE, # par.reset = FALSE) ## ----plot_traits_vs_rate_maps_cont_eval_CRAN, eval = !is_dev_version(), echo = FALSE, out.width = "100%"---- # Plot pre-rendered graph knitr::include_graphics("figures/1.1_deepSTRAPP_continuous_data_4.7_plot_traits_vs_rate_maps_1.PNG") knitr::include_graphics("figures/1.1_deepSTRAPP_continuous_data_4.7_plot_traits_vs_rate_maps_2.PNG")